JP2925630B2 - Alkaline batteries - Google Patents
Alkaline batteriesInfo
- Publication number
- JP2925630B2 JP2925630B2 JP2047196A JP4719690A JP2925630B2 JP 2925630 B2 JP2925630 B2 JP 2925630B2 JP 2047196 A JP2047196 A JP 2047196A JP 4719690 A JP4719690 A JP 4719690A JP 2925630 B2 JP2925630 B2 JP 2925630B2
- Authority
- JP
- Japan
- Prior art keywords
- manganese dioxide
- positive electrode
- dioxide powder
- weight
- graphite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はアルカリ乾電池に関し、特に正極体を構成す
る正極合剤を改良したアルカリ乾電池に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention relates to an alkaline dry battery, and more particularly to an alkaline dry battery in which a positive electrode mixture constituting a positive electrode body is improved.
(従来の技術) アルカリ乾電池は、塩化亜鉛電解液を用いたマンガン
乾電池に比べて連続放電及び重負荷放電性能が優れてい
るため、携帯用再生装置やカメラのフラッシュライトの
電源等として利用されている。(Conventional technology) Alkaline batteries are superior in continuous discharge and heavy load discharge performance as compared with manganese batteries using zinc chloride electrolyte, and are therefore used as power sources for portable playback devices and camera flashlights. I have.
ところで、上記アルカリ乾電池の正極活物質として
は、従来より優れた放電性能と高密度を有する電解二酸
化マンガン(EMD)が多く用いられていた。By the way, as the positive electrode active material of the alkaline dry battery, electrolytic manganese dioxide (EMD), which has better discharge performance and higher density than before, has been widely used.
また、電解二酸化マンガン単体では導電性が低いた
め、通常、黒鉛、アセチレンブラック等の導電助剤を5
〜15重量%程度混合して導電性を付与していた。Further, since electrolytic manganese dioxide alone has low conductivity, a conductive auxiliary such as graphite, acetylene black or the like is usually used.
About 15% by weight was mixed to impart conductivity.
(発明が解決しようとする課題) ところが、EMDは電解酸化工程において、電解時間及
び電力を多量に必要とするため、コストの高いものにな
っていた。しかも、従来の化学合成二酸化マンガン(CM
D)や天然二酸化マンガン(NMD)はEMDよりも低コスト
ではあるが、重負荷放電については充分な性能を発揮で
きなかった。従って、EMDに代わるような高性能かつ低
コストの二酸化マンガンを得るために、化学的合成法に
よる開発や研究が近年盛んに行なわれているが、アルカ
リ乾電池として大量に使用することが可能な化学合成二
酸化マンガンは未だ見い出だされていない。(Problems to be Solved by the Invention) However, EMD requires a large amount of electrolysis time and electric power in the electrolytic oxidation step, and thus has been expensive. Moreover, conventional chemically synthesized manganese dioxide (CM
D) and natural manganese dioxide (NMD) are less expensive than EMD, but did not perform well with heavy load discharges. Therefore, in order to obtain high-performance and low-cost manganese dioxide that can replace EMD, development and research by chemical synthesis methods have been actively conducted in recent years, but chemicals that can be used in large quantities as alkaline dry batteries have been developed. Synthetic manganese dioxide has not yet been found.
一方、導電剤として一般に用いられている黒鉛やアセ
チレンブラックはいずれも固有の欠点を有しており、十
分に満足できるものではない。すなわち黒鉛を導電剤と
した場合、黒鉛粉中に不純物として含有している鉄、
鉛、銅等が正極作用物質と反応し、正極の電位低下や電
池の容量低下が生じたり、電解液保持性が低いことに起
因して正極活物質の利用率が低下してしまうという問題
がある。また黒鉛自体は電気抵抗は小さいものの、正極
体に用いた場合その粒子状の構造に起因して、正極体の
電気抵抗を充分に低くすることができない欠点があっ
た。On the other hand, graphite and acetylene black, which are generally used as conductive agents, have inherent disadvantages and are not sufficiently satisfactory. That is, when graphite is used as the conductive agent, iron contained in graphite powder as an impurity,
Lead, copper, etc. react with the positive electrode active substance, causing a decrease in the potential of the positive electrode, a decrease in the capacity of the battery, and a decrease in the utilization rate of the positive electrode active material due to low electrolyte retention. is there. Although graphite itself has a small electric resistance, it has a drawback that when used for a positive electrode body, the electric resistance of the positive electrode body cannot be sufficiently reduced due to its particulate structure.
この点アセチレンブラックは黒鉛粉に比較して不純物
が少なく、また鎖状構造が発達しているため、電解液の
保持性が大きく正極活物質の利用率を向上でき、かつ正
極体の電気抵抗を小さくすることができる。しかしアセ
チレンブラック表面には、正極活物質に対し還元性の強
い官能基が存在しているため、これを導電剤に用いた電
池は電位低下と放電容量低下とが大きくなるという欠点
があった。In this respect, acetylene black has less impurities compared to graphite powder and has a developed chain structure, so that it has a large retention of the electrolyte and can improve the utilization rate of the positive electrode active material, and can reduce the electric resistance of the positive electrode body. Can be smaller. However, since a functional group having a strong reducibility to the positive electrode active material is present on the surface of acetylene black, a battery using the same as a conductive agent has a drawback that a decrease in potential and a decrease in discharge capacity are increased.
本発明は上記従来の課題を解決するためになされたも
ので、電解二酸化マンガンを正極活物質、黒鉛を正極導
電剤として用いた場合に比べてより優れた重負荷放電特
性を有し、かつ該電解二酸化マンガンと黒鉛を使用した
場合、より低コストの正極体を備えたアルカリ乾電池を
提供しようとするものである。The present invention has been made in order to solve the above-mentioned conventional problems, and has more excellent heavy-load discharge characteristics than when electrolytic manganese dioxide is used as a positive electrode active material and graphite is used as a positive electrode conductive agent. When electrolytic manganese dioxide and graphite are used, it is intended to provide an alkaline dry battery having a lower-cost cathode body.
(課題を解決するための手段) 本発明は、硫酸マンガンを焙焼して得られるマンガン
酸化物を酸処理してなるγ形結晶を主成分とした化学合
成二酸化マンガン粉末30〜60重量%と電解二酸化マンガ
ン粉末40〜70重量%との混合物からなる正極活物質と、
黒鉛とJIS K6221による揮発分が0.2%以下で、かつ比
表面積が90〜150m2/gであるオイルファーネスブラック
との混合物を正極導電材とする正極体を用いることを特
徴とするアルカリ乾電池である。(Means for Solving the Problems) The present invention relates to a chemically synthesized manganese dioxide powder containing 30 to 60% by weight of a γ-type crystal obtained by subjecting a manganese oxide obtained by roasting manganese sulfate to an acid treatment. A positive electrode active material comprising a mixture of 40 to 70% by weight of electrolytic manganese dioxide powder;
An alkaline dry battery using a cathode body having a mixture of graphite and oil furnace black having a volatile content of 0.2% or less according to JIS K6221 and an oil furnace black having a specific surface area of 90 to 150 m 2 / g as a cathode conductive material. .
上記本発明に用いる化学合成二酸化マンガン粉末は、
平均粒径が20μm以下のものを使用することが望まし
い。かかる化学合成二酸化マンガンのγ形結晶の占める
割合は70%以上とすることが望ましい。Chemically synthesized manganese dioxide powder used in the present invention,
It is desirable to use one having an average particle size of 20 μm or less. It is desirable that the ratio of the chemically synthesized manganese dioxide to the γ-type crystal be 70% or more.
上記化学合成二酸化マンガン粉末の製造方法例は、次
の通りである。まず、カリウム含有量の少ない硫酸マン
ガン(MnSO4)溶液を加熱濃縮して硫酸マンガン結晶を
調製する。この場合、アルカリ金属、特にカリウムが多
く含まれていると、以降の工程での焙焼、酸処理により
活性の低いα形結晶の多い化学合成二酸化マンガンが製
造されるため好ましくない。つづいて、これを空気雰囲
気又は空気より酸素分圧の大きい酸素雰囲気中にて800
〜1100℃、10分間以上焙焼し、次式(1)、(2)に示
すように硫酸マンガンを分解してMn3O4又はMn2O3を主成
分とするマンガン酸化物を造る。An example of a method for producing the above chemically synthesized manganese dioxide powder is as follows. First, a manganese sulfate (MnSO 4 ) solution having a low potassium content is heated and concentrated to prepare a manganese sulfate crystal. In this case, it is not preferable to contain a large amount of alkali metal, particularly potassium, because roasting and acid treatment in the subsequent steps produce chemically synthesized manganese dioxide having a large amount of α-form crystals with low activity. Subsequently, this is placed in an air atmosphere or an oxygen atmosphere having a higher oxygen partial pressure than air.
It is roasted at 1001100 ° C. for 10 minutes or more, and manganese sulfate is decomposed as shown in the following formulas (1) and (2) to produce manganese oxide containing Mn 3 O 4 or Mn 2 O 3 as a main component.
3MnSO4→Mn3O4+SO2+2SO3 …(1) 2MnSO4→Mn2O3+SO2+SO3 …(2) 次いで、前記Mn3O4を主成分とするマンガン酸化物に
ついては、例えばロータリーキルン等により700〜950℃
で焙焼し、次式(3)に示す反応を行なって、その後の
工程での酸処理の歩留りのよいMn2O3を主成分とするマ
ンガン酸化物に変換する。3MnSO 4 → Mn 3 O 4 + SO 2 + 2SO 3 (1) 2MnSO 4 → Mn 2 O 3 + SO 2 + SO 3 (2) Then, for the manganese oxide containing Mn 3 O 4 as a main component, for example, a rotary kiln 700 ~ 950 ℃
And a reaction represented by the following formula (3) is carried out to convert into a manganese oxide containing Mn 2 O 3 as a main component, which has a good yield in acid treatment in the subsequent step.
4Mn3O4+O2→6Mn2O3 …(3) 次いで、前記Mn2O3を主成分とするマンガン酸化物を
硫酸(又は硝酸、塩酸、これらの混合酸)により酸処理
する。これにより、次式(4)、(5)に示す不均化反
応が起こって化学合成二酸化マンガンが生成される。4Mn 3 O 4 + O 2 → 6Mn 2 O 3 (3) Next, the manganese oxide containing Mn 2 O 3 as a main component is treated with sulfuric acid (or nitric acid, hydrochloric acid, or a mixed acid thereof). Thereby, a disproportionation reaction represented by the following formulas (4) and (5) occurs, and chemically synthesized manganese dioxide is generated.
Mn2O3+H2SO4→MnO2+MnSO4+H2O …(4) Mn3O4+2H2SO4→MnO2+2MnSO4+2H2O …(5) 次いで、生成したMnO2を水洗、中和処理、乾燥処理を
施した後、得られた粉末を1〜10トン/cm2の圧力下でロ
ールプレスにより板状に圧縮成形し、更に所定の粒度に
粉砕することによりγ形結晶を主成分とする化学合成二
酸化マンガン粉末を製造する。 Mn 2 O 3 + H 2 SO 4 → MnO 2 + MnSO 4 + H 2 O ... (4) Mn 3 O 4 + 2H 2 SO 4 → MnO 2 + 2MnSO 4 + 2H 2 O ... (5) Then, the resulting washed with water MnO 2, Medium sum processing, after a drying treatment, the resultant powder was compression molded into a plate by roll press under a pressure of 1-10 tons / cm 2, mainly γ-form crystals by further ground to a predetermined particle size Manufacture chemically synthesized manganese dioxide powder as a component.
また前記電解二酸化マンガンとしては、市販のものを
用いることができる。A commercially available electrolytic manganese dioxide can be used.
上記化学合成二酸化マンガン粉末と電解二酸化マンガ
ン粉末との配合割合は、該化学合成二酸化マンガン粉末
30〜60重量%、電解二酸化マンガン粉末40〜70重量%の
範囲にすることが望ましい。The mixing ratio of the chemically synthesized manganese dioxide powder and the electrolytic manganese dioxide powder is
It is desirable to set the range to 30 to 60% by weight and the electrolytic manganese dioxide powder to 40 to 70% by weight.
また、本発明においては導電材として用いるオイルフ
ァーネスブラックは、液状炭化水素を炉内で分子状酸素
および水蒸気の存在下で部分酸化せしめ、合成ガス生成
と同時に生成する副生カーボンを乾燥し、次いで加熱処
理を施して得られる。その際に用いられる液状炭化水素
とは、炭素原子/水素原子が重量比で9以上のものを意
味し、そのような液状炭化水素としては、例えば、ナフ
サの熱分解油(エチレンヘビーエンド)、芳香族系炭化
水素にカーボンを混合した液状炭化水素(カーボンオイ
ル)、芳香族系液状炭化水素にC重油などを混合した混
合オイルなどが挙げられる。Further, in the present invention, the oil furnace black used as a conductive material, liquid hydrocarbons are partially oxidized in the presence of molecular oxygen and water vapor in a furnace, and the by-product carbon generated at the same time as the synthesis gas is produced is dried. Obtained by performing a heat treatment. The liquid hydrocarbon used at that time means a carbon atom / hydrogen atom having a weight ratio of 9 or more. Examples of such a liquid hydrocarbon include naphtha pyrolysis oil (ethylene heavy end), Examples thereof include a liquid hydrocarbon (carbon oil) in which carbon is mixed with an aromatic hydrocarbon, and a mixed oil in which C heavy oil and the like are mixed with an aromatic liquid hydrocarbon.
かかるオイルファーネスブラックを得るためには、液
状炭化水素1トンに対し水蒸気は、200〜800kg、好まし
くは400〜800kg使用する。炉内の温度は1200〜1450℃好
ましくは1300〜1450℃であり、反応時の圧力は10〜80気
圧、好ましくは25〜80気圧である。In order to obtain such an oil furnace black, 200 to 800 kg, preferably 400 to 800 kg of water vapor is used for 1 ton of liquid hydrocarbon. The temperature in the furnace is 1200-1450 ° C., preferably 1300-1450 ° C., and the pressure during the reaction is 10-80 atm, preferably 25-80 atm.
次に、上記副生カーボンを窒素雰囲気下300〜900℃で
0.5〜3時間乾燥し、さらに不活性ガス雰囲気下、1000
〜3000℃で0.5〜5時間加熱処理を行なうことにより得
られたものが目的とするオイルファーネスブラックであ
る。Next, the by-product carbon is heated at 300 to 900 ° C.
Dry for 0.5 to 3 hours, then in an inert gas atmosphere, 1000
The target oil furnace black is obtained by performing a heat treatment at 3000 ° C. for 0.5 to 5 hours.
このオイルファーネスブラックは、不純物が少なく、
かつ、鎖状構造が発達しているという特徴がある。上記
オイルファーネスブラックとアセチレンブラック及び黒
鉛との表面積(m2/g)、塩酸吸液量(ml/5g)、炭素網
の面間隔d(002)(Å)及び発揮分(%)に関する物
性の比較を表1に示す。This oil furnace black has few impurities,
In addition, there is a characteristic that a chain structure is developed. Physical properties of the above-mentioned oil furnace black, acetylene black and graphite, surface area (m 2 / g), hydrochloric acid absorption (ml / 5g), interplanar spacing d (002) (Å) and output (%) of carbon net The comparison is shown in Table 1.
表1に示した各物性は、オイルファーネスブラックが
アルカリ乾電池の正極体用導電剤として適当かどうかを
判断する上でいずれも重要である。 Each of the physical properties shown in Table 1 is important in determining whether oil furnace black is suitable as a conductive agent for a positive electrode body of an alkaline dry battery.
揮発分はカーボンブラック表面の官能基に起因すると
されており、アルデヒド基、カルボキシル基、水素等の
還元性を有する官能基を意味する。こうした揮発分は当
然値が小さいほど二酸化マンガンに対する還元性が小さ
く良好であり、0.2%を越えると正極合剤の二酸化マン
ガンを還元して劣化させるため好ましくない。Volatile components are attributed to functional groups on the surface of carbon black, and refer to functional groups having reducing properties such as aldehyde groups, carboxyl groups, and hydrogen. Naturally, the smaller the volatile content is, the smaller the reduction property to manganese dioxide is, and the better it is. If it exceeds 0.2%, manganese dioxide of the positive electrode mixture is reduced and deteriorated, which is not preferable.
また、本発明のオイルファーネスブラックの製造工程
における不活性ガス雰囲気下1000〜3000℃での加熱処理
は表面官能基を除去する目的で行われているが、加熱処
理が過多であると、鎖状構造が破壊され導電性の低下が
おこる。従って揮発分が0.02〜0.2であることが望まし
い。In addition, the heat treatment at 1000 to 3000 ° C. under an inert gas atmosphere in the production process of the oil furnace black of the present invention is performed for the purpose of removing surface functional groups. The structure is destroyed and the conductivity decreases. Therefore, it is desirable that the volatile content is 0.02 to 0.2.
また黒鉛化度を示す炭素網の面間隔d(002)は小さ
い方が、すなわち黒鉛の炭素網面間隔3.35Åに近い方が
導電性が高くなり望ましいが、黒鉛化度が高くなり過ぎ
ても表面積、塩酸吸液量が低下する。従って炭素網の面
間隔は3.48〜3.40Åであることが望ましい。これらの条
件における比表面積はBET法により測定するが、その値
は90〜150m2/gで、塩酸吸液量は20ml/5g以上であること
が望ましい。In addition, it is desirable that the plane spacing d (002) of the carbon net showing the degree of graphitization be small, that is, the direction closer to the carbon network plane spacing of graphite of 3.35Å be higher in conductivity, but even if the degree of graphitization becomes too high. Surface area and hydrochloric acid absorption are reduced. Therefore, it is desirable that the plane interval of the carbon net is 3.48 to 3.40 °. The specific surface area under these conditions is measured by the BET method, and the value is preferably 90 to 150 m 2 / g, and the hydrochloric acid absorption is preferably 20 ml / 5 g or more.
尚、この黒鉛化度を示す炭素網の面間隔d(002)
は、炭素材料学会編炭素材料入門、第184〜192頁(炭素
材料学会、1979年刊)に記載の学術振興会第117委員会
によって確立されたX線回折の手法によりシリコンを標
準物質として測定したものである。The plane distance d (002) of the carbon net showing the degree of graphitization
Was measured using silicon as a standard substance by the X-ray diffraction method established by the 117th Committee of the Japan Society for the Promotion of Science, described in the Carbon Materials Society of Japan, Introduction to Carbon Materials, pages 184-192 (Carbon Materials Society, 1979). Things.
ここで、本発明のアルカリ乾電池においては、上記オ
イルファーネスブラックは黒鉛と混合して用いられる。
オイルファーネスブラック及び黒鉛の単体における電気
抵抗は表2のとおりである。Here, in the alkaline dry battery of the present invention, the above-mentioned oil furnace black is used by being mixed with graphite.
Table 2 shows the electrical resistance of the oil furnace black and graphite alone.
上記表2から明らかな如く、オイルファーネスブラッ
クと黒鉛との混合物を用いると、単位重量当りの電気抵
抗がオイルファーネスブラック単体の場合に比べて減少
し、重負荷放電性能をより一層高めることができる。こ
のオイルファーネスブラックと黒鉛との混合割合は重量
比で98:2〜50:50の範囲にあることが望ましい。黒鉛の
混合量が2重量%未満では混合するメリットがなく、一
方50重量%より大きくなると前述した黒鉛の悪影響が生
ずる。 As is clear from Table 2, when a mixture of oil furnace black and graphite is used, the electric resistance per unit weight is reduced as compared with the case where the oil furnace black is used alone, and the heavy load discharge performance can be further enhanced. . The mixing ratio of the oil furnace black and graphite is desirably in the range of 98: 2 to 50:50 by weight. If the amount of graphite is less than 2% by weight, there is no merit of mixing, while if it is more than 50% by weight, the above-mentioned adverse effect of graphite occurs.
(作 用) 本発明によれば、γ形結晶を主成分とした化学合成二
酸化マンガン粉末と電解二酸化マンガン粉末との混合物
を正極活物質として用いることによって、電解二酸化マ
ンガン粉末のみを正極活物質として用いた場合に比べ
て、重負荷放電特性の優れたアルカリ乾電池を得ること
ができる。(Action) According to the present invention, by using a mixture of a chemically synthesized manganese dioxide powder mainly composed of a γ-type crystal and an electrolytic manganese dioxide powder as the positive electrode active material, only the electrolytic manganese dioxide powder is used as the positive electrode active material. An alkaline dry battery having excellent heavy load discharge characteristics can be obtained as compared with the case where the battery is used.
即ち、上記化学合成二酸化マンガン粉末と電解二酸化
マンガン粉末との組成の混合物を、正極活物質とした正
極体を組み込んだアルカリ乾電池では、放電末期での電
池電圧の低下が少なく放電曲線での平坦化又は上昇現象
を生じる。これは放電末期毎のX線回折において、上記
組成の正極活物質を含む正極体ではヘテロライト(ZnO
・Mn2O3)の結晶成長を示す回折強度が他の二酸化マン
ガン混合物よりも増大しており、ヘテロライト生成反応
が起こり易い組成であることに起因する。このようにヘ
テロライトの生成によって放電電位が平坦化又は上昇す
る原因は、MnO2粒子表面の放電生成物(MnOOH)と溶液
電解液中のZn(OH)4 2-イオンの下記(6)式に示す反
応に、自由エネルギーの減少が伴うことによるものと考
えられる。That is, in an alkaline dry battery incorporating a positive electrode body having a composition of the above-mentioned chemically synthesized manganese dioxide powder and electrolytic manganese dioxide powder as a positive electrode active material, a decrease in battery voltage at the end of discharge is small and the discharge curve is flattened. Or a rising phenomenon occurs. This is due to the fact that in the X-ray diffraction at each terminal stage of the discharge, the heterolite (ZnO)
The diffraction intensity indicating the crystal growth of Mn 2 O 3 ) is higher than that of other manganese dioxide mixtures, and this is due to the composition in which the heterolite generation reaction easily occurs. The cause of the flattening or rising of the discharge potential due to the formation of the heterolite is that the discharge product (MnOOH) on the surface of the MnO 2 particles and the Zn (OH) 4 2− ion in the solution electrolyte have the following formula (6). It is considered that the reaction shown in (1) is accompanied by a decrease in free energy.
2MnOOH+Zn(OH)4 2-→ZnO・Mn2O3+2H2O+2OH- …
(6) 以上のことから、上記化学合成二酸化マンガン粉末と
電解二酸化マンガン粉末との組成の混合物を正極活物質
とした正極体を組み込んだアルカリ乾電池では、放電持
続時間が長くなり、重負荷放電特性を著しく改善でき
る。 2MnOOH + Zn (OH) 4 2- → ZnO · Mn 2 O 3 + 2H 2 O + 2OH - ...
(6) From the above, in the alkaline dry battery incorporating the positive electrode body using the mixture of the composition of the chemically synthesized manganese dioxide powder and the electrolytic manganese dioxide powder as the positive electrode active material, the discharge duration becomes longer, and the heavy load discharge characteristics are increased. Can be significantly improved.
また、従来のアルカリ乾電池に使用されている電解二
酸化マンガンは硫酸マンガンの電解により得られ、その
電解に長時間要するばかりか、多くの電力を消費する
が、本発明の正極体に使用される二酸化マンガンは化学
合成により得られるため電解二酸化マンガンに比べて低
コスト化を実現できる。The electrolytic manganese dioxide used in the conventional alkaline dry battery is obtained by electrolysis of manganese sulfate, and the electrolysis takes a long time and consumes a lot of power. Since manganese is obtained by chemical synthesis, cost reduction can be realized as compared with electrolytic manganese dioxide.
また、オイルファーネスブラックは前記の如く不純物
が少なく鎖状構造が発達しているため、電解液の保持性
が大きく、正極作用物質の利用率を向上でき、かつ、正
極体の電気抵抗を小さくすることができ、かかる点から
も重負荷放電性能が向上する。本発明に用いたオイルフ
ァーネスブラックは不活性ガス雰囲気下で加熱処理され
るので、表面官能基が非常に少なく、したがってアセチ
レンブラックのように正極活物質を還元して電位及び放
電容量を低下させることが極めて少ない。Further, as described above, since the oil furnace black has a small amount of impurities and a developed chain structure, the retention of the electrolyte is large, the utilization rate of the positive electrode active substance can be improved, and the electric resistance of the positive electrode body is reduced. This also improves heavy load discharge performance. Since the oil furnace black used in the present invention is heat-treated in an inert gas atmosphere, it has very few surface functional groups, and therefore reduces the positive electrode active material like acetylene black to lower the potential and discharge capacity. Is extremely small.
(実施例) 以下、本発明の実施例を図面を参照して詳細に説明す
る。Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
実施例1 平均粒径が約10μmのMnO2を92%含むγ形結晶の化学
合成二酸化マンガン粉末30重量%と市販の電解二酸化マ
ンガン粉末70重量%とを撹拌混合機を用いて、均一に撹
拌混合して正極活物質を調製した。Example 1 30% by weight of chemically synthesized manganese dioxide powder of γ-type crystal containing 92% of MnO 2 having an average particle size of about 10 μm and 70% by weight of commercially available electrolytic manganese dioxide powder were uniformly stirred using a stirring mixer. By mixing, a positive electrode active material was prepared.
前述した方法で製造された正極活物質を用いて第1図
に示す構造のJIS規格LR6形(単3形)アルカリ乾電池を
組立てた。Using the positive electrode active material manufactured by the above-described method, a JIS standard LR6 type (AA) alkaline dry battery having a structure shown in FIG. 1 was assembled.
即ち、図中の1は正極端子を兼ねる有底円筒形の金属
缶である。この金属缶1内には、円筒状に加圧成形した
正極体2が充填されている。前記正極体2は、前述した
方法で調製された正極活物質90重量部と、導電材として
オイルファーネスブラック9重量部および黒鉛1重量部
とに、30%濃度の水酸化カリウムからなるアルカリ電解
液を3重量部加え撹拌混合し、これを3トン/cm2の圧力
で中空円筒状に加圧成形したものである。なお、前記正
極体2は金属缶1に対する接触性を高めるために金属缶
1への充填後において例えば3トン/cm2の圧力で再加圧
されている。That is, reference numeral 1 in the drawing denotes a bottomed cylindrical metal can also serving as a positive electrode terminal. This metal can 1 is filled with a positive electrode body 2 formed into a cylindrical pressure. The positive electrode body 2 is composed of 90 parts by weight of the positive electrode active material prepared by the above-mentioned method, 9 parts by weight of oil furnace black and 1 part by weight of graphite as conductive materials, and an alkaline electrolyte comprising 30% potassium hydroxide. 3 parts by weight of the stirred mixture is obtained by pressure molding into a hollow cylindrical shape at a pressure of 3 tons / cm 2 to this. The positive electrode body 2 is pressurized again at a pressure of, for example, 3 tons / cm 2 after filling the metal can 1 in order to enhance the contact property with the metal can 1.
前記円筒状の正極体2の中空部には、アセタール化ポ
リビニルアルコール繊維の不織布からなる有底円筒状の
セパレータ3を介してゲル状負極合剤4が充填されてい
る。このゲル状負極合剤4は、ポリアクリル酸ソーダを
3重量%加えた水酸化カリウム電解液に負極活物質であ
るアマルガム化した亜鉛粉末を分散させた構成になって
いる。このゲル状負極合剤4内には、真鍮製の負極集電
棒5がその上端部を該負極合剤4より突出するように挿
着されている。この負極集電棒5の突出部外周面及び前
記金属缶1の上部内周面には、二重環状のポリアミド樹
脂からなる絶縁ガスケット6が介在されている。また、
前記ガスケット6の二重環状部の間にはリング状の金属
板7が配置され、かつ該金属板7には負極端子を兼ねる
帽子形の金属封口板8が前記集電棒5の頭部に当接する
ように配置されている。そして、前記金属缶1の開口縁
を内方に屈曲させることにより前記ガスケット6及び金
属封口板8で金属缶1内を密閉口している。The hollow portion of the cylindrical positive electrode body 2 is filled with a gelled negative electrode mixture 4 via a bottomed cylindrical separator 3 made of a nonwoven fabric of acetalized polyvinyl alcohol fiber. The gelled negative electrode mixture 4 has a structure in which amalgamated zinc powder, which is a negative electrode active material, is dispersed in a potassium hydroxide electrolyte solution containing 3% by weight of sodium polyacrylate. In the gelled negative electrode mixture 4, a negative electrode current collector rod 5 made of brass is inserted so that its upper end protrudes from the negative electrode mixture 4. An insulating gasket 6 made of a double annular polyamide resin is interposed on the outer peripheral surface of the projecting portion of the negative electrode current collector rod 5 and the upper inner peripheral surface of the metal can 1. Also,
A ring-shaped metal plate 7 is disposed between the double annular portions of the gasket 6, and a hat-shaped metal sealing plate 8 serving also as a negative electrode terminal is provided on the metal plate 7 so as to contact the head of the current collecting rod 5. It is arranged so that it may touch. The inside edge of the metal can 1 is sealed by the gasket 6 and the metal sealing plate 8 by bending the opening edge of the metal can 1 inward.
実施例2 正極活物質として化学合成二酸化マンガン粉末40重量
%と電解二酸化マンガン粉末60重量%の組成のものを用
いた以外、実施例1と同構造のアルカリ乾電池を組立て
た。Example 2 An alkaline dry battery having the same structure as in Example 1 was assembled except that a positive electrode active material having a composition of 40% by weight of chemically synthesized manganese dioxide powder and 60% by weight of electrolytic manganese dioxide powder was used.
実施例3 正極活物質として化学合成二酸化マンガン粉末50重量
%と電解二酸化マンガン粉末50重量%の組成のものを用
いた以外、実施例1と同構造のアルカリ乾電池を組立て
た。Example 3 An alkaline dry battery having the same structure as that of Example 1 was assembled except that a cathode active material having a composition of 50% by weight of chemically synthesized manganese dioxide powder and 50% by weight of electrolytic manganese dioxide powder was used.
実施例4 正極活物質として化学合成二酸化マンガン粉末60重量
%と電解二酸化マンガン粉末40重量%の組成のものを用
いた以外、実施例1と同構造のアルカリ乾電池を組立て
た。Example 4 An alkaline dry battery having the same structure as in Example 1 was assembled except that a cathode active material having a composition of 60% by weight of chemically synthesized manganese dioxide powder and 40% by weight of electrolytic manganese dioxide powder was used.
比較例1 正極活物質として化学合成二酸化マンガン粉末のみか
らなるものを用いた以外、実施例1と同構造のアルカリ
乾電池を組立てた。Comparative Example 1 An alkaline dry battery having the same structure as in Example 1 was assembled except that a cathode active material composed of only chemically synthesized manganese dioxide powder was used.
比較例2 正極活物質として化学合成二酸化マンガン粉末20重量
%と電解二酸化マンガン粉末80重量%の組成のものを用
いた以外、実施例1と同構造のアルカリ乾電池を組立て
た。Comparative Example 2 An alkaline dry battery having the same structure as in Example 1 was assembled except that a cathode active material having a composition of 20% by weight of chemically synthesized manganese dioxide powder and 80% by weight of electrolytic manganese dioxide powder was used.
比較例3 正極活物質として化学合成二酸化マンガン粉末70重量
%と電解二酸化マンガン粉末30重量%の組成のものを用
いた以外、実施例1と同構造のアルカリ乾電池を組立て
た。Comparative Example 3 An alkaline dry battery having the same structure as in Example 1 was assembled except that a positive electrode active material having a composition of 70% by weight of chemically synthesized manganese dioxide powder and 30% by weight of electrolytic manganese dioxide powder was used.
比較例4 正極活物質として電解二酸化マンガン粉末のみのもの
を用いた以外、実施例1と同構造のアルカリ乾電池を組
立てた。Comparative Example 4 An alkaline dry battery having the same structure as in Example 1 was assembled except that only the electrolytic manganese dioxide powder was used as the positive electrode active material.
比較例5 正極活物質として化学合成二酸化マンガン粉末40重量
%と電解二酸化マンガン粉末60重量%の組成のものと正
極導電材として黒鉛10重量部のものを用いた以外、実施
例1と同構造のアルカリ乾電池を組立てた。Comparative Example 5 The same structure as in Example 1 was used except that a cathode active material having a composition of 40% by weight of chemically synthesized manganese dioxide powder and an electrolytic manganese dioxide powder of 60% by weight and a cathode conductive material having 10 parts by weight of graphite were used. An alkaline battery was assembled.
比較例6 正極活物質として化学合成二酸化マンガン粉末60重量
%と電解二酸化マンガン粉末40重量%の組成のものと正
極導電材として黒鉛10重量部のものを用いた以外、実施
例1と同構造のアルカリ乾電池を組立てた。Comparative Example 6 The same structure as in Example 1 was used except that a cathode active material having a composition of chemically synthesized manganese dioxide powder of 60% by weight and an electrolytic manganese dioxide powder of 40% by weight and a cathode conductive material of 10 parts by weight of graphite were used. An alkaline battery was assembled.
しかして、本実施例1〜4、比較例1〜6のアルカリ
乾電池について、2Ωの負荷抵抗による連続放電を行な
い、0.9Vの放電電圧になるまでの放電持続時間を測定し
た。その結果を下記表3に示す。The alkaline dry batteries of Examples 1 to 4 and Comparative Examples 1 to 6 were continuously discharged with a load resistance of 2 Ω, and the discharge duration until the discharge voltage reached 0.9 V was measured. The results are shown in Table 3 below.
上記表3から明らかなように、γ形結晶の化学合成二
酸化マンガン粉末と電解二酸化マンガン粉末とを混合し
た正極活物質を含む正極体を備えた実施例1〜4のアル
カリ乾電池は、γ形結晶の化学合成二酸化マンガン粉末
のみを正極活物質として含む正極体を備えた比較例1の
乾電池、電解二酸化マンガン粉末のみを正極活物質とし
て含む正極体を備えた比較例4の乾電池に比べて重負荷
放電特性が向上されることがわかる。そして、特にγ形
結晶の化学合成二酸化マンガン粉末30〜60重量%と電解
二酸化マンガン粉末40〜70重量%とを混合した正極活物
質を含む正極体を備えた実施例1〜4のアルカリ乾電池
は、化学合成二酸化マンガン粉末と電解二酸化マンガン
粉末の配合比率が前記範囲を外れる比較例2,3のアルカ
リ乾電池に対しても重負荷放電特性が向上されることが
わかる。 As is clear from Table 3 above, the alkaline dry batteries of Examples 1 to 4 each having a positive electrode body containing a positive electrode active material obtained by mixing a chemically synthesized manganese dioxide powder of γ-type crystal and an electrolytic manganese dioxide powder, The battery of Comparative Example 1 provided with the positive electrode body containing only the chemically synthesized manganese dioxide powder as the positive electrode active material, and the heavy battery as compared with the dry battery of Comparative Example 4 provided with the positive electrode body containing only the electrolytic manganese dioxide powder as the positive electrode active material It can be seen that the discharge characteristics are improved. In particular, the alkaline dry batteries of Examples 1 to 4 each having a positive electrode body including a positive electrode active material in which 30 to 60% by weight of chemically synthesized manganese dioxide powder of γ-type crystal and 40 to 70% by weight of electrolytic manganese dioxide powder are mixed It can be seen that the heavy-load discharge characteristics are improved even for the alkaline dry batteries of Comparative Examples 2 and 3 in which the compounding ratio of the chemically synthesized manganese dioxide powder and the electrolytic manganese dioxide powder is out of the above range.
また、正極導電剤にオイルファーネス90%と黒鉛10%
を用いた実施例2,4のアルカリ乾電池は、黒鉛のみを用
いた比較例5,6に比べても重負荷放電特性がより一層向
上されることがわかる。In addition, 90% of oil furnace and 10% of graphite are used for the positive electrode conductive agent.
It can be seen that the heavy-load discharge characteristics of the alkaline dry batteries of Examples 2 and 4 using Pb were further improved as compared with Comparative Examples 5 and 6 using only graphite.
以上詳述したように、本発明によれば電解二酸化マン
ガンを正極活物質、黒鉛を正極導電剤として用いた場合
に比べてより優れた重負荷放電特性を有し、かつ該電解
二酸化マンガンおよび黒鉛を使用した場合より低コスト
の正極体を備えたアルカリ乾電池を提供できる。As described in detail above, according to the present invention, electrolytic manganese dioxide has a more excellent heavy-load discharge characteristic as compared with the case where graphite is used as a positive electrode conductive material, and the electrolytic manganese dioxide and graphite Can provide an alkaline dry battery provided with a positive electrode body which is lower in cost than the case of using an alkaline battery.
第1図は本発明の一実施例を示すアルカリ乾電池の断面
図である。 1……金属缶、2……正極体、 3……セパレータ、4……ゲル状負極合剤、 5……負極集電棒、8……金属封口板。FIG. 1 is a sectional view of an alkaline dry battery showing one embodiment of the present invention. DESCRIPTION OF SYMBOLS 1 ... Metal can, 2 ... Positive body, 3 ... Separator, 4 ... Gelled negative electrode mixture, 5 ... Negative current collector rod, 8 ... Metal sealing plate.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01M 4/06 - 4/08 H01M 4/50 H01M 4/62 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01M 4/06-4/08 H01M 4/50 H01M 4/62
Claims (1)
酸化物を酸処理してなるγ形結晶を主成分とした化学合
成二酸化マンガン粉末30〜60重量%と電解二酸化マンガ
ン粉末40〜70重量%との混合物からなる正極括物質と、
黒鉛とJIS K6221による揮発分が0.2%以下で、かつ比
表面積が90〜150m2/gであるオイルファーネスブラック
との混合物を正極導電材とする正極体を用いることを特
徴とするアルカリ乾電池。1. A chemically synthesized manganese dioxide powder containing 30 to 60% by weight of γ-type crystal obtained by subjecting a manganese oxide obtained by roasting manganese sulfate to an acid treatment and an electrolytic manganese dioxide powder of 40 to 70% by weight. % Of a positive electrode material comprising a mixture of
An alkaline dry battery using a positive electrode body having a positive electrode conductive material containing a mixture of graphite and oil furnace black having a volatile content of 0.2% or less according to JIS K6221 and a specific surface area of 90 to 150 m 2 / g.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2047196A JP2925630B2 (en) | 1990-03-01 | 1990-03-01 | Alkaline batteries |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2047196A JP2925630B2 (en) | 1990-03-01 | 1990-03-01 | Alkaline batteries |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03252055A JPH03252055A (en) | 1991-11-11 |
JP2925630B2 true JP2925630B2 (en) | 1999-07-28 |
Family
ID=12768373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2047196A Expired - Lifetime JP2925630B2 (en) | 1990-03-01 | 1990-03-01 | Alkaline batteries |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2925630B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69411838T2 (en) * | 1993-09-30 | 1999-04-22 | Mitsui Mining & Smelting Co., Ltd., Tokio/Tokyo | Process for the production of an active cathode material molding compound for dry cells. |
US5489493A (en) * | 1995-06-07 | 1996-02-06 | Eveready Battery Company, Inc. | Alkaline manganese dioxide cell |
JP4641329B2 (en) * | 2004-08-10 | 2011-03-02 | 川崎重工業株式会社 | Positive electrode composition for alkaline secondary battery, conductive material for positive electrode of alkaline secondary battery, and alkaline secondary battery |
JP6492617B2 (en) * | 2013-12-20 | 2019-04-03 | 東ソー株式会社 | Manganese dioxide and manganese dioxide mixtures and their production and use |
-
1990
- 1990-03-01 JP JP2047196A patent/JP2925630B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH03252055A (en) | 1991-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1078748C (en) | Method of producing active material of positive electrode for nonaqueous battery | |
CN1717370A (en) | Composite oxide containing lithium, nickel, cobalt, manganese, and fluorine, process for producing the same, and lithium secondary cell employing it | |
CN105958029B (en) | Preparation method of lithium vanadate/carbon nanotube/carbon as lithium ion battery cathode composite material | |
CN1618138A (en) | Zinc-alkaline battery containing lambda-Mn02 | |
JPH075318B2 (en) | Manganese dioxide and its manufacturing method | |
US5660953A (en) | Rechargeable manganese dioxide cathode | |
WO2000006496A1 (en) | Process for producing spinel type lithium manganate | |
CN1178315C (en) | Alkaline cell with improved cathode | |
JPH0660870A (en) | Manufacture of dry battery | |
WO2006001209A1 (en) | Alkali battery | |
JPH1160243A (en) | Nickel hydroxide, lithium nickelate, their production and lithium ion secondary battery using the lithium nickelate | |
KR100639060B1 (en) | Method for preparing lithium manganate having spinel structure | |
KR100753921B1 (en) | Fabrication method of nano-sized active materials containing copper phase with improved cycle-ability for anode of lithium secondary battery | |
JP2925630B2 (en) | Alkaline batteries | |
CN1162198A (en) | Electrolytic manganese dioxide, mfg. method and manganese dry cell thereof | |
CN115744857B (en) | Method for preparing lithium iron phosphate positive electrode material by directional circulation of waste lithium iron phosphate battery | |
US12091328B2 (en) | High-nickel sodium ion positive electrode material and preparation method therefor and battery | |
CN113903915A (en) | Preparation method of graphene-coated porous lead oxide-lead sulfide composite material | |
JP3353588B2 (en) | Method for producing manganese oxide for battery and battery | |
JPH0224961A (en) | Alkaline dry battery | |
JPH031444A (en) | Alkaline dry battery | |
JPH04184867A (en) | Silver oxide battery | |
JPH01292752A (en) | Alkaline dry battery | |
CN117795739A (en) | Electrolyte for metal-air battery, preparation method thereof and metal-air battery using same | |
JPH1067520A (en) | Lithium iron oxide powder and production of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090507 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090507 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100507 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |