JPH03251787A - Apparatus for measuring cross-section of beam - Google Patents

Apparatus for measuring cross-section of beam

Info

Publication number
JPH03251787A
JPH03251787A JP5035090A JP5035090A JPH03251787A JP H03251787 A JPH03251787 A JP H03251787A JP 5035090 A JP5035090 A JP 5035090A JP 5035090 A JP5035090 A JP 5035090A JP H03251787 A JPH03251787 A JP H03251787A
Authority
JP
Japan
Prior art keywords
mcp
mesh
small aperture
plate
small hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5035090A
Other languages
Japanese (ja)
Other versions
JP2864627B2 (en
Inventor
Sumio Kumashiro
熊代 州三夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP5035090A priority Critical patent/JP2864627B2/en
Publication of JPH03251787A publication Critical patent/JPH03251787A/en
Application granted granted Critical
Publication of JP2864627B2 publication Critical patent/JP2864627B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To accurately measure and analyze the properties of charged corpuscular beam by providing a mesh electrode and a microchannel plate behind a small aperture plate in an integrally movable manner. CONSTITUTION:A small aperture plate H is vertically fixed to a base 1 and a microchannel plate (MCP) M and the mesh (m) provided in front thereof are provided behind the plate H in an integrally movable manner. The corpuscular beam passed through the small aperture of the small aperture plate H is incident to the MCP to show the pattern corresponding to the arrangement of the small aperture of the small aperture plate and the image of the pattern is taken by an imaging element 1 to be displayed on a CRT. At this time, arbitrary voltage suitable for the detection of an image can be applied across the MCP and the mesh (m) and, even when an electron track is bent between the mesh (m) and the MCP by said voltage, since the small aperture plate H is used, the effect of a curve is corrected to make it possible to accurately measure corpuscular beam.

Description

【発明の詳細な説明】 (産業上の利用分野〉 本発明は電子ビーム、イオンビーム等の゛ビーム断面に
おける照度(粒子密度)分布を測定する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an apparatus for measuring the illuminance (particle density) distribution in a beam cross section of an electron beam, ion beam, or the like.

(従来の技術) イオン光学装置、電子光学装置等の設計、製作とかイオ
ンビーム等の線源の設計製作においては、形成されるビ
ームの収差の性質、線源の輝度分布等を直接に測定する
ことが必要である。光学系の設計にはコンピュータによ
るシミュレーションがよ(用い、られるが、この場合で
も最終的には実測によって計算結果の良否を判定しない
とシミュレーションの方法自体の改善が困難である。
(Prior art) When designing and manufacturing ion optical devices, electron optical devices, etc., or designing and manufacturing radiation sources such as ion beams, it is necessary to directly measure the aberration properties of the formed beam, the brightness distribution of the radiation source, etc. It is necessary. Computer simulations are often used to design optical systems, but even in this case, it is difficult to improve the simulation method itself unless the quality of the calculation results is ultimately determined through actual measurements.

上述したビームの収差の性質とか線源の篩分布等はビー
ム上の前後何個所かでビーム断面の照射分布を測定する
ことにより調べられるが、従来はそのためにビーム中に
乾板を挿入してビーム断面の像を撮像してその湿度分布
を調べると云うような方法が用いられていたが、形成さ
れているビームに対して実験的解析を行うためには甚だ
非能率であった。
The properties of the beam aberrations and the sieve distribution of the radiation source mentioned above can be investigated by measuring the irradiation distribution of the cross section of the beam at several points before and after the beam. A method of taking a cross-sectional image and examining its humidity distribution was used, but this method was extremely inefficient for conducting experimental analysis of the beam being formed.

(発明が解決しようとする課ra) 本発明はビーム断面の照度分布を即時に測定表示できる
電子的な装置を提゛供して上述したような実験的解析の
能率化を計るものである。
(Issues to be Solved by the Invention) The present invention aims to streamline the experimental analysis described above by providing an electronic device that can instantly measure and display the illuminance distribution of a beam cross section.

(課題を解決′するための手段) 2次元マイクロチャンネル゛プレート(MCP)の前面
に一定距離を隔ててメツシュ状電極を置き、このメツシ
ュ電極を0電位に設定し、MCPの前方に置かれた小孔
板に対し、上記メツシュ電極とMCPとを一体的に前後
可動とした。
(Means for solving the problem) Mesh-like electrodes are placed in front of a two-dimensional microchannel plate (MCP) at a certain distance apart, and the mesh electrodes are set to 0 potential and placed in front of the MCP. The mesh electrode and MCP were integrally movable back and forth with respect to the small hole plate.

(作用) 小孔板とMCPをイオン或は電子のビーム内に置く。第
1図でHが小孔板でhl、h2.h3が小孔であり、M
7り4MCPである。bl、b2.b3はビーム中で小
孔h1〜h3を通る3本の粒子線である。MCPが図実
線位置にあるとき粒子線bl、b2.b3はMCP上で
Zl、Z2,23の位置で検出される。MCPを図鎖線
位置に後退させると、粒子線b 1 、b2.b311
McP上でZlo、Z2’、Z3’の位置で検出される
。そこで例えば図の例ではビームは狭義の球面収差を持
っているが、収差がなければ21;Z2;23=Z1°
;Z2’;Z3’であるがら小孔h1〜h3に対応する
MCP上の受線点の位置がらビームの持っている収差を
知ることができる。
(Operation) The small hole plate and MCP are placed in an ion or electron beam. In Figure 1, H is the small hole plate, hl, h2. h3 is a small hole, M
7ri4MCP. bl, b2. b3 is three particle beams passing through small holes h1 to h3 in the beam. When the MCP is at the solid line position, the particle beams bl, b2. b3 is detected at positions Zl, Z2, and 23 on the MCP. When the MCP is retreated to the position indicated by the chain line in the figure, the particle beams b 1 , b2 . b311
It is detected at positions Zlo, Z2', and Z3' on McP. So, for example, in the example shown in the figure, the beam has spherical aberration in a narrow sense, but if there is no aberration, 21;Z2;23=Z1°
;Z2';Z3', the aberration of the beam can be known from the position of the receiving line point on the MCP corresponding to the small holes h1 to h3.

MCPの前面にメツシュ電極を置くのはメツシュより前
方は無電界とし、メツシュとMCPの前面との間に電位
差を設けて、その間で粒子を加速し、MCP入射面にお
いて低速(数10eV)プラスイオンの量子効率を高め
、MCPの感度を向上させるためであるが、メツシュと
MCP前面との間のMCP前面に垂直な方向の電界によ
り、MCPに垂直より傾いて入射する粒子線が曲げられ
て、粒子線が直進した場合のMCPへの入射点が正確に
は分らなくなる。 所が本発明の場合小孔板を用いるこ
とにより上述した曲がりを補正して粒子線が直進した場
合のMCPへの入射点を正確に知ることができるのであ
る。即ち小孔板は単にビームを何本かのビーム構成粒子
線に分解するためだけでなく、各粒子線の傾きを正確に
知ることに寄与しているのである。この点を第2図によ
って説明する。第2図でmがメツシュであり、小孔板H
の一つの小孔りを通り、光学系の光軸に対してθの傾き
を持っている粒子線すがメツシュmとMCPの前面との
間で曲る量△はMCPとメツシュとが一体的に移動して
メツシュとMCP前面との間の距離eが一定であるから
、MCPを前後どのように動かしても一定で、これはθ
の関数であり、MCPを前後したときの粒子mbのMC
Pへの入射点の位az、z’を結ぶ直線は粒子線すに対
し並平行に△だけずれたものとなる。
The mesh electrode is placed in front of the MCP so that there is no electric field in front of the mesh, and a potential difference is created between the mesh and the front surface of the MCP to accelerate particles between them and generate low-velocity (several tens of eV) positive ions at the MCP entrance surface. In order to increase the quantum efficiency of the MCP and improve the sensitivity of the MCP, the electric field between the mesh and the front surface of the MCP in the direction perpendicular to the front surface of the MCP bends the particle beam that is incident on the MCP at an angle from the perpendicular direction. When the particle beam travels straight, the point of incidence on the MCP cannot be determined accurately. However, in the case of the present invention, by using a small hole plate, the above-mentioned curvature can be corrected and the point of incidence on the MCP when the particle beam travels straight can be accurately determined. In other words, the small hole plate not only serves to separate the beam into several particle beams that make up the beam, but also contributes to accurately determining the inclination of each particle beam. This point will be explained with reference to FIG. In Figure 2, m is mesh, and small hole plate H
The particle beam passes through one small hole and has an inclination of θ with respect to the optical axis of the optical system. Since the distance e between the mesh and the front of the MCP is constant, it remains constant no matter how the MCP is moved forward or backward, and this is θ
is a function of the MC of the particle mb when changing the MCP.
The straight line connecting the positions az and z' of the point of incidence on P is parallel to the particle beam and is shifted by Δ.

従ってMCPの前後2つの位置におけるz、z’として
θが求まり、θが求まれば△が求まるので、第1図にお
ける正しいZl、Z2,23等が求まってビームの性質
を解析することが可能になるのである。
Therefore, θ can be found as z and z' at the two positions before and after the MCP, and once θ is found, △ can be found, so it is possible to find the correct Zl, Z2, 23, etc. in Figure 1 and analyze the beam properties. It becomes.

(実施例) 第3図は本発明の一実施例を示す。1は装置ベースで小
孔板Hが垂直に立て\固定してあり、上面は図で左右方
向のガイドになっており、マイクロチャンネルプレート
Mとその前面のメツシュmと、後面の蛍光板Fと撮像素
子Iとが摺動体2上に取付けられて、摺動体2がベース
1上面を左右に移動できるようになっているi摺動体2
は送りねじによって左右に駆動され、図で3が送りねじ
の端のジヨイント部である。この装置はイオン光学系を
設置した真空容器内にイオン光学系の光軸と平行に設置
され、真空容器の器壁を気密に貫通させた送りねじ駆動
ハンドル軸の先端と送りねじ3のジヨイント端とが係合
連結せしめられ、真空容器の外から送りねじを回わして
摺動体を移動させることができ、送りねじの回転量によ
ってMCPの移動量りを知ることができるようにしであ
る。小孔板Hの小孔を通った粒子線はMCPに入射して
蛍光板F上に小孔板Hの小孔の配設に応じたパターンを
現わし、それが撮像素子!で撮像されて図外のCRTに
拡大表示される。
(Example) FIG. 3 shows an example of the present invention. 1 is a device base with a small hole plate H vertically erected and fixed, and the top surface serves as a guide in the left and right direction as shown in the figure, with a microchannel plate M, a mesh m on the front side, and a fluorescent screen F on the back side for imaging. i sliding body 2 in which the element I is mounted on the sliding body 2 so that the sliding body 2 can move left and right on the upper surface of the base 1;
is driven left and right by the feed screw, and 3 in the figure is the joint at the end of the feed screw. This device is installed parallel to the optical axis of the ion optical system in a vacuum chamber in which an ion optical system is installed, and the joint end of the feed screw drive handle shaft and the feed screw 3, which pass through the wall of the vacuum chamber airtight. The sliding body can be moved by turning a feed screw from outside the vacuum container, and the amount of movement of the MCP can be determined by the amount of rotation of the feed screw. The particle beam that passes through the small holes in the small hole plate H enters the MCP, and a pattern corresponding to the arrangement of the small holes in the small hole plate H appears on the fluorescent screen F. This is the image sensor! The image is taken and enlarged and displayed on a CRT (not shown).

撮像素子!としてはCCDのような固体撮像素子が用い
られ、前述したZの値はCCDの単位素子の位置のデー
タによって与えられる。この説明では光学系の光軸を含
む子午面内の粒子線だけを考えているが、子午面内にな
い粒子線の場合も全(同様に考えることができ、その場
合傾き角0は粒子線と光軸とのなす角ではな(、粒子線
の直線延長とMCP前面との支点でMCPの前面に立て
た垂線と粒子線とのなす角であり、△のずれの方向は粒
子線とこの垂線を含む面に沿った方向である。小孔板H
の小孔りのMCP前面での入射スポットはそれ自身も成
る大きさを持っているが、更に蛍光板Fから撮像素子の
受光面に光となって入射する際に一層拡がって来るので
、撮像素子によって形成されるスポット像の明るさの分
布を求めて、その中心位置としてZの値を決める必要が
ある。そのようなデータ処理の方法は任意である。
Image sensor! A solid-state image sensing device such as a CCD is used as the sensor, and the above-mentioned Z value is given by position data of a unit element of the CCD. In this explanation, we are considering only particle beams in the meridian plane that includes the optical axis of the optical system, but particle beams that are not in the meridian plane can also be considered in the same way. It is the angle between the particle beam and the perpendicular line erected on the front surface of the MCP at the fulcrum of the linear extension of the particle beam and the front surface of the MCP, and the direction of the deviation of △ is the angle between the particle beam and this This is the direction along the plane including the perpendicular line.Small hole plate H
The incident spot on the front surface of the MCP through the small hole itself has a size that is equal to the size of the incident spot, but it further expands when it enters the light receiving surface of the image sensor from the fluorescent plate F, so that the incident spot on the front surface of the MCP It is necessary to find the brightness distribution of the spot image formed by the following, and determine the value of Z as the center position. The method of such data processing is arbitrary.

作用の項で述べた粒子線のメツシュmとMCPとの間の
電界による平行移動量△と粒子線の光軸に対する傾きθ
との関係は、メツシュとMCPとの間で荷電粒子は一定
の平行電界によって加速され、斜め下方に投下された揚
物体と同じ運動をすることから、 で与えられる。こ\でmは荷電粒子の質量、eは同じく
電荷、voは粒子の粒子線方向の速度、eはメツシュと
MCP前面との間の距離で数mmのオーダであり、Eは
同じく電界強度である。また低エネルギーイオンビーム
測定の場合、メツシュMCP前面間の電位差は−1〜−
2kVMCPの前面後面間にかける電位差は+500〜
1000V、MCP後面と蛍光板Fとの間の電位差は+
4kv程度である。
The amount of parallel movement △ due to the electric field between the mesh m of the particle beam and the MCP and the inclination θ of the particle beam with respect to the optical axis described in the action section
Since the charged particles between the mesh and the MCP are accelerated by a constant parallel electric field, and move in the same manner as a projectile object dropped diagonally downward, the relationship is given by: Here, m is the mass of the charged particle, e is the electric charge, vo is the velocity of the particle in the particle beam direction, e is the distance between the mesh and the front surface of the MCP on the order of several mm, and E is the electric field strength. be. In addition, in the case of low-energy ion beam measurement, the potential difference between the front surface of the mesh MCP is -1 to -
The potential difference between the front and rear surfaces of 2kVMCP is +500~
1000V, the potential difference between the rear surface of the MCP and the fluorescent screen F is +
It is about 4kv.

(発明の効果) 本発明によればMCPと前面のメツシュとの間には像検
出に都合の良い任意電圧を印加することができ、その電
圧により、メツシュMCP間で粒子線軌道が曲っても、
小孔板の併用によってその曲線の影響を検出補正できる
ので、荷電粒子線ビームの性質を正確に測定し解析する
ことができる。
(Effects of the Invention) According to the present invention, it is possible to apply an arbitrary voltage convenient for image detection between the MCP and the mesh on the front surface, and even if the particle beam trajectory is curved between the mesh MCP and ,
Since the influence of the curve can be detected and corrected by using a small hole plate, the properties of the charged particle beam can be accurately measured and analyzed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の概要説明図、第2図は同じく要部説明
図、第3図は本発明の一実施例の側面図である。 H・・・小孔板、h1〜h3・・・小孔、m・・・メツ
シュ、M・・・マイクロチャンネルプレート(MCP)
、F・・・蛍光板、1・・・撮像素子、l・・・ベース
、2・・・摺動体。 身1図
FIG. 1 is a schematic explanatory diagram of the present invention, FIG. 2 is an explanatory diagram of the main part, and FIG. 3 is a side view of an embodiment of the present invention. H...small hole plate, h1-h3...small hole, m...mesh, M...microchannel plate (MCP)
, F... Fluorescent screen, 1... Image sensor, l... Base, 2... Sliding body. Body 1 figure

Claims (1)

【特許請求の範囲】[Claims] 小孔板とこの小孔板の後方で小孔板に対して前後移動可
能に設けられたマイクロチャンネルと、このマイクロチ
ャンネルの前面に一定距離を隔てて一体的に配置され、
マイクロチャンネル前面との間に電界を形成するメッシ
ュ状電極とよりなることを特徴とするビーム断面測定装
置。
A small hole plate, a microchannel provided behind the small hole plate so as to be movable back and forth with respect to the small hole plate, and a microchannel integrally arranged at a certain distance in front of the microchannel,
A beam cross-section measuring device characterized by comprising a mesh-like electrode that forms an electric field between it and the front surface of a microchannel.
JP5035090A 1990-02-28 1990-02-28 Beam cross section measuring device Expired - Lifetime JP2864627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5035090A JP2864627B2 (en) 1990-02-28 1990-02-28 Beam cross section measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5035090A JP2864627B2 (en) 1990-02-28 1990-02-28 Beam cross section measuring device

Publications (2)

Publication Number Publication Date
JPH03251787A true JPH03251787A (en) 1991-11-11
JP2864627B2 JP2864627B2 (en) 1999-03-03

Family

ID=12856465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5035090A Expired - Lifetime JP2864627B2 (en) 1990-02-28 1990-02-28 Beam cross section measuring device

Country Status (1)

Country Link
JP (1) JP2864627B2 (en)

Also Published As

Publication number Publication date
JP2864627B2 (en) 1999-03-03

Similar Documents

Publication Publication Date Title
US5055679A (en) Surface analysis method and apparatus
TWI330861B (en) Analysing system and charged particle beam device
JP6301269B2 (en) Analytical equipment for particle spectrometer
US6492644B1 (en) Device and method for energy and angle-resolved electron spectroscopy
KR100443761B1 (en) Charged particle device
US8637808B2 (en) Mass distribution measuring method and mass distribution measuring apparatus
US6198095B1 (en) Apparatus and method for imaging a particle beam
US20100072392A1 (en) Charged particle beam profile measurement
JP2016197124A (en) Analyzer for particle spectrometer
US5541409A (en) High resolution retarding potential analyzer
JPH03251787A (en) Apparatus for measuring cross-section of beam
JP7038828B2 (en) Momentum-resolved photoelectron spectrometer and momentum-resolved photoelectron spectroscopy
US4762993A (en) Directional sensor for neutral particle beams
JP3392550B2 (en) Method for measuring deflection angle of charged particle beam and charged particle beam apparatus
JPH02247964A (en) Method and apparatus for cross-section shape measurement and comparative inspection
Mousley et al. Scanning Transmission Ion Microscopy Time-of-Flight Spectroscopy Using 20 keV Helium Ions
US8237120B1 (en) Transverse focusing action in hyperbolic field detectors
JPH03160391A (en) Method and device for measuring incident angle of energy beam, and those for measuring characteristic of charged particle lens
JPH0637564Y2 (en) Neutral particle scattering analyzer
JP5815826B2 (en) Analytical equipment for particle spectrometer
JP2003068245A (en) Time-of-flight mass spectrograph having quantitative energy correcting function
US3686501A (en) Charged particle analyzer with means to determine the coordinate position of the sample
Schössler et al. A reconfigurable Micro-channel plate “RSP” detector for wide-range application in charged particle detection
Sens et al. A velocity map imaging spectrometer for measuring absolute differential cross sections for ion-induced electron emission from molecules
JPH07226181A (en) Ion scattering surface analyzer