JPH03251637A - Operation controller for air conditioner - Google Patents

Operation controller for air conditioner

Info

Publication number
JPH03251637A
JPH03251637A JP2050738A JP5073890A JPH03251637A JP H03251637 A JPH03251637 A JP H03251637A JP 2050738 A JP2050738 A JP 2050738A JP 5073890 A JP5073890 A JP 5073890A JP H03251637 A JPH03251637 A JP H03251637A
Authority
JP
Japan
Prior art keywords
pressure
refrigerant
compressor
heat exchanger
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2050738A
Other languages
Japanese (ja)
Inventor
Moichi Kitano
北野 茂一
Masahiro Yoshida
昌弘 吉田
Takao Mizuo
水尾 隆夫
Koichiro Tamakoshi
玉腰 光市郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2050738A priority Critical patent/JPH03251637A/en
Publication of JPH03251637A publication Critical patent/JPH03251637A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To carry out precise control of superheat degree by a method wherein when pressure of low pressure refrigerant reaches a prescribed value within a detection range of a pressure detecting means, the air volume of a fan is reduced. CONSTITUTION:A user's side heat exchanger 15 is blown by a blowing fan 2b. Suction side pressure of a compressor 11 in a refrigerant circuit 1 is detected by a pressure detecting means 4, and outlet side refrigerant temperature of the heat exchanger 15 is detected by a temperature detecting means 3. Low pressure signals from the detecting means 4 and temperature signals from the detecting means 3 are received by a superheat degree control means 52, which controls an expansion mechanism 14, so that the superheat degree of a refrigerant reaches a prescribed value for adjusting the flow amount of refrigerant. In addition, the detecting means 4 has a set detecting range. A wind volume reducing means 54 receives the low pressure signals from the detecting means 4. In this constitution, when a detected pressure of the detecting means 4 rises up to a prescribed value in the vicinity of the upper limit of the set detection range, the wind volume reducing means 54 reduces the wind volume of the blowing fan 2b. As the result of this, the heat exchange volume is decreased to drop down the pressure of the low pressure refrigerant.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、空気調和装置の運転制御装置に関し、特に、
過熱度制御対策に係るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an operation control device for an air conditioner, and in particular,
This relates to measures to control the degree of superheating.

(従来の技術) 一般に、空気調和装置には、特開昭60−221659
号公報に開示されているように、圧縮機と、凝縮器と、
膨張弁と、蒸発器とが冷媒配管によって順に接続されて
成る閉回路の冷媒回路を備えているものがある。更に、
該冷媒回路には、圧縮機の吸込管には圧力センサと温度
センサとか取付けられ、該圧力センサか低圧冷媒圧力を
検出する一方、温度センサが冷媒温度を検出している。
(Prior art) In general, air conditioners are
As disclosed in the publication, a compressor, a condenser,
Some devices include a closed refrigerant circuit in which an expansion valve and an evaporator are sequentially connected through refrigerant piping. Furthermore,
In the refrigerant circuit, a pressure sensor and a temperature sensor are attached to the suction pipe of the compressor, and the pressure sensor detects the low-pressure refrigerant pressure, while the temperature sensor detects the refrigerant temperature.

そして、上記圧力センサの検出圧力より冷媒圧力相当飽
和温度を算出し、該冷媒圧力相当飽和温度と温度センサ
の検出温度とより冷媒の過熱度を検出している。更に、
この過熱度が所定値、例えば、5℃になるように上記膨
張弁の開度を制御し、圧縮機への液戻りを防止するよう
にしている。
A refrigerant pressure equivalent saturation temperature is calculated from the pressure detected by the pressure sensor, and the degree of superheating of the refrigerant is detected from the refrigerant pressure equivalent saturation temperature and the temperature detected by the temperature sensor. Furthermore,
The degree of opening of the expansion valve is controlled so that the degree of superheat reaches a predetermined value, for example, 5° C., thereby preventing liquid from returning to the compressor.

(発明が解決しようとする課8) 上述した空気調和装置の運転制御装置において、上記圧
力センサは低圧冷媒圧力を検出するものであるところか
ら、検出範囲が予め定められた低圧範囲に設定され、例
えば、0〜10kg/cd・Gに設定されている。
(Issue 8 to be solved by the invention) In the operation control device for the air conditioner described above, since the pressure sensor detects the low pressure refrigerant pressure, the detection range is set to a predetermined low pressure range, For example, it is set to 0 to 10 kg/cd.G.

しかしながら、これでは、蒸発器の吸込空気温度が高い
場合や、圧縮機がインバータ制御されてその運転周波数
が低い場合、更に、蒸発圧力が高めに設定されている場
合などにおいて、−時的であっても低圧冷媒圧力か圧力
センサの検出範囲外、例えば、10kg/c−・G以上
になることがあり、正確な過熱度制御を行うことができ
ないという問題があった。
However, this is time-consuming in cases such as when the evaporator's intake air temperature is high, when the compressor is controlled by an inverter and its operating frequency is low, or when the evaporation pressure is set high. However, the low-pressure refrigerant pressure may be outside the detection range of the pressure sensor, for example, 10 kg/c-.G or more, and there is a problem that accurate superheat degree control cannot be performed.

つまり、実際の低圧冷媒圧力より圧力センサの検出圧力
が小さくなり、例えば、実際の低圧冷媒圧力が11kg
/c−・Gであるにも拘わらず、圧力センサの検出圧力
は10)cg/cd・Gとなり、実際の過熱度より算出
過熱度が大きくなる。この結果、膨張弁の開度が正常制
御より大きくなり、湿り運転となって圧縮機が故障する
という問題があった。
In other words, the pressure detected by the pressure sensor is lower than the actual low-pressure refrigerant pressure, and for example, the actual low-pressure refrigerant pressure is 11 kg.
/c-·G, the pressure detected by the pressure sensor is 10) cg/cd·G, and the calculated degree of superheat is larger than the actual degree of superheat. As a result, the degree of opening of the expansion valve becomes larger than normal control, resulting in wet operation, which causes the compressor to malfunction.

そこで、上記圧力センサの検出範囲を大きくすることが
考えられるが、これでは、検出精度が悪くなり、正確な
過熱度制御を行うことができないという問題がある。
Therefore, it is conceivable to increase the detection range of the pressure sensor, but this poses a problem in that detection accuracy deteriorates and accurate superheat degree control cannot be performed.

本発明は、斯かる点に鑑みてなされたもので、低圧冷媒
圧力が圧力検出手段の検出範囲を越えないようにして、
正確な過熱度制御を行えるようにすることを目的とする
ものである。
The present invention has been made in view of this point, and is designed to prevent the low pressure refrigerant pressure from exceeding the detection range of the pressure detection means,
The purpose of this is to enable accurate superheat degree control.

(課題を解決するための手段) 上記目的と達成するために、本発明が講じた手段は、低
圧冷媒圧力が圧力検出手段の検出範囲内における所定圧
力になると、ファン風量を低下又は圧縮機容量を増加さ
せるようにしたものである。
(Means for Solving the Problems) In order to achieve the above object, the means taken by the present invention is to reduce the fan air volume or reduce the compressor capacity when the low pressure refrigerant pressure reaches a predetermined pressure within the detection range of the pressure detection means. It is designed to increase.

具体的に、第1図に示すように、請求項(1)に係る発
明が講じた手段は、先ず、圧縮機(11)と、熱源側熱
交換器(12)と、膨張機構(14)と、利用側熱交換
器(15)とが順次接続された冷媒回路(1)と、蒸発
器となる熱交換器(15)に付設された風量の可変な送
風ファン(2b)とを備えた空気調和装置を前提として
いる。
Specifically, as shown in FIG. 1, the measures taken by the invention according to claim (1) first include a compressor (11), a heat source side heat exchanger (12), and an expansion mechanism (14). and a user-side heat exchanger (15) are sequentially connected, and a blower fan (2b) with a variable air volume attached to the heat exchanger (15) serving as an evaporator. This assumes an air conditioner.

そして、予め設定された検出範囲内において上記冷媒回
路(1)の圧縮機(11)吸込側の低圧冷媒圧力を検出
する圧力検出手段(4)と、上記蒸発器となる熱交換器
(15)の出口側の冷媒温度を検出する温度検出手段(
3)とが設けられている。更に、上記圧力検出手段(4
)が出力する低圧信号及び温度検出手段(3)が出力す
る温度信号に基づいて冷媒の過熱度が所定値になるよう
に制御する過熱度制御手段(52)が設けられている。
and a pressure detection means (4) for detecting the low-pressure refrigerant pressure on the suction side of the compressor (11) of the refrigerant circuit (1) within a preset detection range, and a heat exchanger (15) serving as the evaporator. Temperature detection means (
3) is provided. Furthermore, the pressure detection means (4
) is provided, and superheat degree control means (52) is provided for controlling the degree of superheat of the refrigerant to a predetermined value based on the low pressure signal output by the refrigerant and the temperature signal output by the temperature detection means (3).

加えて、上記圧力検出手段(4)が出力する低圧信号を
受けて該圧力検出手段(4)の検出圧力が検出範囲の上
限近傍の所定圧力値になると、上記送風ファン(2b)
の風量を低下させる風量低下手段(54)が設けられた
構成としている。
In addition, when the pressure detected by the pressure detection means (4) reaches a predetermined pressure value near the upper limit of the detection range in response to the low pressure signal output by the pressure detection means (4), the blower fan (2b)
The configuration includes an air volume reducing means (54) for reducing the air volume.

また、請求項(2)に係る発明が講じた手段は、圧縮機
(11)が容量可変に構成される一方、上記請求項(1
)の発明における風量低下手段(54)に代り、圧力検
出手段(4)が出力する低圧信号を受けて該圧力検出手
段(4)の検出圧力が検出範囲の上限近傍の所定圧力値
になると、上記圧縮機(11)の容量を増加させる容量
増加手段(55)が設けられた構成としている。
Further, the means taken by the invention according to claim (2) is such that while the compressor (11) is configured to have a variable capacity,
) In place of the air volume reducing means (54) in the invention, when the pressure detected by the pressure detecting means (4) reaches a predetermined pressure value near the upper limit of the detection range upon receiving a low pressure signal output by the pressure detecting means (4), The compressor is configured to include capacity increasing means (55) for increasing the capacity of the compressor (11).

また、請求項(3)に係る発明が講じた手段は、上記請
求項(1)記載の空気調和装置の運転制御装置において
、圧縮機(11)が容量可変に構成される一方、請求項
(2)の発明における容量増加手段(55)が付加され
た構成としている。
Further, the means taken by the invention according to claim (3) is that in the operation control device for an air conditioner according to claim (1), the compressor (11) is configured to have a variable capacity; The configuration is such that the capacity increasing means (55) in the invention of 2) is added.

(作用) 上記構成により、請求項(1)に係る発明では、冷媒が
冷媒回路(1)を循環し、例えば、圧縮機。
(Function) With the above configuration, in the invention according to claim (1), the refrigerant circulates in the refrigerant circuit (1), for example, in the compressor.

(11)より吐出した冷媒は熱源側熱交換器(12)で
凝縮した後、膨張機構(14)で膨張し、利用側熱交換
器(15)で蒸発した後に上記圧縮機(11)に戻るこ
とになる。
The refrigerant discharged from (11) is condensed in the heat source side heat exchanger (12), then expanded in the expansion mechanism (14), evaporated in the user side heat exchanger (15), and then returned to the compressor (11). It turns out.

また、蒸発器となる熱交換器(15)、例えば、利用側
熱交換器(15)には送風ファン(2b)によって送風
される一方、上記冷媒回路(1)における圧縮機(11
)の吸込側の低圧冷媒圧力は圧力検出手段(4)によっ
て検出されると共に、上記利用側熱交換器(15)の出
口側の冷媒温度が温度検出手段(3)によって検出され
ている。
In addition, air is blown to the heat exchanger (15) serving as an evaporator, for example, the user-side heat exchanger (15), by a blower fan (2b), while the compressor (11) in the refrigerant circuit (1)
) is detected by the pressure detection means (4), and the refrigerant temperature at the outlet side of the utilization side heat exchanger (15) is detected by the temperature detection means (3).

そして、上記圧力検出手段(4)が出力する低圧信号及
び温度検出手段(3)が出力する温度信号を過熱度制御
手段(52)が受け、該過熱度制御手段(52)は冷媒
の過熱度が所定値になるーように制御し、例えば、過熱
度が5℃になるように上記膨張機構(14)を制御して
冷媒流量を調節している。
The superheat degree control means (52) receives the low pressure signal outputted by the pressure detection means (4) and the temperature signal outputted by the temperature detection means (3), and the superheat degree control means (52) controls the superheat degree of the refrigerant. For example, the expansion mechanism (14) is controlled to adjust the refrigerant flow rate so that the degree of superheat becomes 5°C.

更に、上記圧力検出手段(4)は予め検出範囲が設定さ
れており、該圧力検出手段(4)の低圧信号を風量低下
手段(54)が受け、該風量低下手段(54)は上記圧
力検出手段(4)の検出圧力が検出範囲内における上限
近傍の所定圧力値になると、上記送風ファン(2b)の
風量を低下させる。この結果、熱交換量を減少させて上
記低圧冷媒圧力を低下させている。
Further, the pressure detection means (4) has a detection range set in advance, and the air volume reduction means (54) receives the low pressure signal from the pressure detection means (4), and the air volume reduction means (54) detects the pressure. When the detected pressure of the means (4) reaches a predetermined pressure value near the upper limit within the detection range, the air volume of the blower fan (2b) is reduced. As a result, the amount of heat exchange is reduced and the pressure of the low-pressure refrigerant is lowered.

また、請求項(aに係る発明では、圧縮機(11)が容
量制御される一方、圧力検出手段(4)の低圧信号を容
量増加手段(55)が受けており、該圧力検出手段(4
)の検出圧力が検出範囲内における上限近傍の所定圧力
値になると、上記容量増加手段(55)が圧縮機(11
)の容量を増加させて吸込力を増加させ、低圧冷媒圧力
を低下させている。
Further, in the invention according to claim (a), while the capacity of the compressor (11) is controlled, the capacity increasing means (55) receives the low pressure signal from the pressure detecting means (4).
) reaches a predetermined pressure value near the upper limit within the detection range, the capacity increasing means (55) increases the pressure of the compressor (11).
) capacity is increased to increase suction power and reduce low-pressure refrigerant pressure.

また、請求項(3)に係る発明では、圧力検出手段(4
)の検出圧力が検出範囲内における上限近傍の所定圧力
値になると、風量低下手段(54)が送風ファン(2b
)の風量を低下させると共に、容量増加手段(55)が
圧縮機(11)の容量を増加させて、低圧冷媒圧力を低
下させる。
Further, in the invention according to claim (3), the pressure detection means (4
) reaches a predetermined pressure value near the upper limit within the detection range, the air volume reducing means (54)
), and the capacity increasing means (55) increases the capacity of the compressor (11) to reduce the low-pressure refrigerant pressure.

(発明の効果) 従って、請求項(1)に係る発明によれば、圧力検出手
段(4)の検出圧力が検出範囲の上限値に近付くと、送
風ファン(2b)の風量を低下させるようにしたために
、圧力検出手段(4)の検出範囲内に低圧冷媒圧力を保
つことができるので、正確な過熱度を検出することがで
き、高精度な過熱度制御を行うことができる。この結果
、圧縮機(11)の湿り運転を防止することができるこ
とから、該圧縮機(11)の故障を防止することができ
、空調運転の信頼性を向上させることができる。
(Effect of the invention) Therefore, according to the invention according to claim (1), when the detected pressure of the pressure detecting means (4) approaches the upper limit of the detection range, the air volume of the blower fan (2b) is reduced. Therefore, the low-pressure refrigerant pressure can be maintained within the detection range of the pressure detection means (4), so that the degree of superheat can be detected accurately and the degree of superheat can be controlled with high precision. As a result, wet operation of the compressor (11) can be prevented, so failure of the compressor (11) can be prevented, and reliability of air conditioning operation can be improved.

また、圧力検出手段(4)の検出範囲を拡大することが
ないので、高精度な圧力検出を維持することができ、過
熱度制御の信頼性を向上させることができる。
Moreover, since the detection range of the pressure detection means (4) is not expanded, highly accurate pressure detection can be maintained, and the reliability of superheat degree control can be improved.

また、請求項(2)に係る発明によれば、圧縮機(11
)の容量を増加させるようにしたために、低圧冷媒圧力
を確実に低下させることができ、正確な過熱度制御を行
うことができる。
Further, according to the invention according to claim (2), the compressor (11
), the low-pressure refrigerant pressure can be reliably lowered and the degree of superheat can be accurately controlled.

また、請求項(3)に係る発明によれば、送風ファン(
2b)の風量低下と圧縮機(11)の容量増加とを行う
ので、低圧冷媒圧力をより確実に低下させることができ
ることから、より正確な過熱度制御を行うことができる
Further, according to the invention according to claim (3), the blower fan (
Since the air volume is reduced and the capacity of the compressor (11) is increased as described in 2b), the low-pressure refrigerant pressure can be more reliably reduced, and therefore, the degree of superheat can be controlled more accurately.

(実施例) 以下、本発明の実施例を図面に基づいて詳細に説明する
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings.

第2図に示すように、(1)はベア型空気調和装置の冷
媒回路であって、1台の室外ユニット(IA)に1台の
室内ユニット(IB)が接続されて構成されると共に、
冷房運転のみを行う冷房専用回路に構成されている。
As shown in FIG. 2, (1) is a refrigerant circuit of a bare type air conditioner, which is configured by connecting one indoor unit (IB) to one outdoor unit (IA), and
It is configured as a dedicated cooling circuit that performs only cooling operation.

該冷媒回路(1)は、圧縮機(11)と、熱源側熱交換
器である室外熱交換器(12)と、受液器(13)と、
膨張機構である電動膨張弁(14)と、利用側熱交換器
である室内熱交換器(15)と、アキュームレータ(1
6)とが冷媒配管(17)によって順に接続されて閉回
路に構成されている。そして、上記室外ユニット(IA
)には室外熱交換器(12)と受液器(13)とが収納
される一方、上記室内ユニット(IB)には圧縮機(1
1)と電動膨張弁(14)と室内熱交換器(15)とア
キュームレータ(16)とが収納されている。更に、上
記各ユニット(IA)、  (IB)の各熱交換器(1
2)、(15)には該容態交換器(12)、  (15
)に送風する送風ファンである室外ファン(2a)と室
内ファン(2b)とが付設されており、該各ファン(2
a)、  (2b)にはモータ(21a)、  (21
b)が直結されている。
The refrigerant circuit (1) includes a compressor (11), an outdoor heat exchanger (12) that is a heat source side heat exchanger, and a liquid receiver (13).
An electric expansion valve (14) that is an expansion mechanism, an indoor heat exchanger (15) that is a user-side heat exchanger, and an accumulator (1
6) are sequentially connected by refrigerant piping (17) to form a closed circuit. Then, the outdoor unit (IA
) houses an outdoor heat exchanger (12) and a liquid receiver (13), while the indoor unit (IB) houses a compressor (1
1), an electric expansion valve (14), an indoor heat exchanger (15), and an accumulator (16). Furthermore, each heat exchanger (1
2) and (15) are the container exchangers (12) and (15).
) are attached with an outdoor fan (2a) and an indoor fan (2b), which are fans for blowing air.
a) and (2b) include motors (21a) and (21
b) are directly connected.

また、上記冷媒回路(1)には、温度検出手段である温
度センサ(3)が上記室内熱交換器(15)の出口側に
おける冷媒配管(17)に取付けられて設けられると共
に、圧力検出手段である圧力センサ(4)が上記圧縮機
(11)の吸込側における冷媒配管(17)に接続され
て設けられている。該温度センサ(3)は室内熱交換器
(15)で蒸発したガス冷媒温度、つまり、圧縮機(1
1)の吸込側の冷媒温度を検出しており、また、上記圧
力センサ(4)は圧縮機(11)に吸込まれる低圧冷媒
圧力を検出しており、該各センサ(3)。
Further, the refrigerant circuit (1) is provided with a temperature sensor (3) as a temperature detection means attached to the refrigerant pipe (17) on the outlet side of the indoor heat exchanger (15), and a pressure detection means. A pressure sensor (4) is connected to the refrigerant pipe (17) on the suction side of the compressor (11). The temperature sensor (3) measures the temperature of the gas refrigerant evaporated in the indoor heat exchanger (15), that is, the compressor (1
1), and the pressure sensor (4) detects the pressure of the low-pressure refrigerant sucked into the compressor (11), and each sensor (3).

(4)はコントローラ(5)に接続されていて、各検出
信号がコントローラ(5)に入力されるように構成され
ている。上記圧力センサ(4)は予め検出範囲が設定さ
れており、例えば、Okg / cgf・G〜10kg
/c−・Gの検出範囲内で低圧冷媒圧力を検出するよう
に構成されている。
(4) is connected to the controller (5), and is configured such that each detection signal is input to the controller (5). The detection range of the pressure sensor (4) is set in advance, for example, Okg/cgf・G~10kg
It is configured to detect the low pressure refrigerant pressure within the detection range of /c-.G.

上記コントローラ(5)は、インバータ(6)を介して
上記圧縮機(11)のモータ(図示省略)に接続される
と共に、上記各ファン(2a)。
The controller (5) is connected to a motor (not shown) of the compressor (11) via an inverter (6), and also connects to each of the fans (2a).

(2b)のモータ(21a)、(21b)及び電動膨張
弁(14)に接続されている。そして、該コントローラ
(5)には、インバータ制御手段(51)及び過熱度制
御手段(52)が備えられると共に、ファン制御手段(
53)が備えられている。
(2b) is connected to the motors (21a), (21b) and the electric expansion valve (14). The controller (5) is equipped with an inverter control means (51) and a superheat degree control means (52), and a fan control means (52).
53) is provided.

該インバータ制御手段(51)はインバータ(6)を9
段階に制御して圧縮機(11)の容量を可変に制御して
おり、該圧縮機(11)の容量制御によって室内温度を
制御するようにしている。
The inverter control means (51) controls the inverter (6) by 9
The capacity of the compressor (11) is variably controlled in stages, and the indoor temperature is controlled by controlling the capacity of the compressor (11).

また、上記過熱度制御手段(52)は圧力センサ(4)
の検出圧力より冷媒の蒸発圧力相当飽和温度を算出して
該蒸発圧力相当飽和温度と温度センサ(3)の冷媒温度
とより冷媒の過熱度を検出すると共に、該過熱度が所定
値(例えば、5℃)になるように上記電動膨張弁(14
)に開度信号を出力し、該電動膨張弁(14)の開度を
制御して冷媒流通量を調節するようにしている。更に、
上記ファン制御手段(53)は各ファン(2a)。
Further, the superheat degree control means (52) includes a pressure sensor (4).
The saturation temperature corresponding to the evaporation pressure of the refrigerant is calculated from the detected pressure of the refrigerant, the degree of superheating of the refrigerant is detected from the saturation temperature corresponding to the evaporation pressure and the refrigerant temperature of the temperature sensor (3), and the degree of superheating is set to a predetermined value (for example, 5℃).
), and the opening degree of the electric expansion valve (14) is controlled to adjust the refrigerant flow rate. Furthermore,
The fan control means (53) includes each fan (2a).

(2b)のモータ(21a)、  (21b)に制御信
号を出力し、例えば、室内ファン(2b)を高速と中速
と低速と超低速との4段階に、室外ファン(2a)を高
速と低速との2段階に制御し、各ファン(2a)、  
(2b)の風量を調節するようにしている。
A control signal is output to the motors (21a) and (21b) of (2b), and for example, the indoor fan (2b) is set to four stages of high speed, medium speed, low speed, and ultra-low speed, and the outdoor fan (2a) is set to high speed. Each fan (2a) is controlled in two stages, low speed and low speed.
The air volume in (2b) is adjusted.

更にまた、上記コントローラ(5)には室内フアン(2
b)の風量低下手段(54)が備えられている。該風量
低下手段(54)は、上記圧力センサ(4)の検出圧力
が該圧力センサ(4)の検出範囲内における上限近傍の
所定圧力値、例えば、9、 5kg/cd ・Gになる
と、室内ファン(2b)の風量を2段階低下させるよう
に制御信号をモータ(21b)に出力し、熱交換量を減
少させて低圧冷媒圧力を低下させるようにしている。
Furthermore, the controller (5) is equipped with an indoor fan (2).
b) Air volume reducing means (54) is provided. When the detected pressure of the pressure sensor (4) reaches a predetermined pressure value near the upper limit within the detection range of the pressure sensor (4), for example, 9.5 kg/cd. A control signal is output to the motor (21b) to reduce the air volume of the fan (2b) by two steps, thereby reducing the amount of heat exchange and lowering the low-pressure refrigerant pressure.

尚、上記コントローラ(5)は圧力センサ(4)の検出
圧力が異常に低下(例えば、Okg / cd・G)す
ると異常信号を出力するように成っており、該圧力セン
サ(4)が低圧保護センサを兼用している。
The controller (5) is configured to output an abnormal signal when the pressure detected by the pressure sensor (4) drops abnormally (for example, Okg/cd・G), and the pressure sensor (4) is configured to perform low pressure protection. Also serves as a sensor.

次に、上記冷媒回路(1)の動作について説明する。Next, the operation of the refrigerant circuit (1) will be explained.

先ず、上記圧縮機(11)を駆動すると、圧縮された高
圧の冷媒が圧縮機(11)より吐出され、該冷媒は室外
熱交換器(12)で熱交換して凝縮する。その後、この
凝縮した冷媒は受液器(13)を経て電動膨張弁(14
)で減圧され、室内熱交換器(15)で熱交換して蒸発
する。そして、この蒸発した冷媒はアキュームレータ(
16)を経て圧縮機(11)に戻り、上述の動作を繰り
返−すことになる。
First, when the compressor (11) is driven, compressed high-pressure refrigerant is discharged from the compressor (11), and the refrigerant undergoes heat exchange and condenses in the outdoor heat exchanger (12). After that, this condensed refrigerant passes through a liquid receiver (13) and an electric expansion valve (14).
), and is evaporated by exchanging heat with an indoor heat exchanger (15). This evaporated refrigerant is then transferred to an accumulator (
16) and returns to the compressor (11), where the above-described operation is repeated.

一方、上記圧縮機(11)の容量は室内温度に基づいて
インバータ制御手段(51)がインバータ(6)を制御
して調節されると共に、各ファン(2a)、  (2b
)の風量はファン制御手段(53)によって制御され、
室内ユニット(IB)より冷風が室内に吹き出されてい
る。
On the other hand, the capacity of the compressor (11) is adjusted by the inverter control means (51) controlling the inverter (6) based on the indoor temperature, and the capacity of each fan (2a), (2b
) is controlled by a fan control means (53),
Cold air is being blown indoors from the indoor unit (IB).

また、上記冷媒回路(1)において、温度センサ(3)
が室内熱交換器(15)の出口側の冷媒温度を検出する
一方、圧力センサ(4)が圧縮機(11)の吸込側の低
圧冷媒圧力を検出している。
Further, in the refrigerant circuit (1), a temperature sensor (3)
detects the refrigerant temperature on the outlet side of the indoor heat exchanger (15), while the pressure sensor (4) detects the low-pressure refrigerant pressure on the suction side of the compressor (11).

そして、該両センサ(3)、(4)の検出信号より過熱
度制御手段(52)が冷媒の過熱度を検出し、該過熱度
が所定値(例えば、5℃)になるように上記電動膨張弁
(14)の開度を制御している。
Then, the superheat degree control means (52) detects the degree of superheat of the refrigerant based on the detection signals of both the sensors (3) and (4), and controls the electric motor so that the degree of superheat becomes a predetermined value (for example, 5° C.). The opening degree of the expansion valve (14) is controlled.

次に、本発明の特徴とする風量低下手段(54)の制御
動作を第3図の制御フローに基づいて説明する。
Next, the control operation of the air volume reducing means (54), which is a feature of the present invention, will be explained based on the control flow shown in FIG.

先ず、スタートしてステップST1において、圧力セン
サ(4)の検出圧力、つまり、低圧冷媒圧力が検出範囲
の上限近傍の所定圧力値(9,5kg / cd・G)
に成ったか否かが判定され、該所定圧力である9、5k
g/c−ΦGになるまで該ステップSTIで待機してい
る。
First, in step ST1, the detected pressure of the pressure sensor (4), that is, the low pressure refrigerant pressure, reaches a predetermined pressure value (9.5 kg/cd・G) near the upper limit of the detection range.
It is determined whether or not the predetermined pressure is 9.5k.
It waits at step STI until g/c-ΦG is reached.

そして、上記室内熱交換器(15)の吸込空気温度が高
くなるなどして、圧力センサ(4)の検出圧力が9.5
 kg / d・G以上になると、ステップSTIから
ステップST2に移り、室内ファン(2b)の風量を2
段階低下させ、例えば、高速状態から中速状態を飛して
低速状態にし、室内熱交換器(15)の熱交換量を減少
させる。
Then, the temperature of the intake air of the indoor heat exchanger (15) increases, and the detected pressure of the pressure sensor (4) increases to 9.5.
kg/d・G or more, move from step STI to step ST2, and increase the air volume of the indoor fan (2b) by 2.
The speed is lowered in stages, for example, the high speed state is skipped from the medium speed state to the low speed state, and the amount of heat exchanged by the indoor heat exchanger (15) is reduced.

その後、上記ステップST2からステップST3に移り
、所定時間t1が経過したか否かが判定され、例えば、
ファン風量を低下して10分経過したか否かが判定され
、該所定時間t1が経過するまでステップST3で待機
する。そして、上記所定時間t1が経過すると、上記ス
テップST3からステップST4に移り、上記圧力セン
サ(4)の検出圧力が9. 0)cg/c−・Gに低下
したか否かが判定され、該検出圧力、つまり、低圧冷媒
圧力が9.0kg/cj・G以上に低下していると、ス
テップST5に移り、室内ファン(2b)の風量を1段
階上昇し、例えば、低速状態から中速状態にしてステッ
プSTIに戻ることになる。つまり、室内ファン(2b
)の風量を2段階低下して、低圧冷媒圧力が低下すると
、室内ファン(2b)の風量を再び上昇させる。
Thereafter, the process moves from step ST2 to step ST3, where it is determined whether a predetermined time t1 has elapsed, and, for example,
It is determined whether 10 minutes have passed since the fan air volume was reduced, and the process waits in step ST3 until the predetermined time t1 has elapsed. Then, when the predetermined time t1 has elapsed, the process moves from step ST3 to step ST4, and the detected pressure of the pressure sensor (4) is 9. 0) cg/c-・G, and if the detected pressure, that is, the low-pressure refrigerant pressure has decreased to 9.0 kg/cj・G or more, the process moves to step ST5, and the indoor fan The air volume in (2b) is increased by one step, for example, from a low speed state to a medium speed state, and the process returns to step STI. In other words, the indoor fan (2b
) is lowered by two steps, and when the low-pressure refrigerant pressure decreases, the air volume of the indoor fan (2b) is increased again.

また、上記ステップST4において、圧力センサ(4)
の検出圧力が9.0kg/c−・Gより以下に低下して
いないときには判定がNOとなってステップSTIに戻
り、再び圧力センサ(4)の検出圧力が9. 5kg/
c−・G以上か否かを判定し、9、 5kg/e−・G
以上であると、上述の動作を繰り返し、更に室内ファン
(4)の風量を低下させる。
Further, in step ST4, the pressure sensor (4)
If the detected pressure of the pressure sensor (4) has not decreased below 9.0 kg/c-.G, the determination is NO and the process returns to step STI, and the detected pressure of the pressure sensor (4) is 9.0 kg/c-.G or less. 5kg/
Determine whether it is more than c-・G, 9.5kg/e-・G
If this is the case, the above-described operation is repeated and the air volume of the indoor fan (4) is further reduced.

従って、上記圧力センサ(4)の検出圧力が検出範囲の
上限値に近付くと、室内ファン(2b)の風量を低下さ
せるようにしたために、上記圧力センサ(4)の検出範
囲内に低圧冷媒圧力を保つことができるので、正確な過
熱度を検出することができ、高精度な過熱度制御を行う
ことができる。
Therefore, when the detected pressure of the pressure sensor (4) approaches the upper limit of the detection range, the air volume of the indoor fan (2b) is reduced, so that the low-pressure refrigerant pressure falls within the detection range of the pressure sensor (4). Therefore, the degree of superheat can be detected accurately and the degree of superheat can be controlled with high precision.

この結果、圧縮機(11)の湿り運転を防止することが
できることから、該圧縮機(11)の故障を防止するこ
とができ、空調運転の信頼性を向上させることができる
As a result, wet operation of the compressor (11) can be prevented, so failure of the compressor (11) can be prevented, and reliability of air conditioning operation can be improved.

また、上記圧力センサ(4)の検出範囲を拡大すること
がないので、高精度な圧力検出を維持することができ、
過熱度制御の信頼性を向上させることができる。
In addition, since the detection range of the pressure sensor (4) is not expanded, highly accurate pressure detection can be maintained.
The reliability of superheat degree control can be improved.

第4図は他の実施例を示す制御フローであって、上記風
量低下手段(54)に代えて圧縮機(11)の容量を増
加させる容量増加手段(55)を設けたものである。
FIG. 4 is a control flow showing another embodiment, in which capacity increasing means (55) for increasing the capacity of the compressor (11) is provided in place of the air volume reducing means (54).

そこで、該容量増加手段(55)の構成並びに作用につ
いて説明すると、先ず、スタートしてステップSTI 
1において、圧力センサ(4)の検出圧力が9 、 5
 kg / cd・G以上か否かを判定し、9、 5k
g/cd・GになるまでステップSTI 1で待機し、
9.5kg/cd・G以上になると、ステップ5T12
に移り、圧縮機(11)の容量を2段階増加させる。そ
の後、ステップSTI 3に移り、所定範囲t1が経過
したか否かが判定され、所定時間t1が経過するまでス
テップSTI 3で待機し、該所定時間t1が経過する
と、ステップ5T14に移り、圧力センサ(4)の検出
圧力が9゜Okg / c−・G以下に低下したか否か
を判定する。
Therefore, to explain the structure and operation of the capacity increasing means (55), first, start and step STI
1, the detected pressure of the pressure sensor (4) is 9 and 5.
Determine whether it is more than kg / cd・G, 9.5k
Wait at step STI 1 until g/cd・G,
If the weight exceeds 9.5kg/cd・G, step 5T12
Then, the capacity of the compressor (11) is increased by two steps. Thereafter, the process moves to step STI 3, where it is determined whether or not the predetermined range t1 has elapsed.The process waits at step STI 3 until the predetermined time t1 has elapsed, and when the predetermined time t1 has elapsed, the process moves to step 5T14, where the pressure sensor It is determined whether the detected pressure in (4) has decreased to 9°Okg/c-.G or less.

そして、上記検出圧力が9.0kg/cl−G以下に低
下していると、ステップSTI 5に移り、圧縮機(1
1)の容量を1段階低下してステップ5T11に戻る一
方、ステップ5T14において、検出圧力が9.0kg
/c−・Gより大きいときには判定がNoとなってステ
ップ5TIIに戻り、該検出圧力が9.5 kg / 
c−・G以上のままであると、上述の動作を繰り返し、
更に圧縮機(11)の容量を増加させる。
Then, if the detected pressure has decreased to 9.0 kg/cl-G or less, the process moves to step STI 5, where the compressor (1
1) The capacity is decreased by one step and the process returns to step 5T11, while in step 5T14, the detected pressure is 9.0 kg.
/c-・G, the determination becomes No and the process returns to step 5TII, where the detected pressure is 9.5 kg/
If it remains above c-・G, repeat the above operation,
Furthermore, the capacity of the compressor (11) is increased.

つまり、低圧冷媒圧力が9. 5kg/cd・G以上に
なると、圧縮機(2)の吸込力を大きくして該低圧冷媒
圧力を低下させる。
In other words, the low pressure refrigerant pressure is 9. When it becomes 5 kg/cd·G or more, the suction force of the compressor (2) is increased to reduce the pressure of the low-pressure refrigerant.

従って、上記圧力センサ(4)の検出圧力が所定圧力値
になると、圧縮機(11)の容量を増加させるようにし
たために、低圧冷媒圧力を確実に低下させることができ
、正確な過熱度制御を行うことができる。
Therefore, since the capacity of the compressor (11) is increased when the pressure detected by the pressure sensor (4) reaches a predetermined pressure value, the low-pressure refrigerant pressure can be reliably lowered, and the degree of superheat can be controlled accurately. It can be performed.

尚、上記各実施例はファン風量の低下又は圧縮機容量の
増加の何れかを行うようにしたが、風量低下手段(54
)及び容量増加手段(55)の双方を設けてもよい。
In each of the above embodiments, either the fan air volume is reduced or the compressor capacity is increased, but the air volume reducing means (54
) and capacity increasing means (55) may be provided.

つまり、例えば、圧力センサ(4)の検出圧力が9. 
5)cg/cj−G以上になると、先ず、室内ファン(
4)の風量を2段階低下させ、この風量低下によって低
圧冷媒圧力か低下しない場合、所定時間後に更に圧縮機
(11)の容量を増加させる。
That is, for example, the detected pressure of the pressure sensor (4) is 9.
5) When the temperature exceeds cg/cj-G, first turn on the indoor fan (
4) The air volume is reduced by two steps, and if the low-pressure refrigerant pressure does not decrease due to this reduction in air volume, the capacity of the compressor (11) is further increased after a predetermined period of time.

これによって低圧冷媒圧力を低下させる。This reduces the low pressure refrigerant pressure.

従って、上記圧力センサ(4)の検出圧力が所定圧力値
になると、室内ファン(2b)の風量低下と圧縮機(1
1)の容量増加とを行うので、低圧冷媒圧力をより確実
に低下させることができることから、より正確な過熱度
制御を行うことができる。
Therefore, when the pressure detected by the pressure sensor (4) reaches a predetermined pressure value, the air volume of the indoor fan (2b) decreases and the compressor (1
Since the capacity increase described in 1) is performed, the low-pressure refrigerant pressure can be more reliably lowered, so that more accurate superheat degree control can be performed.

尚また、上記各実施例において、室内ファン(2b)は
4速に制御するようにしたが、3速に制御するものであ
ってもよい。
Furthermore, in each of the above embodiments, the indoor fan (2b) is controlled at 4 speeds, but may be controlled at 3 speeds.

また、本発明はベア型の空気調和装置に限られず、マル
チ型のものであってもよく、また、冷房運転と暖房運転
とに可逆可能な冷媒回路であってもよく、要するに圧力
センサ(4)で低圧冷媒圧力を検出して過熱度制御する
ものであればよい。
Further, the present invention is not limited to a bare type air conditioner, but may also be a multi-type type, and may also be a refrigerant circuit that is reversible between cooling operation and heating operation.In short, the pressure sensor (4 ) to detect the low-pressure refrigerant pressure and control the degree of superheating.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示すブロック図である。 第2図〜第4図は本発明の実施例を示し、第2図は冷媒
回路図、第3図は風量低下手段の制御フロー図である。 第4図は他の実施例を示す容量増加手段の制御フロー図
である。 (1)・・・冷媒回路 (2b)・・・室内ファン (3)・・・温度センサ (4)・・・圧力センサ (5)・・・コントローラ (6)・・・インバータ (11)・・・圧縮機 (12)・・・室外熱交換器 (14)・・・電動膨張弁 (15)・・・室内熱交換器 (52)・・・過熱度制御手段 (54)・・・風量低下手段 (55)・・・容量増加手段。 (12) (14) (15) (52) (54) (55) ・・・室外熱交換器 ・・・電動膨張弁 室内熱交換器 ・・・過熱度制御手段 ・・風量低下手段 、容量増加手段。 ほか2名 り二に 197− 第 3 図 第 図
FIG. 1 is a block diagram showing the configuration of the present invention. 2 to 4 show embodiments of the present invention, FIG. 2 is a refrigerant circuit diagram, and FIG. 3 is a control flow diagram of the air volume reducing means. FIG. 4 is a control flow diagram of the capacity increasing means showing another embodiment. (1)... Refrigerant circuit (2b)... Indoor fan (3)... Temperature sensor (4)... Pressure sensor (5)... Controller (6)... Inverter (11)... ... Compressor (12) ... Outdoor heat exchanger (14) ... Electric expansion valve (15) ... Indoor heat exchanger (52) ... Superheat degree control means (54) ... Air volume Decreasing means (55): Capacity increasing means. (12) (14) (15) (52) (54) (55) ... Outdoor heat exchanger ... Electric expansion valve Indoor heat exchanger ... Superheat degree control means ... Air volume reduction means, capacity increase means. 2 others 197- Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)圧縮機(11)と、熱源側熱交換器(12)と、
膨張機構(14)と、利用側熱交換器(15)とが順次
接続された冷媒回路(1)と、蒸発器となる熱交換器(
15)に付設された風量の可変な送風ファン(2b)と
を備えた空気調和装置において、 予め設定された検出範囲内において上記冷媒回路(1)
の圧縮機(11)吸込側の低圧冷媒圧力を検出する圧力
検出手段(4)と、 上記蒸発器となる熱交換器(15)の出口側の冷媒温度
を検出する温度検出手段(3)と、上記圧力検出手段(
4)が出力する低圧信号及び温度検出手段(3)が出力
する温度信号に基づいて冷媒の過熱度が所定値になるよ
うに制御する過熱度制御手段(52)と、 上記圧力検出手段(4)が出力する低圧信号を受けて該
圧力検出手段(4)の検出圧力が検出範囲の上限近傍の
所定圧力値になると、上記送風ファン(2b)の風量を
低下させる風量低下手段(54)とを備えていることを
特徴とする空気調和装置の運転制御装置。
(1) A compressor (11), a heat source side heat exchanger (12),
A refrigerant circuit (1) to which an expansion mechanism (14) and a user-side heat exchanger (15) are sequentially connected, and a heat exchanger (15) serving as an evaporator (
In an air conditioner equipped with a variable air volume blower fan (2b) attached to the refrigerant circuit (1) within a preset detection range,
pressure detection means (4) for detecting the low-pressure refrigerant pressure on the suction side of the compressor (11); and temperature detection means (3) for detecting the refrigerant temperature on the outlet side of the heat exchanger (15) serving as the evaporator. , the pressure detection means (
superheat degree control means (52) for controlling the degree of superheat of the refrigerant to a predetermined value based on the low pressure signal outputted by the temperature detection means (4) and the temperature signal outputted by the temperature detection means (3); ) receives a low pressure signal outputted by the pressure detecting means (4) and when the detected pressure of the pressure detecting means (4) reaches a predetermined pressure value near the upper limit of the detection range, an air volume reducing means (54) that reduces the air volume of the blower fan (2b); An operation control device for an air conditioner, comprising:
(2)容量の可変な圧縮機(11)と、熱源側熱交換器
(12)と、膨張機構(14)と、利用側熱交換器(1
5)とが順次接続された冷媒回路(1)を備えた空気調
和装置において、 予め設定された検出範囲内において上記冷媒回路(1)
の圧縮機(11)吸込側の低圧冷媒圧力を検出する圧力
検出手段(4)と、 上記蒸発器となる熱交換器(15)の出口側の冷媒温度
を検出する温度検出手段(3)と、上記圧力検出手段(
4)が出力する低圧信号及び温度検出手段(3)が出力
する温度信号に基づいて冷媒の過熱度が所定値になるよ
うに制御する過熱度制御手段(52)と、 上記圧力検出手段(4)が出力する低圧信号を受けて該
圧力検出手段(4)の検出圧力が検出範囲の上限近傍の
所定圧力値になると、上記圧縮機(11)の容量を増加
させる容量増加手段(55)とを備えていることを特徴
とする空気調和装置の運転制御装置。
(2) A variable capacity compressor (11), a heat source side heat exchanger (12), an expansion mechanism (14), and a user side heat exchanger (1
5) in an air conditioner equipped with a refrigerant circuit (1) sequentially connected to the refrigerant circuit (1) within a preset detection range.
pressure detection means (4) for detecting the low-pressure refrigerant pressure on the suction side of the compressor (11); and temperature detection means (3) for detecting the refrigerant temperature on the outlet side of the heat exchanger (15) serving as the evaporator. , the pressure detection means (
superheat degree control means (52) for controlling the degree of superheat of the refrigerant to a predetermined value based on the low pressure signal outputted by the temperature detection means (4) and the temperature signal outputted by the temperature detection means (3); ) capacity increasing means (55) for increasing the capacity of the compressor (11) when the detected pressure of the pressure detecting means (4) reaches a predetermined pressure value near the upper limit of the detection range in response to the low pressure signal output by the pressure detecting means (4); An operation control device for an air conditioner, comprising:
(3)請求項(1)記載の空気調和装置の運転制御装置
において、圧縮機(11)が容量可変に構成される一方
、 圧力検出手段(4)が出力する低圧信号を受けて該圧力
検出手段(4)の検出圧力が検出範囲の上限近傍の所定
圧力値になると、上記圧縮機(11)の容量を増加させ
る容量増加手段(55)を備えていることを特徴とする
空気調和装置の運転制御装置。
(3) In the operation control device for an air conditioner according to claim (1), the compressor (11) is configured to have a variable capacity, and the pressure detection means (4) detects the pressure in response to a low pressure signal outputted from the pressure detection means (4). An air conditioner comprising: capacity increasing means (55) for increasing the capacity of the compressor (11) when the detected pressure of the means (4) reaches a predetermined pressure value near the upper limit of the detection range. Operation control device.
JP2050738A 1990-02-28 1990-02-28 Operation controller for air conditioner Pending JPH03251637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2050738A JPH03251637A (en) 1990-02-28 1990-02-28 Operation controller for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2050738A JPH03251637A (en) 1990-02-28 1990-02-28 Operation controller for air conditioner

Publications (1)

Publication Number Publication Date
JPH03251637A true JPH03251637A (en) 1991-11-11

Family

ID=12867180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2050738A Pending JPH03251637A (en) 1990-02-28 1990-02-28 Operation controller for air conditioner

Country Status (1)

Country Link
JP (1) JPH03251637A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010203740A (en) * 2009-03-05 2010-09-16 Nakano Refrigerators Co Ltd Method for operating showcase
WO2020003490A1 (en) * 2018-06-29 2020-01-02 三菱電機株式会社 Air conditioning device
GB2546586B (en) * 2015-11-19 2020-05-20 G A H Refrigeration Ltd Method and system for controlling performance of an evaporator of a refrigeration system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010203740A (en) * 2009-03-05 2010-09-16 Nakano Refrigerators Co Ltd Method for operating showcase
GB2546586B (en) * 2015-11-19 2020-05-20 G A H Refrigeration Ltd Method and system for controlling performance of an evaporator of a refrigeration system
WO2020003490A1 (en) * 2018-06-29 2020-01-02 三菱電機株式会社 Air conditioning device
JPWO2020003490A1 (en) * 2018-06-29 2021-04-01 三菱電機株式会社 Air conditioner

Similar Documents

Publication Publication Date Title
JP2010506132A (en) Method and apparatus for controlling stop operation of air conditioner
JP2008224210A (en) Air conditioner and operation control method of air conditioner
JP3982557B2 (en) Air conditioner
JP3890870B2 (en) Air conditioner
JPH06337174A (en) Operation controller for air-conditioner
JP3668750B2 (en) Air conditioner
JP2001194017A (en) Supercritical vapor compressor type freezing cycle
JP3421197B2 (en) Control device for air conditioner
JP2007101177A (en) Air conditioner or refrigerating cycle device
JP3185791B2 (en) Control device for air conditioner
JPH03251637A (en) Operation controller for air conditioner
JP3194652B2 (en) Air conditioner
JP4039100B2 (en) Air conditioner
KR101186326B1 (en) Air-Condition and the control method for the same
KR101153421B1 (en) Condensation volume control method for air conditioner
CN113614469B (en) Air conditioner
JP3198859B2 (en) Multi-type air conditioner
JP2921254B2 (en) Refrigeration equipment
JP3306455B2 (en) Air conditioner
JP4288979B2 (en) Air conditioner, and operation control method of air conditioner
JP3225738B2 (en) Air conditioner
JPH04222341A (en) Operation controller for air conditioner
JP5999163B2 (en) Air conditioner
JP7495625B2 (en) Air Conditioning Equipment
JP7490841B1 (en) Air Conditioning Equipment