JPH03251812A - Optical recorder - Google Patents
Optical recorderInfo
- Publication number
- JPH03251812A JPH03251812A JP3438290A JP3438290A JPH03251812A JP H03251812 A JPH03251812 A JP H03251812A JP 3438290 A JP3438290 A JP 3438290A JP 3438290 A JP3438290 A JP 3438290A JP H03251812 A JPH03251812 A JP H03251812A
- Authority
- JP
- Japan
- Prior art keywords
- parallel plate
- photoreceptor
- plane plate
- scanning direction
- parallel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims description 10
- 108091008695 photoreceptors Proteins 0.000 claims description 53
- 238000003384 imaging method Methods 0.000 claims description 24
- 238000001514 detection method Methods 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000010147 laser engraving Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Landscapes
- Laser Beam Printer (AREA)
- Mechanical Optical Scanning Systems (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、電子写真法に基づいて画像を形成する型式の
プリンタ、複写機、ファクシミリ、レーザー製版機等に
利用される光記録装置に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical recording device used in printers, copiers, facsimile machines, laser engraving machines, etc. that form images based on electrophotography.
従来の技術
従来、光源から照射されたビーム光をポリゴンミラー等
の偏向手段により回転自在の感光体に走査することによ
り、この感光体の表面に静電潜像を形成する光記録装置
において、感光体に対してビーム光が副走査方向にずれ
ると、画像濃度のムラとして表れ、画像品質が損なわれ
ることが問題となる。感光体上の副走査方向の記録位置
のずれは次の原因を主として発生することが知られてい
る。2. Description of the Related Art Conventionally, in an optical recording device, an electrostatic latent image is formed on the surface of a rotatable photoreceptor by scanning a beam of light irradiated from a light source onto a rotatable photoreceptor using deflection means such as a polygon mirror. If the beam light is shifted in the sub-scanning direction with respect to the body, it will appear as unevenness in image density, causing a problem in that image quality will be impaired. It is known that deviations in the recording position on the photoreceptor in the sub-scanning direction occur mainly due to the following causes.
第一に、ポリゴンミラーの各反射面の回転軸心に対する
面倒れである。第二に、感光体の回転速度の変動である
。これは、モータの回転ムラ、ギヤ等の伝動系の振動、
感光体の偏心等に起因する。The first problem is the inclination of each reflective surface of the polygon mirror with respect to the rotation axis. The second problem is variation in the rotational speed of the photoreceptor. This is due to uneven rotation of the motor, vibrations in the transmission system such as gears,
This is caused by eccentricity of the photoreceptor, etc.
第一の原因に対しては、光学的に補正してポリゴンミラ
ーの反射面と感光体とを共役関係にする方法が採用され
ている。第二の原因に対しては、伝動機構を省略し感光
体を直接モータで駆動するダイレクトドライブ方法、或
いは、回転体のイナーシャを大きくする方法等が採用さ
れているが、モータが大型化しコストアップになる。こ
のため、特開昭63−192008号公報に記載されて
いるように、レーザー光路中に主走査方向に沿う回転軸
心をもって回転するミラーを設け、感光体の回転速度を
検出し、この検出信号に応じてミラーを回動させること
により、感光体に対するビーム光の副走査方向のずれを
補正するようにした発明がある。For the first cause, a method is adopted in which optical correction is performed to bring the reflective surface of the polygon mirror and the photoreceptor into a conjugate relationship. To solve the second cause, methods have been adopted, such as a direct drive method in which the transmission mechanism is omitted and the photoreceptor is directly driven by a motor, or a method in which the inertia of the rotating body is increased, but the motor becomes larger and costs increase. become. For this reason, as described in Japanese Patent Application Laid-Open No. 63-192008, a mirror that rotates with a rotation axis along the main scanning direction is provided in the laser optical path to detect the rotational speed of the photoreceptor, and the detection signal is There is an invention in which the deviation of the light beam relative to the photoreceptor in the sub-scanning direction is corrected by rotating a mirror in accordance with the rotation of the mirror.
発明が解決しようとする課題
特開昭63−192008号公報に記載された発明は、
ミラーの回動角の変化に対する感光体上の副走査方向の
記録位置の変動が大きくなる。例えば、ミラーから感光
体までの距離Qを100mmとして、感光体上の副走査
方向の記録位置の補正量δを10 μm<0.OI m
m)とした場合、ミラーの回動角θは次式により求めら
れる。Problems to be solved by the invention The invention described in Japanese Patent Application Laid-Open No. 63-192008 is as follows:
The fluctuation of the recording position on the photoreceptor in the sub-scanning direction increases with respect to the change in the rotation angle of the mirror. For example, assuming that the distance Q from the mirror to the photoreceptor is 100 mm, the correction amount δ of the recording position on the photoreceptor in the sub-scanning direction is 10 μm<0. OI m
m), the rotation angle θ of the mirror is determined by the following equation.
θ=δ/2℃=0.01/200
= 5 X 10−” (rad) = 10秒しかし
、ミラーを10秒単位の微小角度で回動させることは、
モータの回転ムラ或いはこのモータの回転をミラーに伝
達する伝動機構のギヤのバックラッシュ等の原因により
極めて困難で、また、この程度の角度のミラーの動きは
振動等によっても発生するため、ミラーの支持方法が困
難である構成
請求項1の発明は、光源から照射されたビーム光を偏向
する偏向手段と感光体との間に結像レンズを配設し、こ
の結像レンズと前記感光体との間に主走査方向と平行な
軸心をもって回動自在に保持された透明な平行平板を平
行平板駆動部に連結して設け、前記感光体の回転速度を
検出する速度検出手段の出力に応じて前記平行平板駆動
部に出力する平行平板駆動制御部を設ける。θ=δ/2°C=0.01/200 = 5 x 10-” (rad) = 10 seconds However, rotating the mirror by a small angle of 10 seconds
This is extremely difficult due to factors such as uneven rotation of the motor and backlash of the gears in the transmission mechanism that transmits the rotation of the motor to the mirror.Furthermore, mirror movement of this degree can also be caused by vibration, etc. The structure in which the supporting method is difficult In the invention of claim 1, an imaging lens is disposed between a photoreceptor and a deflecting means for deflecting a beam of light irradiated from a light source, and the imaging lens and the photoreceptor are connected to each other. A transparent parallel plate, which is rotatably held with an axis parallel to the main scanning direction, is connected to a parallel plate drive unit between the photoreceptors, and the rotational speed of the photoreceptor is detected according to the output of the speed detection means. A parallel plate drive control unit is provided which outputs the output to the parallel plate drive unit.
請求項2の発明は、光源から照射されたビーム光を偏向
する偏向手段と感光体との間に前記偏向手段の前記反射
面の面倒れを補正するアナモフィックな結像レンズを配
設し、前記光源と前記偏向手段との間に副走査方向の曲
率を有する集光レンズを配設し、この集光レンズと前記
偏向手段との間に主走査方向と平行な軸心をもって回動
自在に保持された透明な平行平板を平行平板駆動部に連
結して設け、前記感光体の回転速度を検出する速度検出
手段の出力に応じて前記平行平板駆動部に出力する平行
平板駆動制御部を設ける。The invention according to claim 2 further comprises disposing an anamorphic imaging lens for correcting a surface inclination of the reflecting surface of the deflecting means between a deflecting means for deflecting a beam of light irradiated from a light source and a photoreceptor; A condensing lens having a curvature in the sub-scanning direction is disposed between the light source and the deflecting means, and is rotatably held between the condensing lens and the deflecting means with an axis parallel to the main scanning direction. A parallel plate drive control unit is provided, in which a transparent parallel plate is connected to a parallel plate drive unit, and a parallel plate drive control unit outputs an output to the parallel plate drive unit in accordance with an output of a speed detection means for detecting the rotational speed of the photoreceptor.
作用
請求項1の発明は、感光体の回転速度を検出する速度検
出手段の出力に応じて平行平板駆動制御部により平行平
板駆動部を駆動して平行平板を回動させることにより、
感光体の回転速度の変化に応じて感光体上の副走査方向
の記録位置のずれを補正するが、このずれの補正量は、
平行平板の屈折率と1との差を同屈折率で除した値と平
行平板の回動角との積に比例するため、平行平板の屈折
率を小さく定めることにより、感光体上の副走査方向の
記録位置の補正量に対して平行平板の回動角を大きくす
ることができ、これにより、平行平板の支持構造及び平
行平板の回動角の制御を容易にすることができる。The invention according to claim 1 is characterized in that the parallel plate drive control unit drives the parallel plate drive unit to rotate the parallel plate according to the output of the speed detection means for detecting the rotational speed of the photoreceptor.
The deviation of the recording position on the photoconductor in the sub-scanning direction is corrected according to the change in the rotation speed of the photoconductor, but the amount of correction for this deviation is
Since it is proportional to the product of the difference between the refractive index of the parallel plate and 1 divided by the same refractive index and the rotation angle of the parallel plate, by setting the refractive index of the parallel plate small, the sub-scanning on the photoreceptor can be The rotation angle of the parallel plate can be increased relative to the amount of correction of the recording position in the direction, and thereby the support structure of the parallel plate and the rotation angle of the parallel plate can be easily controlled.
請求項2の発明は、光源から照射されて集光レンズで集
光されたビーム光を通す平行平板により副走査方向への
ビーム光のずれを補正するとともに、平行平板の屈折率
を小さく定めることにより、感光体上の副走査方向の記
録位置の補正量に対して平行平板の回動角を大きくする
ことができ、さらに、アナモフィックな結像レンズによ
り、偏向手段の反射面と感光体とが副走査方向で共役と
なるように光学的な補正を行うことができる。The invention of claim 2 corrects the deviation of the beam light in the sub-scanning direction by using a parallel plate through which the beam light emitted from the light source and condensed by the condensing lens passes, and also sets the refractive index of the parallel plate to be small. This makes it possible to increase the rotation angle of the parallel plate relative to the correction amount of the recording position in the sub-scanning direction on the photoconductor, and furthermore, the anamorphic imaging lens allows the reflection surface of the deflection means to be connected to the photoconductor. Optical correction can be performed to make the image conjugate in the sub-scanning direction.
実施例
本発明の第一の実施例を第1図ないし第4図に基づいて
説明する。lは半導体レーザー等の光源で、この光源1
から感光体2に至る光路中に、コリメートレンズ3と、
偏向手段であるポリゴンミラー4と、結像レンズ(fθ
レンズ)5と、透明な平行平板6とが順次配設されてい
る。また、感光体2の端部近傍には、ポリゴンミラー4
から偏向されたビーム光を受光して感光体2への記録開
始位置を決定するための受光素子7が設けられている。Embodiment A first embodiment of the present invention will be described with reference to FIGS. 1 to 4. l is a light source such as a semiconductor laser, and this light source 1
In the optical path from the to the photoreceptor 2, a collimating lens 3,
A polygon mirror 4, which is a deflecting means, and an imaging lens (fθ
A lens) 5 and a transparent parallel plate 6 are sequentially arranged. Further, a polygon mirror 4 is provided near the end of the photoreceptor 2.
A light receiving element 7 is provided for receiving the beam light deflected from the photoreceptor 2 and determining the recording start position on the photoreceptor 2.
また、感光体2の軸の一端にはエンコーダ等の速度検出
手段8が連結され、他端はモータ(図示せず)に連結さ
れている。Further, a speed detecting means 8 such as an encoder is connected to one end of the shaft of the photoreceptor 2, and the other end is connected to a motor (not shown).
第4図に示すように、前記速度検出手段8は周波数電圧
変換部9を介して演算処理部10の入力側に接続され、
この演算処理部10の出力側には、平行平板駆動制御部
11と平行平板駆動部12とが順次接続されている。こ
の平行平板駆動部12は、前記平行平板6を主走査方向
に沿う軸心をもって回動させるものである。As shown in FIG. 4, the speed detection means 8 is connected to the input side of the arithmetic processing section 10 via the frequency-voltage conversion section 9,
A parallel plate drive control unit 11 and a parallel plate drive unit 12 are sequentially connected to the output side of the arithmetic processing unit 10. The parallel plate drive unit 12 rotates the parallel plate 6 about an axis along the main scanning direction.
このような構成において、光源1から照射されコリメー
トレンズ3により平行光線とされたビーム光はポリゴン
ミラー4により偏向され、さらに、結像レンズ6により
感光体2の表面に結像される。In such a configuration, a beam of light emitted from the light source 1 and made into parallel light by the collimating lens 3 is deflected by the polygon mirror 4, and further focused on the surface of the photoreceptor 2 by the imaging lens 6.
この時、感光体2の回転速度を検出する速度検出手段8
からの周波数信号は周波数電圧変換部9により電圧に変
換されて演算処理部10に入力され、演算処理部10は
感光体2の回転速度に応じて平行平板6の回動力向と回
動角とを演算し、その結果を平行平板駆動制御部11に
出力する。この平行平板駆動制御部11の出力により駆
動される平行平板駆動部12は平行平板6を所定の方向
に所定角度回動させる。At this time, speed detection means 8 for detecting the rotational speed of the photoreceptor 2
The frequency signal is converted into a voltage by the frequency-voltage conversion section 9 and inputted to the arithmetic processing section 10 , and the arithmetic processing section 10 determines the rotational force direction and rotational angle of the parallel plate 6 according to the rotational speed of the photoreceptor 2 . is calculated, and the result is output to the parallel plate drive control section 11. A parallel plate drive unit 12 driven by the output of the parallel plate drive control unit 11 rotates the parallel plate 6 in a predetermined direction by a predetermined angle.
ここで、第3図に示すように、感光体2の表面における
ビーム光の副走査方向への位置の補正量をδ、平行平板
6の厚さをd、屈折率をn、回動角をθとすると、ビー
ム光の補正量δは次式により求められる。Here, as shown in FIG. 3, the amount of correction of the position of the beam light in the sub-scanning direction on the surface of the photoreceptor 2 is δ, the thickness of the parallel plate 6 is d, the refractive index is n, and the rotation angle is When θ is assumed, the correction amount δ of the beam light is determined by the following equation.
−1
δ辷 d sxnθ・・・・・・■ここで、δ−1
0μm(0,01mm)、n=1゜5mm、d=3mm
とすると、■式によりθは0. 6度になる。この0.
6度なる角度は、従来例の角度(10秒)に比較して大
きな角度である。すなわち、感光体2上の副走査方向の
記録位置のずれの補正量δは、(n−1)/nと平行平
板6の回動角θとの積に比例するため、平行平板6の屈
折率nを小さく定めることにより、δに対してθを大き
くすることができ、これにより、平行平板の支持構造及
び平行平板6の回動角の制御を容易にすることができる
。−1 δ−1 d sxnθ・・・・・・■Here, δ−1
0μm (0.01mm), n=1゜5mm, d=3mm
Then, θ is 0. It will be 6 degrees. This 0.
The angle of 6 degrees is a large angle compared to the angle of the conventional example (10 seconds). In other words, since the correction amount δ of the deviation of the recording position on the photoreceptor 2 in the sub-scanning direction is proportional to the product of (n-1)/n and the rotation angle θ of the parallel plate 6, the refraction of the parallel plate 6 By setting the ratio n small, it is possible to make θ larger than δ, thereby making it easier to control the support structure of the parallel plates and the rotation angle of the parallel plates 6.
次いで、本発明の第二の実施例を第5図ないし第8図に
基づいて説明する。前記実施例と同一部分は同一符号を
用い説明も省略する。本実施例は、コリメートレンズ3
を通したビーム光を、副走査方向に曲率をもつ集光レン
ズ(シリンダーレンズ)13によりポリゴンミラー4に
集光し、ポリゴンミラー4で偏向されたビーム光を、こ
のポリゴンミラー4の反射面4aの面倒れ補正機能を有
するアナモフィックな結像レンズ14により感光体2に
結像し、この時に、集光レンズ13とポリゴンミラー4
との間に設けた平行平板6を感光体2の回転速度に応じ
て回動させて、感光体2上の副走査方向の記録位置のず
れを補正するものである。Next, a second embodiment of the present invention will be explained based on FIGS. 5 to 8. The same parts as in the previous embodiment are designated by the same reference numerals, and the description thereof will be omitted. In this example, the collimating lens 3
The beam light passing through the polygon mirror 4 is focused on a polygon mirror 4 by a condensing lens (cylinder lens) 13 having a curvature in the sub-scanning direction, and the beam light deflected by the polygon mirror 4 is directed to a reflective surface 4a of this polygon mirror 4. An image is formed on the photoreceptor 2 by an anamorphic imaging lens 14 having a surface tilt correction function.
A parallel plate 6 provided between the photoreceptor 2 and the photoreceptor 2 is rotated in accordance with the rotational speed of the photoreceptor 2 to correct the deviation of the recording position on the photoreceptor 2 in the sub-scanning direction.
本実施例におけるずれの補正量δは次式により求められ
る。ただし、aはポリゴンミラー4の反射面4aから結
像レンズ14の中心までの距離、bは結像レンズ14の
中心から感光体2の表面までの距離である。The deviation correction amount δ in this embodiment is determined by the following equation. Here, a is the distance from the reflective surface 4a of the polygon mirror 4 to the center of the imaging lens 14, and b is the distance from the center of the imaging lens 14 to the surface of the photoreceptor 2.
n−1,b
δ# ds1nθ−・・・・・・■n
a
ここで、8 = 10 μm(0,01mm)、n−1
゜5mm、d=3mmとすると、■式によりθは0.
15度になる。この0.15度なる角度も、従来例の角
度(10秒)に比較して大きな角度である。■式におい
ても、感光体2上の副走査方向の記録位置のずれの補正
量δは、(n−1)/nと平行平板6の回動角θとの積
に比例するため、平行平板6の屈折率nを小さく定める
ことにより、δに対してθを大きくすることができる。n-1,b δ# ds1nθ-・・・・・・■n
a Here, 8 = 10 μm (0.01 mm), n-1
When ゜5mm and d=3mm, θ is 0.
It will be 15 degrees. This angle of 0.15 degrees is also a large angle compared to the angle of the conventional example (10 seconds). In formula (2), the correction amount δ of the recording position deviation in the sub-scanning direction on the photoreceptor 2 is proportional to the product of (n-1)/n and the rotation angle θ of the parallel plate 6. By setting the refractive index n of 6 to a small value, θ can be made larger than δ.
また、本実施例においては、平行平板6をポリゴンミラ
ー4の前に配置したことにより小型化することができる
。Further, in this embodiment, by arranging the parallel plate 6 in front of the polygon mirror 4, the size can be reduced.
この平行平板6の駆動手段は前記実施例と同様である。The driving means for this parallel plate 6 is the same as in the previous embodiment.
さらに、第8図に示すように、結像レンズ14によりポ
リゴンミラー4の反射面4aの面倒れの影響を補正する
ことができる。Furthermore, as shown in FIG. 8, the influence of the surface tilt of the reflective surface 4a of the polygon mirror 4 can be corrected by the imaging lens 14.
発明の効果
請求項1の発明は上述のように、光源から照射されたビ
ーム光を偏向する偏向手段と感光体との間に結像レンズ
を配設し、この結像レンズと前記感光体との間に主走査
方向と平行な軸心をもって回動自在に保持された透明な
平行平板を平行平板駆動部に連結して設け、前記感光体
の回転速度を検出する速度検出手段の出力に応じて前記
平行平板駆動部に出力する平行平板駆動制御部を設ける
ことにより、感光体の回転速度を検出する速度検出手段
の出力に応じて平行平板駆動制御部により平行平板駆動
部を駆動して平行平板を回動させることにより、感光体
の回転速度の変化に応じて感光体上の副走査方向の記録
位置のずれを補正するが、このずれの補正量は、平行平
板の屈折率と1との差を同屈折率で除した値と平行平板
の回動角との積に比例するため、平行平板の屈折率を小
さく定めることにより、感光体上の副走査方向の記録位
置の補正量に対して平行平板の回動角を大きくすること
ができ、これにより、平行平板の支持構造及び平行平板
の回動角の制御を容易にすることができる。Effects of the Invention As described above, the invention of claim 1 includes an imaging lens disposed between a photoreceptor and a deflecting means for deflecting a beam of light irradiated from a light source, and an imaging lens and a photoreceptor. A transparent parallel plate, which is rotatably held with an axis parallel to the main scanning direction, is connected to a parallel plate drive unit between the photoreceptors, and the rotational speed of the photoreceptor is detected according to the output of the speed detection means. By providing a parallel plate drive control unit that outputs an output to the parallel plate drive unit, the parallel plate drive control unit drives the parallel plate drive unit in accordance with the output of the speed detection means that detects the rotational speed of the photoreceptor. By rotating the flat plate, the deviation of the recording position on the photoconductor in the sub-scanning direction is corrected according to the change in the rotational speed of the photoconductor, but the amount of correction for this deviation is determined by the refractive index of the parallel plate and 1. is proportional to the product of the value obtained by dividing the difference by the refractive index and the rotation angle of the parallel plate, so by setting the refractive index of the parallel plate to a small value, the amount of correction of the recording position on the photoconductor in the sub-scanning direction can be reduced. On the other hand, the rotation angle of the parallel plate can be increased, thereby making it easier to control the support structure of the parallel plate and the rotation angle of the parallel plate.
請求項2の発明は上述のように、光源から照射されたビ
ーム光を偏向する偏向手段と感光体との間に前記偏向手
段の前記反射面の面倒れを補正するアナモフィックな結
像レンズを配設し、前記光源と前記偏向手段との間に副
走査方向の曲率を有する集光レンズを配設し、この集光
レンズと前記偏向手段との間に主走査方向と平行な細心
をもって回動自在に保持された透明な平行平板を平行平
板駆動部に連結して設け、前記感光体の回転速度を検出
する速度検出手段の出力に応じて前記平行平板駆動部に
出力する平行平板駆動制御部を設けることにより、光源
から照射されて集光レンズで集光されたビーム光を通す
平行平板により、感光体上の副走査方向の記録位置のず
れを補正するとともに、平行平板の屈折率を小さく定め
ることにより、感光体上の副走査方向の記録位置の補正
量に対して平行平板の回動角を大きくすることができ、
さらに、アナモフィックな結像レンズにより、偏向手段
の反射面と感光体とが副走査方向で共役となるように光
学的な補正を行うことができる等の効果を有する。As described above, an anamorphic imaging lens is disposed between a deflection means for deflecting a light beam irradiated from a light source and a photoconductor, and an anamorphic imaging lens for correcting a surface inclination of the reflective surface of the deflection means. A condenser lens having a curvature in the sub-scanning direction is disposed between the light source and the deflection means, and the condenser lens and the deflection means are carefully rotated parallel to the main scanning direction. A parallel plate drive control unit that connects a freely held transparent parallel plate to a parallel plate drive unit and outputs an output to the parallel plate drive unit in accordance with an output of a speed detection means that detects the rotational speed of the photoreceptor. By providing a parallel plate that passes the beam light emitted from the light source and condensed by the condenser lens, it is possible to correct the deviation of the recording position on the photoreceptor in the sub-scanning direction, and to reduce the refractive index of the parallel plate. By determining this, the rotation angle of the parallel plate can be increased relative to the correction amount of the recording position in the sub-scanning direction on the photoreceptor,
Furthermore, the anamorphic imaging lens has the advantage that optical correction can be performed so that the reflecting surface of the deflecting means and the photoreceptor are conjugate in the sub-scanning direction.
第1図ないし第4図は本発明の第一の実施例を示すもの
で、第1図は斜視図、第2図は平行平板の平面図、第3
図は平行平板の回動力向を示す側面図、第4図は平行平
板を駆動する電子回路を示すブロック図、第5図ないし
第8図は本発明の第二の実施例を示すもので、第5図は
斜視図、第6図は集光レンズから感光体に至る光路系の
側面図、第7図は結像レンズをその結像作用とともに示
す平面図、第8図は結像レンズをその結像作用とともに
示す側面図である。
1・・・光源、2・・・感光体、4・・・偏向手段、5
・・・結像レンズ、6・・・平行平板、8・・・速度検
出手段、11・・・平行平板駆動制御部、12・・・平
行平板駆動部、13・・・集光レンズ、14・・・アナ
モフィックな結像レンズ1 to 4 show a first embodiment of the present invention, in which FIG. 1 is a perspective view, FIG. 2 is a plan view of a parallel plate, and FIG.
The figure is a side view showing the direction of rotation of the parallel plates, FIG. 4 is a block diagram showing an electronic circuit for driving the parallel plates, and FIGS. 5 to 8 show a second embodiment of the present invention. Fig. 5 is a perspective view, Fig. 6 is a side view of the optical path system from the condenser lens to the photoreceptor, Fig. 7 is a plan view showing the imaging lens together with its imaging function, and Fig. 8 is the imaging lens. FIG. 3 is a side view showing its imaging effect. DESCRIPTION OF SYMBOLS 1... Light source, 2... Photoreceptor, 4... Deflection means, 5
. . . Imaging lens, 6 . . . Parallel plate, 8 . ...Anamorphic imaging lens
Claims (1)
、この偏向手段と感光体との間に配設された結像レンズ
と、この結像レンズと前記感光体との間で主走査方向と
平行な軸心をもって回動自在に保持された透明な平行平
板と、この平行平板が連結された平行平板駆動部と、前
記感光体の回転速度を検出する速度検出手段と、この速
度検出手段の出力に応じて前記平行平板駆動部に出力す
る平行平板駆動制御部とよりなることを特徴とする光記
録装置。 2、光源から照射されたビーム光を偏向する偏向手段と
、この偏向手段と感光体との間に配設されて前記偏向手
段の前記反射面の面倒れを補正するアナモフイックな結
像レンズと、副走査方向の曲率を有して前記光源と前記
偏向手段との間に配列された集光レンズと、この集光レ
ンズと前記偏向手段との間で主走査方向と平行な軸心を
もって回動自在に保持された透明な平行平板と、この平
行平板が連結された平行平板駆動部と、前記感光体の回
転速度を検出する速度検出手段と、この速度検出手段の
出力に応じて前記平行平板駆動部に出力する平行平板駆
動制御部とよりなることを特徴とする光記録装置。[Claims] 1. Deflection means for deflecting a beam of light irradiated from a light source, an imaging lens disposed between the deflection means and the photoreceptor, and a combination of the imaging lens and the photoreceptor. a transparent parallel plate that is rotatably held with an axis parallel to the main scanning direction between the parallel plate drives, a parallel plate driving section to which the parallel plate is connected, and a speed detection means for detecting the rotational speed of the photoreceptor. and a parallel plate drive control section that outputs an output to the parallel plate drive section according to the output of the speed detection means. 2. a deflection means for deflecting a beam emitted from a light source; an anamorphic imaging lens disposed between the deflection means and a photoreceptor to correct a surface inclination of the reflective surface of the deflection means; a condenser lens having a curvature in the sub-scanning direction and arranged between the light source and the deflection means, and rotating about an axis parallel to the main scanning direction between the condenser lens and the deflection means; a transparent parallel plate held freely; a parallel plate drive unit to which the parallel plate is connected; a speed detection means for detecting the rotational speed of the photoreceptor; An optical recording device comprising: a parallel plate drive control unit that outputs output to a drive unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3438290A JPH03251812A (en) | 1989-12-15 | 1990-02-15 | Optical recorder |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32493889 | 1989-12-15 | ||
JP1-324938 | 1989-12-15 | ||
JP3438290A JPH03251812A (en) | 1989-12-15 | 1990-02-15 | Optical recorder |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03251812A true JPH03251812A (en) | 1991-11-11 |
Family
ID=26373182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3438290A Pending JPH03251812A (en) | 1989-12-15 | 1990-02-15 | Optical recorder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03251812A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000347125A (en) * | 1999-04-26 | 2000-12-15 | Xerox Corp | Spatial low-speed scanning position controller using liquid crystal plate allowing electronic address assignment |
-
1990
- 1990-02-15 JP JP3438290A patent/JPH03251812A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000347125A (en) * | 1999-04-26 | 2000-12-15 | Xerox Corp | Spatial low-speed scanning position controller using liquid crystal plate allowing electronic address assignment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5054866A (en) | Scanning optical apparatus | |
JPH05211590A (en) | Image distortion compensator for copier | |
JP3111515B2 (en) | Scanning optical device | |
JP3445691B2 (en) | Optical scanning device and adjustment method thereof | |
JP4146177B2 (en) | Optical scanning apparatus and image forming apparatus | |
EP0566155B1 (en) | Optical scanning device for scanning laser beam focused on image-forming surfaces | |
JP2000227639A (en) | Method for detecting and correcting skew between reference beam and lenticule in lenticular material | |
JPH10133135A (en) | Light beam deflecting device | |
JPH0996773A (en) | Optical scanner | |
JPH03251812A (en) | Optical recorder | |
JP2931181B2 (en) | Optical scanning device | |
JPH04242215A (en) | Optical scanner | |
JP2008282021A (en) | Optical scanner and image forming apparatus | |
JPH05346547A (en) | Optical scanning device | |
JP2000131636A (en) | Scanning optical device | |
JPH09185003A (en) | Optical scanner | |
JPH0682717A (en) | Light scanning device | |
JP3093877B2 (en) | Disk for light beam recording device and light beam recording device | |
JPH09179053A (en) | Optical scanning device | |
JPH01180513A (en) | Light beam recorder | |
JPH06281876A (en) | Optical deflection device | |
JPS6167817A (en) | Semiconductor laser light scanner | |
JPH0943522A (en) | Optical scanning device | |
JPH05289008A (en) | Synchronous detector | |
JP5084488B2 (en) | Optical scanning apparatus and image forming apparatus |