JPH03249504A - Measuring instrument for first wall shape of nuclear fusion reactor - Google Patents

Measuring instrument for first wall shape of nuclear fusion reactor

Info

Publication number
JPH03249504A
JPH03249504A JP2045488A JP4548890A JPH03249504A JP H03249504 A JPH03249504 A JP H03249504A JP 2045488 A JP2045488 A JP 2045488A JP 4548890 A JP4548890 A JP 4548890A JP H03249504 A JPH03249504 A JP H03249504A
Authority
JP
Japan
Prior art keywords
fusion reactor
subject
light
sensor head
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2045488A
Other languages
Japanese (ja)
Other versions
JP2880229B2 (en
Inventor
Junichi Adachi
安達 潤一
Yasuo Nakano
康夫 中野
Kiyoshi Shibanuma
柴沼 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute, Kawasaki Heavy Industries Ltd filed Critical Japan Atomic Energy Research Institute
Priority to JP2045488A priority Critical patent/JP2880229B2/en
Publication of JPH03249504A publication Critical patent/JPH03249504A/en
Application granted granted Critical
Publication of JP2880229B2 publication Critical patent/JP2880229B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Abstract

PURPOSE:To measure the state of the wall surface in the reactor in a short time with high accuracy by inserting a sensor head whose angle between the line connecting laser light and a subject and the line connecting the subject and a photodetection part is fixed into the nuclear fusion reactor, and adjusting the distance between the sensor head and subject. CONSTITUTION:A fixed light projector is fitted to a light projection part 1, a fixed TV camera is fitted directly to the photodetection part 2, and the distance to the subject 3 is adjusted by a moving link 6. A driving device 7 and a moving cylinder 5 are operated according to a signal from a personal computer 10 and the moving link 6 is operated to align the position of the point where the laser light 4 and the center line of the photodetection part 2 intersect each other to the subject 3 with the level of the surface of the subject 3, so that the photodetection part 2 measures the surface state of the subject 3 continuously. Measurement data when the subject is assembled completely is inputted to the personal computer 10 and the surface state of the subject 3 in the reactor is measured similarly after the nuclear fusion reactor is used for a certain time and compared with measurement data when the reactor is in a sound state to find a worn part and its wear quantity.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、核融合炉においてプラズマを囲続して配設さ
れる第1壁の、プラズマと対面する面の損耗等の検査を
行なう装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an apparatus for inspecting wear and the like on the surface facing the plasma of a first wall that is arranged to surround the plasma in a nuclear fusion reactor. It is related to.

[従来の技術] 核融合炉における第1壁は、プラズマに直面しているた
約に高熱負荷に基づく損耗や熱応力による疲労あるいは
熱衝撃により健全ヤっ阻害等を生じる可能性を有して居
り、健全性を維持する上でその看視あるいは検査の宵施
は必要不可欠のものである。従来その実施に際して核融
合炉の休止時に核融合炉の炉内を大気圧に復圧した後、
超音減厚み計を用いて第1壁保護材の肉厚測定を行なう
方法や、ベリスコープ等を使用して表面状態を直線観察
する方法あるいは以下に記述するような核融合炉内の真
空を保持した状態で第1壁の表面の形状を測定すること
が行なわれている。その従来技術の一例として、特公昭
55−121103号公報に開示された光学的位置検出
方法がある。第5〜6図は該従来技術例における光学的
位置検出の原理を示す図で、第5図はイメージセンサと
スリット光源を使用した被写体の位置測定原理図、第6
図は被写体の移動前と移動後のスリットパターンを同じ
イメージセンサ画面に重ねて表現した図である。第5〜
6図において、51はV字形部分、52はスリットパタ
ーン、53はスリット光源、54はイメージセンサ、5
5は被写体、56はイメージセンサ画面、la’、lb
’は目標点、28′は移動後のスリットパターン像、2
b′は移動前のスリットパターン像であり、その検出方
法の概要は下記の通りである。
[Prior art] The first wall of a fusion reactor faces plasma and has the potential to cause damage due to high thermal load, fatigue due to thermal stress, or thermal shock, which may cause damage to its health. Monitoring and inspection are essential to maintain the health of animals and their health. Conventionally, when implementing this, after restoring the pressure inside the fusion reactor to atmospheric pressure when the fusion reactor is shut down,
There are methods to measure the thickness of the first wall protection material using an ultrasonic thinning gauge, linear observation of the surface condition using a Veriscope, etc., or methods to measure the vacuum inside the fusion reactor as described below. The shape of the surface of the first wall is measured while it is being held. An example of the prior art is an optical position detection method disclosed in Japanese Patent Publication No. 121103/1983. 5 and 6 are diagrams showing the principle of optical position detection in the prior art example.
The figure is a diagram in which the slit patterns before and after the subject is moved are superimposed on the same image sensor screen. 5th ~
6, 51 is a V-shaped part, 52 is a slit pattern, 53 is a slit light source, 54 is an image sensor, 5
5 is the subject, 56 is the image sensor screen, la', lb
' is the target point, 28' is the slit pattern image after movement, 2
b' is a slit pattern image before movement, and the outline of its detection method is as follows.

まずイメージセンサ54の光軸をZ軸、イメージセンサ
54のレンズ中心を原点O、スリット光源の光軸と交わ
り原点○を通る直線をY軸とする直交座標系x−y−z
を選び、イメージセンサ54の画面56上に上記Y軸と
平行なy軸ををする直交座標系x、−yを選ぶ。またス
リット光源53から照射されるスリット光束がY軸と平
行かつ被写体55を構成する面が光軸Z近傍でX軸に平
行になるようにイメージセンサ54とスリット光源53
を配置しである。その上で第6図における移動後のスリ
ットパターン像2a’をイメージセンサ画面56の座標
系x−y上関数fとみれば、fl′!y軸に関して一価
関数を構成し、また移動前のスリットパターン@2b′
についても同様のことが言える。
First, an orthogonal coordinate system x-y-z in which the optical axis of the image sensor 54 is the Z axis, the center of the lens of the image sensor 54 is the origin O, and the straight line that intersects the optical axis of the slit light source and passes through the origin ○ is the Y axis.
, and select an orthogonal coordinate system x, -y on the screen 56 of the image sensor 54 with the y-axis parallel to the above-mentioned Y-axis. The image sensor 54 and the slit light source 53 are arranged so that the slit light beam emitted from the slit light source 53 is parallel to the Y axis and the surface constituting the subject 55 is parallel to the X axis near the optical axis Z.
It is arranged. Then, if the slit pattern image 2a' after movement in FIG. 6 is viewed as a function f on the x-y coordinate system of the image sensor screen 56, fl'! Construct a single-valued function with respect to the y-axis, and also the slit pattern before movement @2b'
The same can be said about.

第6図に示すように被写体表面の凹凸の影響を受けたス
リットパターン像の一部を目標値1a’、1b’とすれ
ば、イメージセンサ54とスリット光153の幾何学的
パラメータが既知であることから2つのスリットパター
ン像2a2b’のずれ量は目標値1a、lb’のずれ量
△X、△yで表わし得る。従って移動前のスリットパタ
ーン像2b’ と移動後のスリットパターン像2a’の
形状特性として端点、傾斜および曲率を選び、両者の相
関をとることにょっ\て上記ずれ量△X、△yを求める
ことが可能となる。
As shown in FIG. 6, if part of the slit pattern image affected by the unevenness of the object surface is set as the target values 1a' and 1b', the geometric parameters of the image sensor 54 and the slit light 153 are known. Therefore, the amount of deviation between the two slit pattern images 2a2b' can be expressed as the amounts of deviation ΔX and Δy of the target values 1a and lb'. Therefore, select the end point, inclination, and curvature as the shape characteristics of the slit pattern image 2b' before movement and the slit pattern image 2a' after movement, and calculate the above deviation amounts △X and △y by correlating them. becomes possible.

[発明が解決しようとする課題] このように従来の技術においても超音波厚み計を用いて
直接第1壁保護材の肉厚を測定し、あるいはべりスコー
プ等を使用して直接第1壁の表面の状況を観察するほか
、スリット光源とイメージセンサを使用し、被写体の表
面を三角測量の原理によって測定することが可能であっ
た。しかしながら上記従来の技術においては、まず超音
波厚み計を使用する方法は核融合炉内の圧力を真空状態
から大気圧に戻して測定を行なった後、再び真空状態に
復帰させるために多大の費用と時間を必要とし、ペリス
コープ等によって直接観察する方法は検査が定性的であ
り、定量的な損耗状態の把握が困難であり、また照明用
光源の容量が大きく、それに伴なう冷却装置が必要にな
ると言う不具合を有していた。また前記従来技術の項に
おいて引用したスリット光源とイメージセンサを使用し
た測定方法はその構成の簡潔さと測定の精度の高さにお
いて非常に優れた方法であるが、前記従来技術において
はイメージセンサに固定焦点レンズを使用していたこと
と、スリット光源と被写体とイメージセンサとを結ぶ線
によって形成される角度がほぼ一定であったため、イメ
ージセンサの視野が広い場合にはスリット光源とイメー
ジセンサとの小さい移動によって広範囲の核融合炉第1
壁壁面を測定し得るがその分解精度が低く、逆にイメー
ジセンサの視野が狭い場合には分解精度は高くなるが壁
面全体の測定を完了するのに長時間を要すると言う不具
合を有していた。
[Problems to be Solved by the Invention] As described above, in the conventional technology, the thickness of the first wall protection material is directly measured using an ultrasonic thickness gauge, or the thickness of the first wall protection material is directly measured using a veloscope, etc. In addition to observing the surface condition, it was possible to measure the surface of the object using the principle of triangulation using a slit light source and an image sensor. However, in the above-mentioned conventional technology, the method of using an ultrasonic thickness gauge requires a large amount of expense to first return the pressure inside the fusion reactor from a vacuum state to atmospheric pressure and then return it to a vacuum state. Direct observation using a periscope, etc. requires qualitative inspection, making it difficult to quantitatively assess the state of wear and tear. Also, the capacity of the light source for illumination is large, and a cooling device is required accordingly. It had a problem that caused it to become. Furthermore, the measurement method using a slit light source and an image sensor cited in the prior art section is an excellent method in terms of its simple configuration and high measurement accuracy. Because a focusing lens was used and the angle formed by the line connecting the slit light source, the subject, and the image sensor was almost constant, when the field of view of the image sensor is wide, the angle between the slit light source and the image sensor is small. By moving the first fusion reactor over a wide area
Although the wall surface can be measured, the resolution accuracy is low, and conversely, if the field of view of the image sensor is narrow, the resolution accuracy is high, but it takes a long time to complete the measurement of the entire wall surface. Ta.

本発明はこのような不具合を除去し、簡潔な構成によっ
て短時間に、しかも高い精度で全壁面の状態を測定し得
る形状計測装置を提−供することを目的としている。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate such problems and provide a shape measuring device that can measure the condition of the entire wall surface in a short time and with high precision using a simple configuration.

[課題を解決するた島の手段] 上記の目的は前記特許請求の範囲に記載された核融合炉
第1壁形状測定装置によって達成される。すなわち、 ■ レーザ光とレーザ光を照射された被写体とを結ぶ線
と、該被写体と受光部とを結ぶ線の間の角度をθとする
時、角θを固定し、レーザ投光部と受光部からなり核融
合炉内に挿入されるセンサヘッドと上記被写体との間の
距離を調節し得る手段を存する核融合炉第1壁形状測定
装置。
[Unique Means for Solving the Problem] The above object is achieved by the fusion reactor first wall shape measuring device described in the claims. That is, ■ When the angle between the line connecting the laser beam and the object irradiated with the laser beam and the line connecting the object and the light receiving section is θ, the angle θ is fixed and the angle between the laser projecting section and the light receiving section is A fusion reactor first wall shape measuring device comprising means for adjusting the distance between the sensor head inserted into the fusion reactor and the subject.

■ 核融合炉内に挿入されるセンサヘッドのレーザ投光
部がレーザ投光器を直接配設したものであり、受光部が
イメージセンサを直接配設したものである請求項■記載
の核融合炉第1壁形状測定装置。
(1) The fusion reactor No. 1 according to claim (2), wherein the laser emitter of the sensor head inserted into the fusion reactor has a laser emitter directly disposed thereon, and the light receiver has an image sensor directly disposed thereon. 1 Wall shape measuring device.

■ 核融合炉内に挿入されるセンサヘッドのレーザ投光
部が、核融合炉の外部に配設したレーザ発振器と核融合
炉内部に配設した投光レンズとを光ファイバを介して光
学的に連結したものであり、センサヘッドの受光部が核
融合炉内に配設した受光レンズと核融合炉の外部に配設
したイメージセンサとを光ファイバを介して光学的に連
結したものである請求項■記載の核融合炉第1壁形状測
定装置。
■ The laser emitter of the sensor head inserted into the fusion reactor optically connects the laser oscillator installed outside the fusion reactor and the emitter lens installed inside the fusion reactor via an optical fiber. The light-receiving part of the sensor head optically connects the light-receiving lens placed inside the fusion reactor with the image sensor placed outside the fusion reactor via an optical fiber. A fusion reactor first wall shape measuring device according to claim (2).

■ 核融合炉内に挿入されるセンサヘッドの受光部を、
レーザ投光部から照射されるレーザ光の光路と上言己セ
ンサヘッドの受光部を含む面に平行に傾動して角θを変
動可能とすると共に、レーザ投光部と受光部からなり核
融合炉内に挿入されるセンサヘッドと被写体との間の距
離を調節し得る手段を有する核融合炉第1壁形状測定装
置。
■ The light receiving part of the sensor head inserted into the fusion reactor,
The optical path of the laser beam irradiated from the laser emitter and the above-mentioned sensor head can be tilted parallel to the plane containing the light receiving part to change the angle θ. A fusion reactor first wall shape measuring device having means for adjusting the distance between a sensor head inserted into the reactor and a subject.

■ 核融合炉内に挿入されるセンサヘッドのレーザ投光
部がレーザ投光器を直接配設したものであり、受光部が
イメージセンサを直接配設したものである請求項■記載
の核融合炉第1壁形状測定装置。
(1) The fusion reactor No. 1 according to claim (2), wherein the laser emitter of the sensor head inserted into the fusion reactor has a laser emitter directly disposed thereon, and the light receiver has an image sensor directly disposed thereon. 1 Wall shape measuring device.

■ 核融合炉内に挿入されるセンサヘッドのレーザ投光
部が、核融合炉の外部に配設したレーザ発振器と核融合
炉内部に配設した投光レンズとを光ファイバを介して光
学的に連結し2たものであり、センサヘッドの受光部が
核融合炉内に配設した受光レンズと核融合炉の外部に配
設したイメージセンサとを光ファイバを介して光学的に
連結したものである請求項■記載の核融合炉第1壁形状
測定装置。
■ The laser emitter of the sensor head inserted into the fusion reactor optically connects the laser oscillator installed outside the fusion reactor and the emitter lens installed inside the fusion reactor via an optical fiber. The light-receiving part of the sensor head is optically connected to the light-receiving lens placed inside the fusion reactor and the image sensor placed outside the fusion reactor via an optical fiber. A fusion reactor first wall shape measuring device according to claim (2).

■ 受光部にズームレンズを使用した請求項の、請求項
■、請求項■、請求項■、請求項■および請求項■記載
の核融合炉第1壁形状測定装置。
(2) A fusion reactor first wall shape measuring device according to claims (2), (2), (2), (2), and (3) in which a zoom lens is used in the light receiving portion.

■ 受光部に焦点距離の異なる複数のレンズを組み合わ
せて使用した請求項■、請求項■、請求項■、請求項■
、請求項■および請求項■記載の核融合炉第1壁形状測
定装置。
■Claim ■, claim ■, claim ■, claim ■ in which multiple lenses with different focal lengths are used in combination in the light receiving section
A fusion reactor first wall shape measuring device according to claims (1) and (2).

である。It is.

以下本発明の作用等について、実施例に基づいて説明す
る。
The effects of the present invention will be explained below based on examples.

[実施例] 第1〜4図は本発明に基づ〈実施例を示す図で、第1〜
2図は投光部に固定式投光器、受光部に固定式テレビカ
メラを直接収設して移動リンクによって被写体との距離
を調節し得るようにした核融合炉第1壁形状測定装置の
基本構成を示す図、第3図は第1〜2図において受光部
のテレビカメラを傾動可能にした場合の図、第4r!i
!Jは核融合炉の外部にレーザ発振器とテレビカメラを
配設し、核融合炉内に配設した投光レンズおよび受光レ
ンズと光ファイバで光学的に連結し、受光部を傾動可能
にした場合の基本構成を示す図である。第1〜4図にお
いて、1は投光部、2は受光部、3.3’、3’は被写
体、4はレーザ光、5は移動シリンダ、6は移動リンク
、7は駆動装置、8はイメージプロセッサ、9はモニタ
ーテレビ、10はパーソナルコンピュータ、11は炉内
側、12は炉外側、13はレーザ発振器、14は投光用
光ファイバ、15は受光用光ファイバ、16は受光部操
作器、17はイメージセンサ、θ、θ′、θ′はレーザ
光とレーザ光を照射された被写体とを結ぶ線と、該被写
体と受光部とを結ぶ線の開の角である。
[Example] Figures 1 to 4 are diagrams showing examples based on the present invention.
Figure 2 shows the basic configuration of a fusion reactor first wall shape measurement device in which a fixed projector is installed in the light projector, a fixed TV camera is directly installed in the light receiver, and the distance to the subject can be adjusted using a moving link. Figure 3 is a diagram showing the case where the television camera of the light receiving section is made tiltable in Figures 1 and 2, and Figure 4r! i
! J is a case in which a laser oscillator and a television camera are placed outside the fusion reactor, optically connected to the light projecting lens and light receiving lens placed inside the fusion reactor through optical fibers, and the light receiving part is made tiltable. FIG. 2 is a diagram showing the basic configuration of. In Figures 1 to 4, 1 is a light projector, 2 is a light receiver, 3.3', 3' is a subject, 4 is a laser beam, 5 is a moving cylinder, 6 is a moving link, 7 is a drive device, and 8 is a An image processor, 9 a monitor television, 10 a personal computer, 11 inside the furnace, 12 outside the furnace, 13 a laser oscillator, 14 an optical fiber for projecting light, 15 an optical fiber for receiving light, 16 a light receiving unit operating device, Reference numeral 17 denotes an image sensor; θ, θ', and θ' are angles between a line connecting a laser beam and an object irradiated with the laser beam, and a line connecting the object and a light receiving section.

本発明の主たる目的は、核融合炉真空容器内壁面の異常
部の発見と精密な測定を短時間に的確かつ精度良〈実施
することにあるが、それを図面に基づいて順次説明する
The main purpose of the present invention is to discover abnormalities on the inner wall surface of a fusion reactor vacuum vessel and perform precise measurements in a short period of time, which will be explained in detail based on the drawings.

第1図において、被写体3にレーザ光4を照射する投光
部1と、レーザ光4を照射された被写体3を撮像するイ
メージセンサである受光部2がガイドバーを有する移動
リンク6に固定され、前記移動リンク6は移動シリンダ
5を伸縮させることによって被写体3側に接近あるいは
離反する。移動シリンダ5の一端を揺動自在に支持する
とともに移動リンク6の一端を固定した駆動装置7はパ
ーソナルコンピュータ10からの信号に基づいて移動し
得る。
In FIG. 1, a light projecting unit 1 that irradiates a subject 3 with a laser beam 4 and a light receiving unit 2 that is an image sensor that images the subject 3 irradiated with the laser beam 4 are fixed to a movable link 6 that has a guide bar. , the movable link 6 approaches or moves away from the subject 3 by expanding and contracting the movable cylinder 5. A drive device 7, which swingably supports one end of the moving cylinder 5 and has one end of the moving link 6 fixed, can move based on a signal from the personal computer 10.

まず最初に受光部2が移動リンク6に固定されている場
合、第1図に示すように駆動装置7と移動リンク6を作
動させてレーザ光4と受光部2の中心線が交わる点の位
置を撮像対象の被写体3表面のレベルに一致させ、この
レベルを保持するように駆動装置7と移動リンク6とを
調節しながら投光部1と受光部2を被写体3の表面に平
行に移動させ、受光部2によって被写体3の表面状態の
連続測定を行なう。受光部2でとらえた被写体3上のレ
ーザ光4の反射光は、電気信号に変換されてイメージプ
ロセッサ(画像処理装置)8に送られ、モニターテレビ
9の画面に表示させるとともにパーソナルコンピュータ
10に送られる。パーソナルコンピュータ10には予め
被写体3が健全な状態時における測定データを人力して
置く。核融合炉を一定期間供用後再び前記要領によって
炉内の被写体3の表面状態を測定し、その結果をパーソ
ナルコンピュータ10内に入力して健全な状態時の測定
ブタと比較し、損耗部と損耗量を求める。
First, when the light receiving section 2 is fixed to the movable link 6, the driving device 7 and the moving link 6 are operated as shown in FIG. is made to match the level of the surface of the subject 3 to be imaged, and the light projecting unit 1 and the light receiving unit 2 are moved parallel to the surface of the subject 3 while adjusting the driving device 7 and the moving link 6 so as to maintain this level. , the surface state of the subject 3 is continuously measured by the light receiving unit 2. The reflected light of the laser beam 4 on the subject 3 captured by the light receiving section 2 is converted into an electrical signal and sent to an image processor (image processing device) 8, where it is displayed on the screen of a monitor television 9 and sent to a personal computer 10. It will be done. Measurement data when the subject 3 is in a healthy state is manually stored in the personal computer 10 in advance. After the fusion reactor has been in service for a certain period of time, the surface condition of the subject 3 inside the reactor is measured again according to the above-mentioned procedure, and the results are input into the personal computer 10 and compared with the measurement pig in a healthy state, and the worn parts and worn parts are compared. Find the quantity.

被写体の損耗量が予約定めた一定の許容限界を越えてい
る場合にはその部位に対してさらに詳細な再測定を行な
う。すなわち、第2ダにおいてパーソナルコンピュータ
10からの指令に基づいて駆動装置7および移動リンク
6を作動させて受光部2を対象被写体3に可能な限り接
近させ被写体3の表面状態の詳細なデータを採取する。
If the amount of wear and tear on the subject exceeds a predetermined tolerance limit, a more detailed re-measurement is performed on that part. That is, in the second step, the drive device 7 and the moving link 6 are operated based on the command from the personal computer 10 to bring the light receiving unit 2 as close as possible to the target object 3 and collect detailed data on the surface condition of the object 3. do.

損耗量が許容値を越えた全ての被写体3に対して上記操
作を繰り返して必要なデータを得る。第1〜2図におい
て受光部2に使用されるテレビカメラが固定焦点のもの
であっても所期の目的は達成されるが、テレビカメラに
ズームレンズあるいは異なった焦点距離を有する複数の
レンズを組み合わせて使用した場合には、さらに解像力
を増して、より精密な損耗量を測定することが可能にな
る。
The above operation is repeated for all subjects 3 whose wear amount exceeds the allowable value to obtain necessary data. In Figures 1 and 2, even if the television camera used in the light receiving section 2 is of a fixed focus, the intended purpose can be achieved, but if the television camera is equipped with a zoom lens or multiple lenses with different focal lengths, When used in combination, it becomes possible to further increase the resolution and measure the amount of wear more precisely.

第3図は第1〜2図に示す受光部2が固定式であったの
に対して、該受光部2は投光部1から照射されるレーザ
光4の光路と受光部2を含む面に平行に傾動して、レー
ザ光4とレーザ光4を照射された被写体3とを結ぶ線と
、該被写体3と受光B2とを結ぶ線によって形成される
角θをθ′あるいはθ′等に変動可能とした場合を示し
ている。これによって核融合炉の内壁形状測定に際して
、投光部1に対する被写体3の位置が3′あるいは3′
のように変化した場合にも駆動装置7および移動リンク
6を移動させることなく、単に受光部2を傾動させるの
みで撮像し得ることから、核融合炉内壁面の形状測定に
要する時間を著しく短縮させることが可能になる。第3
図における場合にも第1〜2図の場合と同様に、受光部
2にズームレンズあるいは異なった焦点距離を有する複
数のレンズを組み合わせて使用することにより、解像力
を高めてより精密な測定を行なうことが可能となる。
In contrast to the fixed type light receiving section 2 shown in FIGS. 1 and 2, FIG. The angle θ formed by the line connecting the laser beam 4 and the subject 3 irradiated with the laser beam 4 and the line connecting the subject 3 and the light receiving B2 is set to θ' or θ', etc. This shows the case where it is possible to change. As a result, when measuring the shape of the inner wall of a fusion reactor, the position of the object 3 relative to the light projecting unit 1 is 3' or 3'.
Even in the event of a change in the shape of the fusion reactor, images can be captured by simply tilting the light receiving unit 2 without moving the drive device 7 and the moving link 6. This significantly reduces the time required to measure the shape of the inner wall surface of the fusion reactor. It becomes possible to do so. Third
In the case shown in the figure, as in the case of Figs. 1 and 2, by using a zoom lens or a combination of multiple lenses with different focal lengths in the light receiving section 2, resolving power is increased and more precise measurements can be performed. becomes possible.

第4図は第1〜3図における投光部1がレーザ投光器を
直接配設したものであり、受光部2がテレビカメラを直
接配設したものであったのに対して、核融合炉内には投
光レンズと受光レンズのみを配設し、核融合炉外に配設
したレーザ発振器と投光レンズとを光ファイバによって
光学的に連結して投光部を形成し、同じく核融合炉外に
配設したイメージセンサと受光レンズとを光ファイバに
よって光学的に連結して受光部を形成したものである。
In Fig. 4, the light emitting part 1 in Figs. 1 to 3 is a laser projector directly installed, and the light receiving part 2 is a television camera directly installed, whereas the light emitting part 1 in Figs. Only a light emitting lens and a light receiving lens are installed in the fusion reactor, and the light emitting part is formed by optically connecting the laser oscillator and the light emitting lens installed outside the fusion reactor with an optical fiber. A light receiving section is formed by optically connecting an image sensor disposed outside and a light receiving lens through an optical fiber.

また受光部2は第3図における場合と同様に、受光部2
を傾動させることによって角θをθ′あるいはθ′等に
変動可能としている。これによってレーザ発振部あるい
はイメージセンサに半導体を使用した場合にも核融合炉
内の放射線によって損傷を受けることなく長期に亘って
継続使用が可能になるほか、受光部が傾動して角θを変
え得ることにより最初の粗測定時の測定時間を短縮し得
る。
Further, the light receiving section 2 is similar to the case in FIG.
By tilting the angle θ, the angle θ can be changed to θ' or θ'. As a result, even if semiconductors are used in the laser oscillation part or image sensor, they can be used continuously for a long time without being damaged by the radiation inside the fusion reactor, and the light receiving part can be tilted to change the angle θ. By obtaining this, the measurement time for the first rough measurement can be shortened.

また核融合炉内に配設した受光部にズームレンズあるい
は異なった焦点距離を有する複数のレンズを組み合わせ
て使用することにより解像力の向上とより精密な測定を
可能にし得る。
Furthermore, by using a zoom lens or a combination of multiple lenses having different focal lengths in the light receiving section disposed in the fusion reactor, it is possible to improve resolution and make more precise measurements possible.

[発明の効果] このように本発明によれば、上記実施例において明らか
なように以下に示す効果を奏する。
[Effects of the Invention] As described above, according to the present invention, the following effects are achieved as is clear from the above embodiments.

■ 核融合炉の第1壁の組み立て完成時に第1壁各部の
表面状況を測定してその結果を基準値とし、一定期間供
用後に核融合炉内壁の粗測定を行ない、上記基準値と比
較してその差が予め定めた許容値を越えた部位を選定し
て、順次その部位に受光部を接近させ、あ4るいは受光
部を傾動させるなどして測定し、さらにはズームレンズ
等を利用して測定対象部位を拡大測定するほか、上記一
連の測定動作をコンピュータによって自動的に行なわし
めることにより、測定に要する時間の大幅な短縮と測定
精度の著しい向上を図ることを可能にする。
■ When the first wall of the fusion reactor is assembled, the surface condition of each part of the first wall is measured and the results are used as reference values. After a certain period of service, rough measurements of the inner wall of the fusion reactor are performed and compared with the above reference values. Select areas where the difference exceeds a predetermined tolerance value, move the light receiving unit closer to those areas, measure by tilting the light receiving unit, or use a zoom lens, etc. In addition to enlarging and measuring the part to be measured, by automatically performing the series of measurement operations described above by a computer, it is possible to significantly shorten the time required for measurement and significantly improve measurement accuracy.

■ 第1壁の形状測定に際して、核融合炉内には投光部
および受光部ともにそれぞれ投光レンズおよび受光レン
ズのみを配設し、核融合炉外部にレーザ発振器とイメー
ジセンサを配設して、それぞれを光ファイバによって光
学的に連結することにより投光部および受光部の耐放射
線性を高めて長期に亘り健全性を保持せしめて測定を行
なうことを可能にする。
■ When measuring the shape of the first wall, only a light emitting lens and a light receiving lens are placed inside the fusion reactor for both the light emitting part and the light receiving part, and a laser oscillator and an image sensor are placed outside the fusion reactor. By optically connecting each of them with an optical fiber, the radiation resistance of the light projecting part and the light receiving part can be improved, and the soundness can be maintained for a long period of time, making it possible to carry out measurements.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜4図は本発明に基づ〈実施例の基本構成を示す図
で、第5〜6図は従来技術の例である。 1・・・・・・投光部、2・・・・・・受光部、3.3
’3’・・・・・・被写体、4・・・・・・レーザ光、
5・・・・・・移動シリンダ、6・・・・・・移動リン
ク、7・・・・・・駆動装置、8・・・・・・イメージ
プロセッサ、9・・・・・・モニターテレビ、10・・
・・・・パーソナルコンピュータ、11・・・・・・炉
内側、12・・・・・・炉外側、13・・・・・・レー
ザ発振器、14・・・・・・投光用光ファイバ、15・
・・・・・受光用光ファイバ、16・・・・・・受光部
操作器、17・・・・・・イメージセンサ、θ、θ′、
θ′・・・・・・レーず光とレーザ光を照射された被写
体とを結ぶ線と、該被写体と受光部とを結ぶ線の間の角
、51・・・・・・V字形部分、52・・・・・・スリ
ットパターン、53・・・・・・スリット光源、54・
・・・・・イメージセンサ、55・・・・・・被写体、
56・・・・・・イメージセンサ画面、la、lb’ 
・・・・・・目標点、2a′・・・・・・移動後のスリ
ットパターン像、2b’・・・・・・移動前のスリット
パターン像。
1 to 4 are diagrams showing the basic configuration of an embodiment based on the present invention, and FIGS. 5 to 6 are examples of the prior art. 1...Light emitter, 2...Light receiver, 3.3
'3'...Subject, 4...Laser light,
5...Moving cylinder, 6...Moving link, 7...Drive device, 8...Image processor, 9...Monitor television, 10...
... Personal computer, 11 ... Inside the furnace, 12 ... Outside the furnace, 13 ... Laser oscillator, 14 ... Optical fiber for light projection, 15・
.... Optical fiber for light reception, 16 .... Light reception unit operating device, 17 .... Image sensor, θ, θ',
θ′...Angle between the line connecting the laser light and the subject irradiated with the laser light and the line connecting the subject and the light receiving section, 51...V-shaped part, 52... Slit pattern, 53... Slit light source, 54...
...Image sensor, 55...Subject,
56... Image sensor screen, la, lb'
...Target point, 2a'...Slit pattern image after movement, 2b'...Slit pattern image before movement.

Claims (8)

【特許請求の範囲】[Claims] (1)レーザ光とレーザ光を照射された被写体とを結ぶ
線と、該被写体と受光部とを結ぶ線の間の角度をθとす
る時、角θを固定し、レーザ投光部と受光部からなり核
融合炉内に挿入されるセンサヘッドと上記被写体との間
の距離を調節し得る手段を有することを特徴とする核融
合炉第1壁形状測定装置。
(1) When the angle between the line connecting the laser beam and the subject irradiated with the laser beam and the line connecting the subject and the light receiving section is θ, the angle θ is fixed, and the laser projecting section and the light receiving section are fixed. A fusion reactor first wall shape measuring device, characterized in that it has means for adjusting the distance between the sensor head inserted into the fusion reactor and the subject.
(2)核融合炉内に挿入されるセンサヘッドのレーザ投
光部がレーザ投光器を直接配設したものであり、受光部
がイメージセンサを直接配設したものである請求項(1
)記載の核融合炉第1壁形状測定装置。
(2) Claim (1) wherein the laser emitter of the sensor head inserted into the nuclear fusion reactor is one in which a laser emitter is directly disposed, and the light receiver is one in which an image sensor is directly disposed.
) The fusion reactor first wall shape measuring device described in (1).
(3)核融合炉内に挿入されるセンサヘッドのレーザ投
光部が、核融合炉の外部に配設したレーザ発振器と核融
合炉内部に配設した投光レンズとを光ファイバを介して
光学的に連結したものであり、センサヘッドの受光部が
核融合炉内に配設した受光レンズと核融合炉の外部に配
設したイメージセンサとを光ファイバを介して光学的に
連結したものである請求項(1)記載の核融合炉第1壁
形状測定装置。
(3) The laser emitter of the sensor head inserted into the fusion reactor connects the laser oscillator installed outside the fusion reactor and the emitter lens installed inside the fusion reactor via an optical fiber. The light-receiving part of the sensor head is optically connected to the light-receiving lens installed inside the fusion reactor and the image sensor installed outside the fusion reactor via an optical fiber. The fusion reactor first wall shape measuring device according to claim (1).
(4)核融合炉内に挿入されるセンサヘッドの受光部を
、レーザ投光部から照射されるレーザ光の光路と上記セ
ンサヘッドの受光部を含む面に平行に傾動して角θを変
動可能とすると共に、レーザ投光部と受光部からなり核
融合炉内に挿入されるセンサヘッドと被写体との間の距
離を調節し得る手段を有することを特徴とする核融合炉
第1壁形状測定装置。
(4) The angle θ is varied by tilting the light receiving part of the sensor head inserted into the fusion reactor parallel to the optical path of the laser beam irradiated from the laser projecting part and the plane containing the light receiving part of the sensor head. A first wall shape of a fusion reactor characterized by having means capable of adjusting the distance between a sensor head consisting of a laser projecting part and a light receiving part and being inserted into the fusion reactor and a subject. measuring device.
(5)核融合炉内に挿入されるセンサヘッドのレーザ投
光部がレーザ投光器を直接配設したものであり、受光部
がイメージセンサを直接配設したものである請求項(4
)記載の核融合炉第1壁形状測定装置。
(5) Claim (4) wherein the laser emitter of the sensor head inserted into the nuclear fusion reactor is one in which a laser emitter is directly disposed, and the light receiver is one in which an image sensor is directly disposed.
) The fusion reactor first wall shape measuring device described in (1).
(6)核融合炉内に挿入される、センサヘッドのレーザ
投光部が、核融合炉の外部に配設したレーザ発振器と核
融合炉内部に配設した投光レンズとを光ファイバを介し
て光学的に連結したものであり、センサヘッドの受光部
が核融合炉内に配設した受光レンズと核融合炉の外部に
配設したイメージセンサとを光ファイバを介して光学的
に連結したものである請求項(4)記載の核融合炉第1
壁形状測定装置。
(6) The laser light emitting part of the sensor head inserted into the fusion reactor connects the laser oscillator placed outside the fusion reactor and the light emitting lens placed inside the fusion reactor via an optical fiber. The light-receiving part of the sensor head optically connects the light-receiving lens installed inside the fusion reactor with the image sensor installed outside the fusion reactor via an optical fiber. The first nuclear fusion reactor according to claim (4), which is
Wall shape measuring device.
(7)受光部にズームレンズを使用した請求項(1)、
請求項(2)、請求項(3)、請求項(4)、請求項(
5)、および請求項(6)記載の核融合炉第1壁形状測
定装置。
(7) Claim (1) in which a zoom lens is used in the light receiving section;
Claim (2), Claim (3), Claim (4), Claim (
5) and a fusion reactor first wall shape measuring device according to claim (6).
(8)受光部に焦点距離の異なる複数のレンズを組み合
わせて使用した請求項(1)、請求項(2)、請求項(
3)、請求項(4)、請求項(5)、および請求項(6
)記載の核融合炉第1壁形状測定装置。
(8) Claim (1), Claim (2), Claim (
3), claim (4), claim (5), and claim (6)
) The fusion reactor first wall shape measuring device described in (1).
JP2045488A 1990-02-28 1990-02-28 Fusion Reactor First Wall Shape Measurement System Expired - Fee Related JP2880229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2045488A JP2880229B2 (en) 1990-02-28 1990-02-28 Fusion Reactor First Wall Shape Measurement System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2045488A JP2880229B2 (en) 1990-02-28 1990-02-28 Fusion Reactor First Wall Shape Measurement System

Publications (2)

Publication Number Publication Date
JPH03249504A true JPH03249504A (en) 1991-11-07
JP2880229B2 JP2880229B2 (en) 1999-04-05

Family

ID=12720790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2045488A Expired - Fee Related JP2880229B2 (en) 1990-02-28 1990-02-28 Fusion Reactor First Wall Shape Measurement System

Country Status (1)

Country Link
JP (1) JP2880229B2 (en)

Also Published As

Publication number Publication date
JP2880229B2 (en) 1999-04-05

Similar Documents

Publication Publication Date Title
US10245683B2 (en) Apparatus and method for beam diagnosis on laser processing optics
JP2649088B2 (en) Positioning device for ophthalmic examination instruments
US6636310B1 (en) Wavelength-dependent surface contour measurement system and method
JPWO2008072369A1 (en) Measuring apparatus and measuring method
JPH02146514A (en) Optical apparatus
JPH11500833A (en) Wavefront measurement system using integrated geometric reference (IGR)
JP6121016B1 (en) Processing nozzle inspection apparatus and method in laser processing machine
JP2007078593A (en) Light wave interference device
JP2002071513A (en) Interferometer for immersion microscope objective and evaluation method of the immersion microscope objective
JP2005147715A (en) Light wave interference measuring method for winding surface, and interferometer device for winding surface measurement
JP5309542B2 (en) Measuring apparatus and method
JP5098174B2 (en) 3D shape measuring device
US20110141252A1 (en) Triangulation camera device and triangulation imaging method
JP2001004491A (en) Apparatus for inspecting light beam
JP4683270B2 (en) Lens meter
US4611115A (en) Laser etch monitoring system
JPH03249504A (en) Measuring instrument for first wall shape of nuclear fusion reactor
JP2008268054A (en) Device for measuring focal position
JPS59171812A (en) Optical inspection device and method
KR100790706B1 (en) Device for detecting focal lenghth of lenses
JP2911283B2 (en) Non-contact step measurement method and device
CN115839826B (en) Detection device and detection method for optical fiber transmittance and numerical aperture
JP2014002026A (en) Lens shape measuring device, and lens shape measuring method
JP3418296B2 (en) Detecting the amount of misalignment of optical fibers of different diameters
JP4709642B2 (en) Wavefront aberration measuring device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees