JPH03251034A - Fault zone detector - Google Patents

Fault zone detector

Info

Publication number
JPH03251034A
JPH03251034A JP4748790A JP4748790A JPH03251034A JP H03251034 A JPH03251034 A JP H03251034A JP 4748790 A JP4748790 A JP 4748790A JP 4748790 A JP4748790 A JP 4748790A JP H03251034 A JPH03251034 A JP H03251034A
Authority
JP
Japan
Prior art keywords
slave station
fault
failure
failure detection
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4748790A
Other languages
Japanese (ja)
Other versions
JP2547646B2 (en
Inventor
Akira Kaneda
明 金田
Toshinobu Ebizaka
敏信 海老坂
Keiji Isahaya
諫早 啓司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2047487A priority Critical patent/JP2547646B2/en
Publication of JPH03251034A publication Critical patent/JPH03251034A/en
Application granted granted Critical
Publication of JP2547646B2 publication Critical patent/JP2547646B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Selective Calling Equipment (AREA)

Abstract

PURPOSE:To shorten time required for detecting a fault zone by detecting fault information by a master station, immediately measuring the intrinsic impedance of a slave station by a signal processor, driving the automatically sequentially feeding means of the slave station when the measurement is finished, and sequentially supplying power to the slave station adjacent to a load. CONSTITUTION:A fault detector n1 detects a fault to drive a fault detection relay Ryn1, thereby closing its a contact Ryn1-1. A closed circuit is formed by the operation between connecting terminals (n-1) and (n-2), and a fault detection current flows to a signal line. When a signal processor 30 detects the current, it drives a fault detection relay Ry1 to switch its (a) contact Ry1a to its (b) contact Ry1b, thereby switching its voltage polarity. A slave station 1n starts energizing an automatically sequentially feeding relay Ryn2 from this time point, waits the end of measuring time of an intrinsic impedance Zn, then switches its output contact Ryn2-1 to OFF and its output contact Ryn2-2 to ON.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は配電線の事故発生に際し、電力需給のバラン
スを考慮して早期復旧を図るために故障区間を高速度で
検出する故障区間検出装置に関するものである。
The present invention relates to a fault section detection device that detects a fault section at high speed in order to take into account the balance of power supply and demand and achieve early restoration when an accident occurs on a power distribution line.

【従来の技術】[Conventional technology]

井接地系の配電系統は停電区間の極小化と配電線故障時
の故障箇所の早期発見を行うために、所定区間毎に配電
線を分割する故障検出センサ付区分開閉要素(以下、区
分開閉器という)と、逆送融通送電を行う連系点の故障
検出センサ付ループ点開閉要素(以下、ループ点開閉器
という)を設置している。 第5図は、例えば3つの配電用変電所から夫々出力され
ている配電線をループ点開閉器で連系した配電系統図で
あり、図において、As/s、 Bs/s及びCs/s
は夫々配電用変電所、1は配電用変電所As/sの母線
、2は配電用変電所B s/sの母線、3は配電用変電
所Cs/sの母線、CBII及びCBk1は母線1に接
続された配電線用のしゃ断器、CB21は配電用変電所
B s/sの母線2に接続されたしゃ断器、CB51は
配電用変電所Cs/sの母線3に接続されたしゃ断器、
Fllは前記配電線用のしゃ断器CBIIの他の端子に
接続され需要家に電力を供給する配電線、Fklは前記
配電線用のしゃ断器CBk1の他の端子に接続され電力
を供給する配電線、F21.F31は夫々配電線、5S
II〜5S13及びSSk 1〜5Sk3は配電線Fi
l及びFklを適当な間隔毎に区分するための区分開閉
器、5SIOは配電線Filと配電線F21とを連系す
るためのループ点開閉器、5SkOは配電線Fklと配
電線F31とを連系するためのループ点開閉器、Sll
、S12゜S13はしゃ断器CBII、区分開閉器5S
II。 5S12及びループ点開閉器5SIOで区分された配電
線Filの区間を示すもので、しゃ断器CB11に近い
区間より配電線Filの第1区間。 第2区間、第3区間、またSki、Sk2.Sk3はし
ゃ断器CBk1、区分開閉器5Skl、5Sk2及びル
ープ点開閉器5SkOで区分された配電線Fklの各区
間を示すもので、しゃ断器CBk1に近い区間より配電
線Fklの第1区間。 第2区間、第3区間とする。また、11,12゜13及
びkl、に2.に3は区分開閉器5SII〜5S13,
5Skl〜5Sk3用の子局である。 更に、10−1〜13−1及びko〜1〜に3−1は夫
々区分開閉器5SII〜5S13とループ点開閉器5S
IO及び同しく区分開閉器SSk 1〜5Sk3とルー
プ点開閉器5SkOの制御線で子局から区分開閉器を制
御すると共に、夫々の区間の故障状態を検出する。40
は親局、C1,C2は前記親局40と子局10〜13及
びkO〜に3間とを情報伝送するための通信線である。 次に動作について説明する。まず、区分開閉器5SII
〜5S13,5Skl〜5Sk3及びループ点開閉器5
SIO,5SkOは夫々故障検出機能を備えた子局10
〜13.ko−に3を備えている。親局40は前記夫々
の子局10〜13゜kO〜に3の故障検出情報を収集す
るために、周期的に通信線CI、C2を介してポーリン
グ方式により情報の収集を行っている。その時、例えば
、配電線Filの第3区分313に1線地絡事故が発生
すると配電線11に矢印のような地絡電流が流れる。配
電線11は第3区間S13より更に負荷側にある第4区
間314の健全区間を本来は停電させないために配電用
変電所A s/sのしゃ断器CBIIがしゃ断動作する
以前(しゃ断器は地絡事故発生後、約0.5〜1.0秒
で作動)にループ点開閉器SIOを投入しループ化した
後で区分開閉器5S12,3313を高速で切離す必要
がある。 この場合、親局40はループ点開閉器5SIO1又は5
SkOを投入する前に順次ポーリング方式で子局5SI
I、5S12から収集した故障検出情報をもとに故障区
間を判定し、何れのループ点開閉器を投入するのが系統
への影響が最も少いかを判断し、切離すべき最良のルー
プ点開閉器を選択する。この故障区間の判定は、全子局
の故障検出情報を収集するポーリング時間に多大の時間
がかかること及び2線地絡時には、配電線の線間電圧低
下に伴う子局電源の低下により、子局の故障検出情報に
欠落が生じ、故障区間判定のため、補正処理に多大の時
間がかかっていた。又、最悪の場合、故障区間判定が不
能となることもある。このように従来は故障区間検出時
間とループ点開閉器の選択動作までの時間が上述した0
、5〜1.0秒以上かかっていたため、配電用変電所の
配電線用しゃ断器がトリップし、再閉路、再再閉路及び
マニュアル/プログラムによる開閉器の開閉操作等によ
り、故障区間検出、故障区間の切離し及び健全区間への
電力融通を行っていた。
Grounded power distribution systems use segmental switching elements (hereinafter referred to as segmental switches) equipped with fault detection sensors that divide distribution lines into predetermined sections in order to minimize power outage sections and to quickly detect failure points in the event of a distribution line failure. ) and a loop point switching element (hereinafter referred to as a loop point switch) with a failure detection sensor at the interconnection point that performs reverse power interchange transmission. FIG. 5 is a distribution system diagram in which, for example, distribution lines output from three distribution substations are interconnected by loop point switches, and in the figure, As/s, Bs/s and Cs/s
are the distribution substations, 1 is the bus of the distribution substation As/s, 2 is the bus of the distribution substation B s/s, 3 is the bus of the distribution substation Cs/s, CBII and CBk1 are the bus 1 of the distribution substation CB21 is a breaker connected to bus 2 of distribution substation B s/s, CB51 is a breaker connected to bus 3 of distribution substation Cs/s,
Fll is a distribution line that is connected to the other terminal of the distribution line breaker CBII and supplies power to consumers, and Fkl is a distribution line that is connected to the other terminal of the distribution line breaker CBk1 and supplies power. , F21. F31 is each power distribution line, 5S
II to 5S13 and SSk 1 to 5Sk3 are distribution lines Fi
5SIO is a loop point switch for connecting distribution line Fil and distribution line F21, and 5SkO is for connecting distribution line Fkl and distribution line F31. Loop point switch for system, Sll
, S12゜S13 is breaker CBII, section switch 5S
II. It shows the sections of the distribution line Fil divided by 5S12 and the loop point switch 5SIO, and the first section of the distribution line Fil is from the section closer to the circuit breaker CB11. The second section, the third section, and also Ski, Sk2. Sk3 indicates each section of the distribution line Fkl divided by the breaker CBk1, the section switches 5Skl, 5Sk2, and the loop point switch 5SkO, and is the first section of the distribution line Fkl from the section closer to the breaker CBk1. This will be the second section and the third section. Also, 11, 12° 13 and kl, 2. 3 is section switch 5SII~5S13,
This is a slave station for 5Skl to 5Sk3. Further, 10-1 to 13-1 and ko to 1 to 3-1 are section switches 5SII to 5S13 and loop point switches 5S, respectively.
The sectional switches are controlled from the slave station using the control lines of the IO and the sectional switches SSk 1 to 5Sk3 and the loop point switch 5SkO, and the failure state of each section is detected. 40
is a master station, and C1 and C2 are communication lines for transmitting information between the master station 40 and slave stations 10 to 13 and kO~. Next, the operation will be explained. First, section switch 5SII
~5S13, 5Skl ~5Sk3 and loop point switch 5
SIO and 5SkO are slave stations 10 each equipped with a failure detection function.
~13. It has 3 in ko-. The master station 40 periodically collects information via the communication lines CI and C2 by a polling method in order to collect failure detection information from each of the slave stations 10 to 13 DEG kO. At that time, for example, if a one-line ground fault occurs in the third section 313 of the distribution line Fil, a ground fault current as shown by an arrow flows through the distribution line 11. The distribution line 11 is operated before the circuit breaker CBII of the distribution substation A s/s operates (the circuit breaker is connected to the It is necessary to turn on the loop point switch SIO (activated approximately 0.5 to 1.0 seconds after the fault occurs) to form a loop, and then disconnect the section switch 5S12, 3313 at high speed. In this case, the master station 40 is the loop point switch 5SIO1 or 5
Before introducing SkO, the slave station 5SI is sequentially polled.
Determine the fault section based on the fault detection information collected from I, 5S12, determine which loop point switch to turn on will have the least impact on the system, and select the best loop point switch to disconnect. Select a vessel. Determining this fault section is difficult due to the fact that polling time to collect fault detection information from all slave stations takes a lot of time, and in the event of a two-wire ground fault, the slave station power supply decreases due to a drop in line voltage of the distribution line. There was a gap in the failure detection information of the station, and the correction process was taking a lot of time to determine the failure area. Furthermore, in the worst case, it may become impossible to determine a faulty section. In this way, in the past, the time between the fault section detection time and the selection operation of the loop point switch was 0 as described above.
, because it took more than 5 to 1.0 seconds, the distribution line circuit breaker at the distribution substation tripped, and the fault section was detected and the fault was detected by reclosing the circuit, re-reclosing the circuit, and opening/closing the switch by manual/program. Sections were separated and power was transferred to healthy sections.

【発明が解決しようとする課題】[Problem to be solved by the invention]

従来の故障区間検出装置は以上のように構成されている
ので、地絡事故発生に伴って行われる全子局の故障検出
情報収集による故障区間の検出(配線工事などで配電線
−子局一通信線との接続変更が多いため、ポーリング順
序が変り全情報の収集が必要となる)、事故時の系統電
圧低下に伴う子局情報の欠落補正処理、及びループ点開
閉器の選択動作までの所要時間が配電線のしゃ断器が動
作するまでの時間、即ち、0.5〜1.0秒を超えてい
たことから故障区間以外の健全区間まで停電が発生し、
かつそれが長くなると共に故障区間の復旧が遅れた。そ
の結果、例えば、配電線の負荷であるOA機器等の各種
電子製品に多大の影響を与える等の課題があった。 この発明は上記のような課題を解消するためになされた
もので、故障回線を高速で検出し、故障回線に関係する
子局の故障情報を系統電圧の有無に拘らず、高速で収集
出来るようにし、故障区間検出に要する時間を短縮した
故障区間検出装置を得ることを目的とする。
Since the conventional fault section detection device is configured as described above, it is possible to detect a fault section by collecting fault detection information of all slave stations when a ground fault occurs (between the distribution line and the slave station due to wiring work, etc.). (Because there are many connection changes to communication lines, the polling order changes and it is necessary to collect all information), correction processing for missing slave station information due to grid voltage drop in the event of an accident, and loop point switch selection operation. Since the required time exceeded the time required for the circuit breaker on the distribution line to operate, that is, 0.5 to 1.0 seconds, a power outage occurred in healthy sections other than the faulty section.
Moreover, as the period became longer, the recovery of the failed section was delayed. As a result, there has been a problem that, for example, various electronic products such as OA equipment, which are a load on the power distribution line, are greatly affected. This invention was made to solve the above-mentioned problems, and it is possible to detect faulty lines at high speed and collect fault information of slave stations related to the faulty line at high speed, regardless of the presence or absence of grid voltage. It is an object of the present invention to provide a fault section detection device that reduces the time required to detect a fault section.

【課題を解決するための手段】[Means to solve the problem]

この発明に係る故障区間検出装置は、配電線の故障を検
出するとラッチ形の子局側の故障検出リレーを駆動する
子局の故障検出部と、その子局側の故障検出リレーを動
作して、固有インピーダンスを信号線に接続し、親局の
信号処理部がその固有インピーダンスを計測すると、所
定時間後に固有インピーダンスを切離し、負荷側の別の
子局に電源を供給する自動順送手段と、前記配電線故障
に伴う子局の故障情報を信号線を介して検出する親局の
故障検出センサと、その故障検出センサからの故障情報
を確認すると前記信号線の電源極性を切換え、前記自動
順送手段を動作させるようにした親局側の故障検出リレ
ーを駆動する親局の信号処理部とで構成され、故障等に
よる系統電圧低下時或は停電中でも子局情報の収集や故
障区間検出を高速で確実に行うようにしたものである。
The fault section detection device according to the present invention operates a fault detection unit of a slave station that drives a latch-type fault detection relay on the slave station side when a failure in a distribution line is detected, and a failure detection relay on the slave station side. automatic progressive means for connecting the characteristic impedance to the signal line and, when the signal processing section of the master station measures the characteristic impedance, disconnecting the characteristic impedance after a predetermined time and supplying power to another slave station on the load side; A failure detection sensor of the master station detects failure information of slave stations due to distribution line failure via a signal line, and when the failure information from the failure detection sensor is confirmed, the power supply polarity of the signal line is switched and the automatic sequential transmission is performed. The signal processing unit of the master station drives the failure detection relay on the master station side, which activates the means, and the signal processing unit of the master station drives the failure detection relay on the master station side.It can collect slave station information and detect failure areas at high speed even when the grid voltage drops due to a failure etc. or during a power outage. This is to ensure that this is done correctly.

【作用】[Effect]

この発明における親局は、配電線に故障が発生するとそ
の故障情報を検出して直ちに子局の固有インピーダンス
を信号処理部で計測し、計測が終了すると、子局の自動
順送手段を駆動して負荷側隣接の子局に順次電源を供給
するので、固有インピーダンスの計測を通じて故障区間
を短時間で検出し、かつ子局の情報を親局からの電源供
給により停電中でも確実に収集できる。
When a fault occurs in the distribution line, the master station in this invention detects the fault information, immediately measures the inherent impedance of the slave station in its signal processing section, and when the measurement is completed, drives the automatic forwarding means of the slave station. Since power is sequentially supplied to the adjacent slave stations on the load side, failure sections can be detected in a short time through measurement of inherent impedance, and information on the slave stations can be reliably collected even during a power outage by supplying power from the master station.

【発明の実施例】[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。図中
、第5図と同一部分は同一の符号をもって図示した第2
図において、図はこの発明に係る部分のみを取り出して
示した子局の構成図であり、5S1nは子局1nの区分
開閉器、nlは配電線の故障を検出する故障検出部、R
yn+は配電線故障が負荷側に発生した時のみ前記故障
検出部n1からの指令によって動作するラッチ形の故障
検出リレー、n−1,n−2,n−3,n−4は通信線
との接続端子、Ryfi!はオンデイレ−形の自動順送
手段としての自動順送りレー 27は夫々の子局対応で
決められたインピーダンス値を有する固有インピーダン
ス、Doはバイパス用ダイオード、D、、2は逆流防止
用ダイオードである。また、第3図において、40はこ
の発明に関係する部分のみを取り出して示した親局で、
Esは独立した電源としての直流電源、30は信号処理
部で故障検出センサとしての電圧検出センサ31、及び
DCCT等の電流検出センサ32を有する。RyIは故
障検出リレーで、Ry+m+  R)’+bは夫々該故
障検出リレーRy1のa、b接点である。 次に、第2図を参照して子局の故障検出動作について説
明する。まず、定常状態において、子局1nの接続端子
n−1,n−2には該n−2が正極になるような極性の
電圧が故障検出リレーRyのb接点R)+bを介して直
流電源Esより印加される。配電線Filに配電線故障
が発生していない状態では接続端子n−1,n−2間の
インピーダンスは略無限大である。ここで、配電線Fi
lに短絡又は地絡故障が発生すると、故障検出部n1が
該故障を検出してラッチ形の故障検出リレーRyゎ、を
駆動し、a接点RyゎI−1を投入する。接続端子n−
1,n−2間はこの動作によって固有インピーダンスZ
、l、リレー接点Ry、、−+。 Ry、□−1を介して閉回路が形成され、該固有インピ
ーダンスZ7に見合った故障検出電流が信号線に流れる
。信号処理部30は電流検出センサ32により前記信号
線の故障検出電流を検出すると直ちに故障検出リレーR
y1を駆動し、そのa接点R)’+mをb接点R)’+
bに切換え、子局1nの接続端子n〜1に正電圧が加わ
る様に電圧極性を切換える。子局1nはこの時点より逆
流防止ダイオードD、1!を経てオンデイレ−形の自動
順送りリレーRy、□に通電を開始し、所定の遅延時間
、すなわち、固有インピーダンスZ7の計測時間終了を
待ってその出力接点R’1nz−1をOF F、 R!
tt−zをONに切換える。例えば、第3図の場合、固
有インピーダンスZ1を流れる信号線の故障検出電流は
電流検出センサ32を経て信号処理部30に取込まれ、
該固有インピーダンスZ1の値が計測時間T、の間に計
測される。前記子局情報伝送のタイムチャートを第4図
に示す。 次にa接点Ryヵ2−2のON動作によってバイパス用
ダイオードD fi+が短絡され負荷側にある次の子局
の通信線に電圧が印加されると、上記と同様の動作が順
次最終の子局まで繰返えされる。そして、夫々の固有イ
ンピーダンスの計測が信号処理部30によって成される
。全子局の固有インピーダンスを計測することによって
故障区間を親局40が6I L’lすると、該親局は区
分開閉器やループ点開閉器の制御動作に移る。従って、
従来の子局総当りの故障検出方法に比較してポーリング
に要する所要時間が大幅に短縮される。又、子局の固有
インピーダンス計測には子局の電源を使用していないた
め事故等で系統電圧が低下しても確実に計測を行える。 その他、以降の地絡、短絡事故に伴う区間開閉器の制御
動作については従来例と同様に進められる。 なお、上記実施例では親局、子局とも補助リレーを主体
に構成した実施例について示したが、半導体素子を用い
た自動順送回路を用いてもよく、上記実施例と同様の効
果を奏する。 また、親局の信号用電源として直流電源を用いた例につ
いて説明したが交流電源を用いる場合、又電圧源として
説明したが電流源として用いてもよく、上記実施例と同
様の効果を奏する。更に、自動順送手段により、子局の
故障検出状態を通信線上の電圧、電流1位相、及び周波
数変化等で検出するものについても上記実施例と同様の
効果を有する。
An embodiment of the present invention will be described below with reference to the drawings. In the figure, parts that are the same as those in Figure 5 are designated by the same reference numerals.
In the figure, the diagram is a configuration diagram of a slave station showing only the parts related to the present invention, where 5S1n is a section switch of the slave station 1n, nl is a failure detection unit that detects a failure in the distribution line, and R
yn+ is a latch-type failure detection relay that operates according to a command from the failure detection section n1 only when a distribution line failure occurs on the load side, and n-1, n-2, n-3, and n-4 are communication lines. The connection terminal of Ryfi! 27 is a characteristic impedance having an impedance value determined for each slave station, Do is a bypass diode, and D, 2 are backflow prevention diodes. Further, in FIG. 3, numeral 40 is a master station showing only the parts related to this invention,
Es is a direct current power source as an independent power source, and 30 is a signal processing unit having a voltage detection sensor 31 as a failure detection sensor and a current detection sensor 32 such as a DCCT. RyI is a failure detection relay, and Ry+m+R)'+b are a and b contacts of the failure detection relay Ry1, respectively. Next, the failure detection operation of the slave station will be explained with reference to FIG. First, in a steady state, a voltage with a polarity such that n-2 becomes positive is applied to the connection terminals n-1 and n-2 of the slave station 1n via the b contact R)+b of the failure detection relay Ry, and is applied to the DC power supply. It is applied from Es. In a state where no distribution line fault has occurred in the distribution line Fil, the impedance between the connection terminals n-1 and n-2 is approximately infinite. Here, the distribution line Fi
When a short circuit or ground fault occurs in I, the fault detection section n1 detects the fault and drives the latch-type fault detection relay Ryゎ, and closes the a contact RyゎI-1. Connection terminal n-
Due to this operation, the characteristic impedance Z between 1 and n-2
, l, relay contact Ry, , -+. A closed circuit is formed through Ry and □-1, and a failure detection current commensurate with the specific impedance Z7 flows through the signal line. When the signal processing unit 30 detects the failure detection current of the signal line by the current detection sensor 32, it immediately activates the failure detection relay R.
Drive y1 and connect its a contact R)'+m to b contact R)'+
b, and the voltage polarity is changed so that a positive voltage is applied to the connection terminals n to 1 of the slave station 1n. From this point on, the slave station 1n switches backflow prevention diodes D, 1! Then, the on-delay type automatic sequential relay Ry, □ starts to be energized, waits for the end of the predetermined delay time, that is, the measurement time of the characteristic impedance Z7, and then turns off its output contact R'1nz-1.
Switch tt-z to ON. For example, in the case of FIG. 3, the fault detection current of the signal line flowing through the characteristic impedance Z1 is taken into the signal processing section 30 via the current detection sensor 32,
The value of the characteristic impedance Z1 is measured during a measurement time T. A time chart of the slave station information transmission is shown in FIG. Next, when the bypass diode Dfi+ is short-circuited by the ON operation of the a contact Ry 2-2 and voltage is applied to the communication line of the next slave station on the load side, the same operation as above occurs sequentially to the last slave station. Repeated until the station. The signal processing section 30 then measures each characteristic impedance. When the master station 40 resolves the failure section by measuring the characteristic impedance of all the slave stations, the master station moves on to the control operation of the sectional switch and the loop point switch. Therefore,
The time required for polling is significantly reduced compared to the conventional fault detection method using all slave stations. Furthermore, since the power source of the slave station is not used to measure the inherent impedance of the slave station, measurement can be performed reliably even if the system voltage drops due to an accident or the like. Other than that, the subsequent control operations of the section switch in the event of a ground fault or short circuit accident will proceed in the same manner as in the conventional example. In addition, in the above embodiment, an embodiment in which both the master station and the slave station are mainly composed of auxiliary relays has been shown, but an automatic sequential circuit using a semiconductor element may also be used, and the same effect as in the above embodiment can be obtained. . Further, although an example in which a DC power source is used as the signal power source of the master station has been described, when an AC power source is used, and although the voltage source has been described, it may be used as a current source, and the same effects as in the above embodiments can be obtained. Furthermore, the same effect as in the above embodiment can be obtained in the case where the failure detection state of the slave station is detected by the voltage on the communication line, one phase of the current, the frequency change, etc. by the automatic sequential means.

【発明の効果】【Effect of the invention】

以上のようにこの発明によれば、親局内に故障検出セン
サから配電線の故障情報を受信する信号処理部と、信号
線に供給する電源とを有し、他方子局内には配電線に故
障が発生すると固有インピーダンスを接続して親局に故
障情報を出力し、所定時間後に負荷側の子局に電源を供
給するオンデイレ−形の自動順送手段とを設けて故障区
間を検出するようにしたので、親局と子局間の複雑なプ
ロトコルや、伝送フォーマットを必要とせず、高速に故
障区間の検出を行うと共に、停電中でも親局から電源を
供給し、子局側で保持している故障検出情報を収集する
ことができる効果がある。
As described above, according to the present invention, the master station includes a signal processing unit that receives fault information of the distribution line from the fault detection sensor and the power supply that supplies the signal line, and the slave station has the signal processing unit that receives the fault information of the distribution line from the fault detection sensor, and the slave station When this occurs, fault information is output to the master station by connecting the inherent impedance, and an on-delay type automatic progressive means is provided to supply power to the slave stations on the load side after a predetermined period of time to detect the fault section. This eliminates the need for complicated protocols or transmission formats between the master station and slave stations, allows high-speed detection of faulty sections, and allows power to be supplied from the master station and maintained by the slave stations even during power outages. This has the effect of being able to collect failure detection information.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明が通用される故障区間検出システムの
構成図、第2図はこの発明の一実施例を示す子局の構成
図、第3図はこの発明による子局情報収集回路ブロック
図、第4図は子局情報伝送タイムチャート、第5図は従
来の故障区間検出装置の構成図である。 図において、As/sは配電用変電所、Filは配電線
、5SII 〜5S1nは開閉器、11〜1nは子局、
Cは通信線、40は親局、Ry、、lは故障検出リレー
 nlは故障検出部、30は信号処理部、R)’nzは
自動順送リレー(自動順送手段)、31.32は故障検
出センサである。 なお、図中、同一符号は同一、又は相当部分を示す。 夕う 1 図 第 図 晴間 平成 書(自 発) 2.6.29 月    日 年 2、発明の名称 故障区間検出装置 3、補正をする者 事件との関係  特許出願人 住 所    東京都千代田区丸の内二丁目2番3号名
 称  (601)三菱電機株式会社代表者志岐守哉 6、補正の内容 (1)明細書の特許請求の範囲を別紙のとおり補正する
。 (2)明細書第4頁第9行目の rkO〜l〜に3−」をrkO−1−に3−Jと補正す
る。 (3)明細書第5頁第5行目の 「第3区分513Jを「第3区間S13」と補正する。 (4)明細書第6頁第7行目の[故障区間検出時間と」
を「故障区間検出から」と補正する。 (5)明細書第6頁第18行目の「配線工事などで」を
「配電線工事などでjと補正する。 (6)明細書第12頁第8行目の「区間開閉器の制御動
作」を「区分開閉器の制御動作」と補正する。 7、添付書類の目録 補正後の特許請求の範囲を記載した書面1通 以  上 補正後の特許請求の範囲 配電用変電所に繋がれた複数の配電線の区間毎に設けら
れた開閉器の設置点に設けられた故障検出用の子局と、
前記子局が検出した配電線の故障検出情報を通信線を介
して受信し、前記開閉器の制御を行う親局と、前記配電
線の故障を検出すると子局側のラッチ形の故障検出リレ
ーを駆動する前記子局の故障検出部と、前記子局側の故
障検出リレーの動作により固有インピーダンスを信号線
に接続し、後述の信号処理部が該固有インピーダンスを
計測すると、所定時間後に固有インピーダンスを切離し
、負荷側の別の子局に該信号線用の電源を供給する自動
順送手段と、前記配電線故障に伴う前記子局の故障情報
を信号線を介して検出する故障検出センサと、前記故障
検出センサの故障情報を確認すると前記信号線の電源極
性を切換え、前記自動順送手段を動作正文る親局側の故
障検出リレーを駆動する信号処理部とを備えた故障区間
検出装置。
FIG. 1 is a block diagram of a fault section detection system to which the present invention is applied, FIG. 2 is a block diagram of a slave station showing an embodiment of the present invention, and FIG. 3 is a block diagram of a slave station information collection circuit according to the present invention. , FIG. 4 is a slave station information transmission time chart, and FIG. 5 is a configuration diagram of a conventional fault section detection device. In the figure, As/s is a distribution substation, Fil is a distribution line, 5SII to 5S1n are switches, 11 to 1n are slave stations,
C is a communication line, 40 is a master station, Ry, l is a failure detection relay, nl is a failure detection section, 30 is a signal processing section, R)'nz is an automatic sequential relay (automatic sequential means), 31.32 is a It is a failure detection sensor. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Evening 1 Figure Figure Haruma Heisei sho (self-produced) 2.6.29 Month Date Year 2 Name of the invention Failure section detection device 3 Relationship with the case of the person making the amendment Patent applicant address Marunouchi, Chiyoda-ku, Tokyo 2-2-3 Name (601) Mitsubishi Electric Corporation Representative Moriya Shiki 6 Contents of amendment (1) The scope of claims in the specification will be amended as shown in the attached sheet. (2) Correct rkO~l~ to 3-'' on page 4, line 9 of the specification to rkO-1- to 3-J. (3) "Third section 513J" on page 5, line 5 of the specification is corrected to "third section S13." (4) [Failure section detection time] on page 6, line 7 of the specification
is corrected as "from fault section detection". (5) "Due to wiring work, etc." on page 6, line 18 of the specification is corrected to "j due to distribution line work, etc." (6) "Control of section switch, etc." on page 12, line 8 of the specification "operation" is corrected to "control operation of sectional switch". 7. At least one document stating the amended scope of patent claims in the list of attached documents The amended scope of claims is for a switch installed in each section of multiple distribution lines connected to a distribution substation. A slave station for fault detection installed at the installation point,
a master station that receives fault detection information on the distribution line detected by the slave station via a communication line and controls the switch; and a latch-type failure detection relay on the slave station side when a failure on the distribution line is detected. When the characteristic impedance is connected to the signal line by the operation of the failure detection unit of the slave station that drives the slave station and the failure detection relay of the slave station, and the signal processing unit described below measures the characteristic impedance, the characteristic impedance is determined after a predetermined time. an automatic progressive means for disconnecting the power supply and supplying power for the signal line to another slave station on the load side; and a failure detection sensor for detecting failure information of the slave station due to a failure in the distribution line via the signal line. , a signal processing unit that drives a failure detection relay on a master station side that switches the power supply polarity of the signal line when confirming failure information of the failure detection sensor and operates the automatic sequential means. .

Claims (1)

【特許請求の範囲】[Claims] 配電用変電所に繋がれた複数の配電線の区間毎に設けら
れた開閉器の設置点に設けられた故障検出用の子局と、
前記子局が検出した配電線の故障検出情報を通信線を介
して受信し、前記開閉器の制御を行う親局と、前記配電
線の故障を検出すると子局側のラッチ形の故障検出リレ
ーを駆動する前記子局の故障検出部と、前記子局側の故
障検出リレーの動作により固有インピーダンスを信号線
に接続し、後述の信号処理部が該固有インピーダンスを
計測すると、所定時間後に固有インピーダンスを切離し
、負荷側の別の子局に該信号線用の電源を供給する自動
順送手段と、前記配電線故障に伴う前記子局の故障情報
を信号線を介して検出する故障検出センサと、前記故障
検出センサの故障情報を確認すると前記信号線の電源極
性を切換え、前記自動順送手段を動作する親局側の故障
検出リレーを駆動する信号処理部とを備えた故障区間検
出装置。
A slave station for failure detection installed at the installation point of a switch installed in each section of multiple distribution lines connected to a distribution substation;
a master station that receives fault detection information on the distribution line detected by the slave station via a communication line and controls the switch; and a latch-type failure detection relay on the slave station side when a failure on the distribution line is detected. When the characteristic impedance is connected to the signal line by the operation of the failure detection unit of the slave station that drives the slave station and the failure detection relay of the slave station, and the signal processing unit described below measures the characteristic impedance, the characteristic impedance is determined after a predetermined time. an automatic progressive means for disconnecting the power supply and supplying power for the signal line to another slave station on the load side; and a failure detection sensor for detecting failure information of the slave station due to a failure in the distribution line via the signal line. , a signal processing unit that switches the power supply polarity of the signal line upon confirming failure information of the failure detection sensor and drives a failure detection relay on the master station side that operates the automatic progressive means.
JP2047487A 1990-02-28 1990-02-28 Failure zone detector Expired - Fee Related JP2547646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2047487A JP2547646B2 (en) 1990-02-28 1990-02-28 Failure zone detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2047487A JP2547646B2 (en) 1990-02-28 1990-02-28 Failure zone detector

Publications (2)

Publication Number Publication Date
JPH03251034A true JPH03251034A (en) 1991-11-08
JP2547646B2 JP2547646B2 (en) 1996-10-23

Family

ID=12776479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2047487A Expired - Fee Related JP2547646B2 (en) 1990-02-28 1990-02-28 Failure zone detector

Country Status (1)

Country Link
JP (1) JP2547646B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8927461B2 (en) 2008-11-21 2015-01-06 International Superconductivity Technology Center Substrate for fabricating superconductive film, superconductive wires and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8927461B2 (en) 2008-11-21 2015-01-06 International Superconductivity Technology Center Substrate for fabricating superconductive film, superconductive wires and manufacturing method thereof

Also Published As

Publication number Publication date
JP2547646B2 (en) 1996-10-23

Similar Documents

Publication Publication Date Title
CN101212137A (en) Circuit protection system
JP2011223801A (en) Dc grounding position searching method, grounding current supply device and dc ground monitoring system
JPH03251034A (en) Fault zone detector
US20210303016A1 (en) Fault isolation and restoration scheme
CA2489909C (en) Ac power backfeed protection based on phase shift
ES2169994A1 (en) Device and process for protecting a line of a network of electricity supply lines
JP2547647B2 (en) Failure zone detector
JP2552935B2 (en) Failure zone detector
JP2547648B2 (en) Failure zone detector
US20060126240A1 (en) AC power backfeed protection based on voltage
JPH03251031A (en) Fault zone detector
JPH03251032A (en) Fault zone detector
JPH03251041A (en) Fault zone detector
CN1114179C (en) Circuit for monitoring light siganal
JP2777292B2 (en) Automatic detection method of power outage point in transformer management master station for distribution line automation system
JPH02101925A (en) Method and apparatus for detecting fine ground occurring section
JPH03251037A (en) Fault zone detector
JPH07108057B2 (en) Fault detection device for distribution lines
JPH082145B2 (en) Failure zone detector
JPS6115522A (en) Power distribution line defect zone deciding system
JP3075740B2 (en) Accident point separation device
JPH01287480A (en) Fault section detecting device for power distribution line
US2005172A (en) Continuous carrier relaying
JPH03251039A (en) Fault zone detector
JPH05137249A (en) Faulty section detecting system for substation

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees