JPH03249424A - Hydrostatic gas bearing - Google Patents

Hydrostatic gas bearing

Info

Publication number
JPH03249424A
JPH03249424A JP4269190A JP4269190A JPH03249424A JP H03249424 A JPH03249424 A JP H03249424A JP 4269190 A JP4269190 A JP 4269190A JP 4269190 A JP4269190 A JP 4269190A JP H03249424 A JPH03249424 A JP H03249424A
Authority
JP
Japan
Prior art keywords
bearing
slit groove
throttle valve
bearing surface
control throttle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4269190A
Other languages
Japanese (ja)
Other versions
JP3089271B2 (en
Inventor
Mamoru Tanaka
守 田中
Masayuki Suzuki
雅之 鈴木
Koichi Kawakami
耕一 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP02042691A priority Critical patent/JP3089271B2/en
Priority to US07/658,777 priority patent/US5064297A/en
Priority to GB9103921A priority patent/GB2241992B/en
Publication of JPH03249424A publication Critical patent/JPH03249424A/en
Application granted granted Critical
Publication of JP3089271B2 publication Critical patent/JP3089271B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To suppress self-excited vibration, and to improve the rigidity of a bearing by forming a bearing surface out of soft alloy, by providing a slit grove thereon, and by providing a control restrictor for which a plate spring is used, between the slit groove and a compressed gas supply source. CONSTITUTION:A housing 19 is composed of an inner cylinder 20, an outer cylinder 21, a rotational member 22, and of bearing members 24a, 24b. Bearing surfaces 25a, 25b are made of soft alloy of aluminium or of copper, including at least carbon fiber or graphite, form slit grooves 26a, 26b comprising multiple concentric arcs as well as of a radial part that connects them together, and are communicated with a compressed air supply source through a communicating hole 44, distribution channels 27a, 27b, a control restrictor 28, and through an air supply channel 29. The control restrictor 28 for which a diaphragm 31 is used, is provided on a recessed part 30 formed on the outer circumferential surface of the outer cylinder 21. The generation of self-excited vibration can be suppressed thereby, and the rigidity of the bearing can be improved.

Description

【発明の詳細な説明】 (a業上の利用分野) 本発明の静圧気体軸受は、精密工作機械等の回転部分を
支承する場合に利用するもので、本発明は、この様な静
圧気体軸受の剛性向上を図るものである。
Detailed Description of the Invention (Field of Application in Industry A) The static pressure gas bearing of the present invention is used to support rotating parts of precision machine tools, etc. The purpose is to improve the rigidity of gas bearings.

(従来の技術) 精密工作機械等に組み込まれ、高速で回転する、回転軸
等の回転部材を空気等の圧縮気体の力により支承する静
圧気体軸受が、従来から広く使用されている。
(Prior Art) Hydrostatic gas bearings have been widely used in the past, which are incorporated into precision machine tools and support rotating members such as rotating shafts that rotate at high speed using the force of compressed gas such as air.

第10〜11図は、この様な従来から知られている静圧
気体軸受の1例として、特公昭45−37683号公報
に記載された静圧気体軸受を示している。
10 and 11 show a hydrostatic gas bearing described in Japanese Patent Publication No. 45-37683 as an example of such a conventionally known hydrostatic gas bearing.

第10図に於いて1は、内周面を円筒状の軸受面2とし
た軸受部材で、この軸受部材1の内側に回転軸3を挿通
している。上記軸受面2の上下左右4個所位置には、そ
れぞれ凹部4a、4b、5a、5bを形成し、各凹部4
a、4b、5a、5bに圧縮気体を送り込む事で、上記
回転軸3を軸受部材1の内側に、非接触状態で支承する
様にしている。
In FIG. 10, reference numeral 1 denotes a bearing member whose inner peripheral surface has a cylindrical bearing surface 2, and a rotary shaft 3 is inserted into the inside of this bearing member 1. Recesses 4a, 4b, 5a, and 5b are formed at four positions on the upper, lower, right, and left sides of the bearing surface 2, and each recess 4
By feeding compressed gas into a, 4b, 5a, and 5b, the rotating shaft 3 is supported inside the bearing member 1 in a non-contact manner.

上記4個の凹部4a、4b、5a、5bの内、上下2個
所位置の凹部4a、4bは第一の制御絞り弁6を介して
、左右2個所位置の凹部5a、5bは第二の制御絞り弁
7を介して、それぞれコンプレッサ等の圧縮気体供給源
に通じさせている。
Of the four recesses 4a, 4b, 5a, and 5b, the recesses 4a and 4b located at two positions above and below are controlled via the first control throttle valve 6, and the recesses 5a and 5b located at two positions on the left and right are controlled by the second control. Each of them is connected to a compressed gas supply source such as a compressor via a throttle valve 7.

上記第一、第二の制御絞り弁6.7は、軸受面2と回転
軸3の外周面とが同心になる様に、上下の凹部4a、4
b1或は左右の凹部5a、5bに送る圧縮気体の量と圧
力とを調節する為のもので、例えば第11図に示す様に
構成されている。
The first and second control throttle valves 6.7 have upper and lower recesses 4a, 4 so that the bearing surface 2 and the outer peripheral surface of the rotating shaft 3 are concentric.
This is for adjusting the amount and pressure of compressed gas sent to b1 or the left and right recesses 5a and 5b, and is configured as shown in FIG. 11, for example.

第一(第二)の制御絞り弁6(7)を構成するハウジン
グ8の片面中央部に設けた第一ボート9と凹部4a (
5a)とは第一供給管10により、他面中央部に設けた
第二ボート11と凹部4b(5b)とは第二供給管12
により、それぞれ連通させている。又、上記ハウジング
8の中間部にはダイヤフラム15を設けて、このハウジ
ング8の内側を、第一ボート9側の第−室13と第二ボ
ート11側の第二室14とに分割し、これら第、第二両
室13.14に、圧縮気体供給源から圧縮気体を送り込
んでいる。
A first boat 9 and a recess 4a (
5a) is connected to the first supply pipe 10, and the second boat 11 provided in the center of the other side and the recessed portion 4b (5b) are connected to the second supply pipe 12.
This allows them to communicate with each other. A diaphragm 15 is provided in the middle of the housing 8 to divide the inside of the housing 8 into a first chamber 13 on the first boat 9 side and a second chamber 14 on the second boat 11 side. Compressed gas is fed into both the first and second chambers 13, 14 from a compressed gas supply source.

上記ハウジング8の内面で、第一、第二側ボート9.1
1の開口部を囲む位置は、全周に亙ってそれぞれ内方に
突出させ、上記ダイヤフラム15の両側には、第一、第
二側ボート9.11と第一第二両室13.14との間に
、それぞれ第一、第二側絞り流路16.17を形成して
いる。
On the inner surface of the housing 8, the first and second side boats 9.1
The positions surrounding the opening of 1 are made to protrude inwardly over the entire circumference, and on both sides of the diaphragm 15 are first and second side boats 9.11 and first and second chambers 13.14. First and second side throttle channels 16 and 17 are respectively formed between them.

上述の様に構成される為、回転軸3の変位に基づいて、
この回転軸3の外周面と軸受面2とが同心でなくなった
場合、第一 第二の制御絞り弁6.7の作用により、凹
部4a、4b、5a、5bに送り込まれる圧縮空気の量
と圧力とが適当に調節され、上記回転軸3の外周面と軸
受面2とが同心になる。
Since it is configured as described above, based on the displacement of the rotating shaft 3,
When the outer circumferential surface of the rotating shaft 3 and the bearing surface 2 are no longer concentric, the amount of compressed air sent into the recesses 4a, 4b, 5a, and 5b is reduced by the action of the first and second control throttle valves 6.7. The pressure is adjusted appropriately, and the outer peripheral surface of the rotating shaft 3 and the bearing surface 2 become concentric.

例えば、第11図に於いて回転軸3が下方に変位した場
合、回転軸3の外周面と軸受面2との間の軸受隙間18
の寸法が、下側で小さく、上側で大きくなる。この寸法
変化に伴ない、下側の凹部4b (5b)内の圧力が高
く、上側の凹部4a(5a)内の圧力が低くなり、第二
供給管12により凹部4b (5b)と通じた第二ボー
ト11内の圧力が上昇し、第一供給管10により凹部4
a(5a)と通じた第一ボート9内の圧力が低下する。
For example, when the rotating shaft 3 is displaced downward in FIG. 11, the bearing gap 18 between the outer peripheral surface of the rotating shaft 3 and the bearing surface 2
The dimensions of are smaller at the bottom and larger at the top. Along with this dimensional change, the pressure inside the lower recess 4b (5b) becomes high, the pressure inside the upper recess 4a (5a) decreases, and the second supply pipe 12 communicates with the recess 4b (5b). The pressure inside the second boat 11 increases, and the first supply pipe 10 causes the recess 4 to
The pressure in the first boat 9 communicating with a (5a) decreases.

この結果、第一、第二側ボート9.11を仕切るダイヤ
フラム15が上方に変位し、第二絞り流路17が広く、
第一絞り流路16が狭くなって、下側の凹部4b (5
b)内に送り込む圧縮気体の量と圧力とが大きくなり、
上側の凹部4a(5a)内に送り込まれる圧縮気体の量
と圧力とが小さくなって、回転軸3が第11図で上方に
押され、この回転軸3の変位が解消される。
As a result, the diaphragm 15 that partitions the first and second side boats 9.11 is displaced upward, and the second throttle channel 17 is widened.
The first throttle channel 16 becomes narrower, and the lower recess 4b (5
b) the amount and pressure of compressed gas fed into the
The amount and pressure of the compressed gas sent into the upper recess 4a (5a) are reduced, and the rotating shaft 3 is pushed upward in FIG. 11, thereby eliminating the displacement of the rotating shaft 3.

(発明が解決しようとする課題) ところが、上述の様に構成され作用する、従来の静圧気
体軸受に於いては、次に述へる様な問題があった。
(Problems to be Solved by the Invention) However, the conventional hydrostatic gas bearing that is configured and operates as described above has the following problems.

即ち、従来構造の場合、軸受隙間18に圧縮気体を供給
する為の凹部4a、4b、5a15bが、大きな凹みで
あった為、これらの凹部4a、4b15a、5bに送り
込んだ圧縮気体により、自助振動が発生し易く、発生し
た場合には、静圧気体軸受を組み込んだ工作機械等の運
転を安定して行なえなくなってしまう。
That is, in the case of the conventional structure, since the recesses 4a, 4b, 5a15b for supplying compressed gas to the bearing gap 18 were large recesses, the compressed gas sent into these recesses 4a, 4b15a, 5b caused self-support vibration. This is likely to occur, and when it occurs, it becomes impossible to stably operate a machine tool or the like incorporating a static pressure gas bearing.

特に、第10〜11図に示した様に、第一、第二の両制
御絞り弁6.7と各凹部4a、4b、5a、5bとを連
通ずる為の、第一、第二両室1310.12が長くなる
と、流量制御の応答性が悪くなって、上述の様な自励振
動が発生し易くなる。
In particular, as shown in FIGS. 10 and 11, both the first and second chambers are provided for communicating the first and second control throttle valves 6.7 with the respective recesses 4a, 4b, 5a, and 5b. When 1310.12 becomes long, the responsiveness of flow rate control deteriorates, and self-excited vibrations as described above are likely to occur.

又、従来の静圧気体軸受の場合、軸受面2を焼き入れ鋼
により構成していた為、軸受隙間18に少しのごみが詰
まった場合でも、回転軸3の焼き付き等、修復不能とな
る様な故障が生じ易かった。
In addition, in the case of conventional hydrostatic gas bearings, the bearing surface 2 is made of hardened steel, so even if the bearing gap 18 becomes clogged with a small amount of dirt, the rotating shaft 3 may seize or otherwise become irreparable. Failures were likely to occur.

本発明の静圧気体軸受は、上述の様な問題を解決するも
のである。
The hydrostatic gas bearing of the present invention solves the above-mentioned problems.

(課題を解決する為の手段) 本発明の静圧気体軸受は、ハウジングと、このハウジン
グに設けた軸受面と軸受隙間を介して対向する回転部材
と、上記”軸受面に形成され、且つ給気流路を介して圧
縮気体の供給源に通じるスリット溝と、このスリット溝
と供給源との間に設けられ、且つ板ばねの弾性的変位に
基づき、上記スリット溝への圧縮気体の供給量を調節す
る制御絞り弁とを具えている。
(Means for Solving the Problems) The hydrostatic gas bearing of the present invention includes a housing, a rotating member that faces a bearing surface provided on the housing with a bearing clearance, and a rotating member that is formed on the bearing surface and that is A slit groove that communicates with a supply source of compressed gas via an air flow path is provided between the slit groove and the supply source, and the amount of compressed gas supplied to the slit groove is controlled based on the elastic displacement of a leaf spring. and a control throttle valve to adjust.

そして、必要に応じて軸受面を、炭素繊維とグラファイ
トとの少なくとも一方を含む、アルミニウム系又は銅系
の軟質合金により構成している。
If necessary, the bearing surface is made of an aluminum-based or copper-based soft alloy containing at least one of carbon fiber and graphite.

(作  用) 上述の様に構成される本発明の静圧気体軸受の場合、回
転部材を支承する為の圧縮気体は、制御絞り弁とスリッ
ト溝とを通じて軸受隙間に送り込まれ、上記回転部材を
ハウジングに対して、非接触状態で支承する。
(Function) In the case of the hydrostatic gas bearing of the present invention configured as described above, compressed gas for supporting the rotating member is sent into the bearing gap through the control throttle valve and the slit groove, and supports the rotating member. Supports the housing in a non-contact manner.

本発明の静圧気体軸受の場合、圧縮気体の吹き出し部を
スリット溝とする事で、動的剛性特性が向上し、制御絞
り弁を設ける事で静的剛性特性が向上する為、全体的な
剛性特性が向上する。
In the case of the hydrostatic gas bearing of the present invention, the dynamic stiffness characteristics are improved by using a slit groove for the compressed gas blowout part, and the static stiffness characteristics are improved by providing a control throttle valve, so that the overall Improves rigidity properties.

又、スリット溝の容積は、従来構造に於ける凹部に比べ
て容積が小さく、又ダンピング面が犬ぎくとれる為、自
助振動が発生しにくく、静圧気体軸受を組み込んだ装置
の運転を安定した状態で行なえる。
In addition, the volume of the slit groove is smaller than that of the concave part in conventional structures, and the damping surface is sharp, making it difficult for self-supporting vibrations to occur, making it possible to stabilize the operation of devices incorporating hydrostatic gas bearings. It can be done in the state.

更に、軸受面を、炭素繊維とグラファイトとの少なくと
も一方を含む、アルミニウム系又は銅系の軟質合金によ
り構成した場合、軸受隙間にごみが詰まった場合にも、
焼き付き等、修復不能な故障に繋りにくくなる。
Furthermore, when the bearing surface is made of an aluminum-based or copper-based soft alloy containing at least one of carbon fiber and graphite, even if the bearing gap becomes clogged with dirt,
It is less likely to lead to irreparable failures such as burn-in.

(実施例) 次に、図示の実施例を説明しつつ、本発明を更に詳しく
説明する。
(Example) Next, the present invention will be explained in more detail while explaining the illustrated embodiment.

第1〜3図は本発明の第一実施例を示している。1-3 show a first embodiment of the invention.

第1図に於いて、それぞれ短筒状に形成された内筒20
に外筒21を外嵌固定している。内筒20の内側には、
円管状の回転部材22が挿通されており、この回転部材
22の両端部にそれぞれ固定されたフランジ片23a、
23bの内側面と、上記内筒20と外筒21との端面に
固定した軸受部材24a、24bの軸受面25 a、 
25 bとが対向している。そして、内筒20と外筒2
1と軸受部材24a、24bとで、バウンシング19を
構成している。
In FIG. 1, inner cylinders 20 each formed into a short cylinder shape.
The outer cylinder 21 is externally fitted and fixed. Inside the inner cylinder 20,
A circular tubular rotating member 22 is inserted therethrough, and flange pieces 23a are fixed to both ends of the rotating member 22, respectively.
23b, and bearing surfaces 25a of bearing members 24a and 24b fixed to the end surfaces of the inner cylinder 20 and outer cylinder 21,
25 b are facing each other. Then, the inner cylinder 20 and the outer cylinder 2
1 and bearing members 24a and 24b constitute a bouncing 19.

内筒20と外筒21との間に挟まれる様にして、これら
両部材20.21の端面に固定された各軸受部材24a
、24bは、それぞれの外側面を軸受面25a、25b
としており、少なくとも各軸受面25a、25bを、炭
素繊維とグラファイトとの少なくとも一方を含む、アル
ミニウム系又は銅系の軟質合金により構成している。そ
して、各軸受面25 a、 25 bに、それぞれ′4
2図に示す様に、複数の同心円弧部とこれら複数の同心
円弧部同士を連続させる放射部とから成る、スリット溝
isa、26bを形成している。そして、各スリット溝
26a、26bの幅は、0,8〜2mm程度とし、深さ
は、50〜300μm程度としている。又、各スリット
溝26a、26bに通じる通孔44.44の内径は、1
〜2mm程度としている。
Each bearing member 24a is sandwiched between the inner cylinder 20 and the outer cylinder 21 and fixed to the end faces of these two members 20 and 21.
, 24b have respective outer surfaces as bearing surfaces 25a, 25b.
At least each bearing surface 25a, 25b is made of an aluminum-based or copper-based soft alloy containing at least one of carbon fiber and graphite. And, on each bearing surface 25a, 25b, '4'
As shown in FIG. 2, the slit groove isa, 26b is formed of a plurality of concentric arc portions and a radial portion that connects the plurality of concentric arc portions. The width of each slit groove 26a, 26b is approximately 0.8 to 2 mm, and the depth is approximately 50 to 300 μm. Moreover, the inner diameter of the through holes 44.44 communicating with each slit groove 26a, 26b is 1
It is approximately 2 mm.

各スリット溝26a、26bはそれぞれ、上記通孔44
.44と、内径が2〜4mm程度の分配流路27a、2
7bと、外筒21内に設けられた制御絞り弁28と、給
気流路29とを介して、コンプレッサ等の圧縮気体供給
源に通じており、各スリット溝26a、26bに圧縮気
体を送り込む事により、上記回転部材22をハウジング
19に、非接触状態で支承する様にしている。
Each slit groove 26a, 26b is connected to the through hole 44, respectively.
.. 44, and distribution channels 27a and 2 with an inner diameter of about 2 to 4 mm.
7b, a control throttle valve 28 provided in the outer cylinder 21, and an air supply flow path 29, which communicate with a compressed gas supply source such as a compressor, and feed compressed gas into each slit groove 26a, 26b. As a result, the rotating member 22 is supported by the housing 19 in a non-contact manner.

即ち、上記各スリット溝26a、26b内に送り込まれ
た圧縮気体により、上記軸受面25a、25bとフラン
ジ片23a、23bの内側面との間の軸受隙間を介して
、両部材22.19同士が互いに接触する事なく回転す
る様にしている。
That is, due to the compressed gas sent into each of the slit grooves 26a, 26b, both members 22, 19 are moved together through the bearing gap between the bearing surfaces 25a, 25b and the inner surfaces of the flange pieces 23a, 23b. They are designed to rotate without touching each other.

各スリット溝26a、26bに通じる分配流路27a、
27bと給気流路29との間に設けた制御絞り弁28は
、前述した従来構造に於ける第、第二の制御絞り弁6.
7(第10〜11図参照)と同様に機能して、両スリッ
ト溝26a、26bへの圧縮気体の供給量と圧力とを調
節し、フランジ片23aの内側面と軸受面25aとの間
の軸受隙間の大きさと、フランジ片23bの内側面と軸
受面25bとの間の軸受隙間の大きさとが大きく異なら
ない様にするものである。
Distribution channel 27a communicating with each slit groove 26a, 26b,
The control throttle valve 28 provided between the air supply flow path 27b and the air supply flow path 29 is the same as the control throttle valve 6.27b in the conventional structure described above.
7 (see FIGS. 10 and 11), it adjusts the amount and pressure of compressed gas supplied to both slit grooves 26a and 26b, and controls the pressure between the inner surface of the flange piece 23a and the bearing surface 25a. This is done so that the size of the bearing gap and the size of the bearing gap between the inner surface of the flange piece 23b and the bearing surface 25b do not differ greatly.

そして、本実施例の場合、この様な制御絞り弁28を、
前記外筒21の外周面に形成した凹部30に、第3図に
示す様な、1枚の金属板ばね製のダイヤフラム31と、
このダイヤフラム31を挟む1対の弁座板32.32と
を嵌装し、上記凹部30の開口部を蓋板43により塞ぐ
事で構成している。蓋板43には、スリット溝26bに
通じる分配流路27bの一部を形成し、1対の分配流路
が上記制御絞り弁28に対して、両側から接続される様
にしている。尚、この制御絞り弁28の基本的構成及び
作用自体は、前述した第一、第二の制御絞り弁6.7と
同様である為、詳しい説明は省略する。
In the case of this embodiment, such a control throttle valve 28 is
A diaphragm 31 made of a metal plate spring, as shown in FIG.
A pair of valve seat plates 32 and 32 sandwiching this diaphragm 31 are fitted, and the opening of the recess 30 is closed with a cover plate 43. A part of the distribution channel 27b communicating with the slit groove 26b is formed in the cover plate 43, so that the pair of distribution channels are connected to the control throttle valve 28 from both sides. Note that the basic configuration and function of this control throttle valve 28 are the same as those of the first and second control throttle valves 6.7 described above, so a detailed explanation will be omitted.

上述の様に構成される本発明の静圧気体軸受の場合、回
転部材22を支承する為の圧縮気体は、各スリット溝2
6 a、 26 bを通じて、各フランジ片23a、2
3bの内側面と軸受面25a、25bとの間の軸受隙間
に送り込まれ、回転部材22を非接触状態で支承すると
共に、回転部材22が軸方向(第1図の左右方向)にず
れた場合には、制御絞り弁28の作用により、このずれ
を修正する。
In the case of the hydrostatic gas bearing of the present invention configured as described above, compressed gas for supporting the rotating member 22 is supplied to each slit groove 2.
6 a, 26 b, each flange piece 23a, 2
3b and the bearing surfaces 25a, 25b, and supports the rotating member 22 in a non-contact state, and when the rotating member 22 is displaced in the axial direction (horizontal direction in FIG. 1) Then, this deviation is corrected by the action of the control throttle valve 28.

更に、本発明の静圧気体軸受の場合、スリット溝28a
、26bの働きにより、比較的高周波域での特性向上が
図られ、制御絞り弁28の働きにより、比較的低周波域
での特性向上が図られる為、はぼ全周波数域で、十分な
特性を得る事が出来る。
Furthermore, in the case of the hydrostatic gas bearing of the present invention, the slit groove 28a
, 26b improves the characteristics in a relatively high frequency range, and the function of the control throttle valve 28 improves the characteristics in a relatively low frequency range, so the characteristics are sufficient in almost the entire frequency range. can be obtained.

例えば、本発明者が行なフた実験によると、軸受面にス
リット溝を形成し、制御絞り弁を設けなかった場合、軸
受剛性K(=負荷容量/変位)の逆数であるコンプライ
アンスと振動周波数との関係が、第4図の破線aで示す
様に変化したのに対し、前記第10〜11図に示す様に
、制御絞り弁を設け、軸受面には隼なる凹部を形成した
だけの場合、上記関係が、同図に鎖線すで示す様に変化
した。更に、zi図に示す様に、軸受面にスリット溝を
形成すると共に、制御絞り弁を設けた構造の場合、上記
関係が、同図に実線Cで示す様に変化した。
For example, according to experiments conducted by the present inventor, when a slit groove is formed on the bearing surface and no control throttle valve is provided, the compliance, which is the reciprocal of the bearing stiffness K (=load capacity/displacement), and the vibration frequency The relationship between the In this case, the above relationship changed as shown by the chain line in the figure. Furthermore, as shown in the zi diagram, in the case of a structure in which slit grooves were formed on the bearing surface and a control throttle valve was provided, the above relationship changed as shown by the solid line C in the diagram.

この第4図から明らかな通り、本発明の静圧気体軸受は
、はぼ全周波数域で、十分な特性を得られる。
As is clear from FIG. 4, the static pressure gas bearing of the present invention can obtain sufficient characteristics in almost the entire frequency range.

又、制御絞り弁28をハウジング19に内蔵し、この制
御絞り弁28と各スリット溝26a、26bとを結ぶ分
配流路27a、27bを短くしている為、静圧気体軸受
自体を小型化出来るだけでなく、回転部材22が変位し
た場合に於ける制御絞り弁28の応答性が向上する。
Furthermore, the control throttle valve 28 is built into the housing 19, and the distribution channels 27a and 27b connecting the control throttle valve 28 and each slit groove 26a and 26b are shortened, so that the hydrostatic gas bearing itself can be made smaller. In addition, the responsiveness of the control throttle valve 28 when the rotating member 22 is displaced is improved.

更に、軸受面25a、25bを軟質合金により造ってい
る為、各スリット溝26a、26bの形成作業が容易で
、しかも軸受隙間にごみ等の異物が入り込んだ場合にも
、摩擦係数が小さいので、焼き付き等、修復不能な故障
の原因が発生しにくくなる。
Furthermore, since the bearing surfaces 25a and 25b are made of a soft alloy, it is easy to form each slit groove 26a and 26b, and even if foreign matter such as dust gets into the bearing gap, the coefficient of friction is small. Causes of irreparable failures such as burn-in are less likely to occur.

尚、軸受面25a、25bにスリット溝26a、26b
を多数形成する事で、軸受隙間への圧縮気体の送り込み
を行なっている為、圧力分布を軸受隙間全体で比較的平
坦にし、十分な負荷容量を確保しつつ、ダンピング面積
を十分に確保して、自助振動を生じ難い静圧気体軸受を
得る事が出来る。
In addition, slit grooves 26a, 26b are formed on the bearing surfaces 25a, 25b.
By forming a large number of bearings, compressed gas is sent into the bearing gap, making the pressure distribution relatively flat throughout the bearing gap, ensuring sufficient load capacity and sufficient damping area. , it is possible to obtain a static pressure gas bearing that does not easily generate self-supporting vibrations.

次に、第5〜7図は本発明の第二実施例を示している。Next, FIGS. 5 to 7 show a second embodiment of the present invention.

本実施例の場合、ハウジング19を構成する内筒20を
炭素繊維とグラファイトとの少なくとも一方を含む、ア
ルミニウム系又は銅系の軟質合金により造り、又、回転
部材22及びフランジ片23a、23bは、強度及び耐
久性向上の為に、鋼を使用する。内筒20の内周面は軸
受面42とし、この軸受面42に、N7図に示す様な1
日1字形のスリット溝33.33を形成している。そし
て、第5.6.9図に示す様に、外筒21の外周面に形
成した凹部30.30に内蔵した制御絞り弁34.34
を通じて、各スリット溝33.33に圧縮気体を供給す
る様にしている。
In the case of this embodiment, the inner cylinder 20 constituting the housing 19 is made of an aluminum-based or copper-based soft alloy containing at least one of carbon fiber and graphite, and the rotating member 22 and flange pieces 23a, 23b are Steel is used to improve strength and durability. The inner circumferential surface of the inner cylinder 20 is a bearing surface 42, and the bearing surface 42 is provided with 1 as shown in Figure N7.
A slit groove 33.33 in the shape of a Japanese character is formed. As shown in FIG. 5.6.9, a control throttle valve 34.34 is built in a recess 30.30 formed on the outer circumferential surface of the outer cylinder 21.
Compressed gas is supplied to each slit groove 33, 33 through the slit groove.

内筒20内周面の軸受面42に、上述の様なスリット溝
33.33を形成する作業は、従来から知られた各種加
工方法によって行なう事が出来るが、軸受面42を軟質
合金により構成した場合には、例えば特開昭63−23
0219号公報に示されている様な転造加工法を利用す
る事により、各スリット溝33.33を容易に形成する
事が出来る。
The work of forming the above-mentioned slit grooves 33, 33 on the bearing surface 42 of the inner peripheral surface of the inner cylinder 20 can be performed by various conventionally known processing methods. In this case, for example, JP-A-63-23
By using a rolling method such as that shown in Japanese Patent No. 0219, each slit groove 33, 33 can be easily formed.

即ち、第8図に示す様に、円筒状のホルダ35の保持孔
36.36に転勤自在に保持された鋼球37.37を、
押圧棒38の外周面で上記軸受面42に押圧しつつ、上
記押圧棒38を回転させたり、或は軸方向に変位させれ
ば、軸受面42に鋼球37.37の圧痕に基づくスリッ
ト溝33.33を形成する事が出来る。
That is, as shown in FIG. 8, the steel balls 37 and 37 held removably in the holding holes 36 and 36 of the cylindrical holder 35 are
If the pressing rod 38 is rotated or displaced in the axial direction while pressing the bearing surface 42 with the outer circumferential surface of the pressing rod 38, a slit groove is formed in the bearing surface 42 based on the impression of the steel balls 37, 37. 33.33 can be formed.

又、ハウジング19の一部で、前記制御絞り弁34.3
4設置部分から外れた部分には、排気流路41を設けて
、各スリット溝33.33から上記軸受隙間に吹鮒出し
た圧縮気体を、外部に排出自在としている。
Also, in a part of the housing 19, the control throttle valve 34.3
An exhaust flow path 41 is provided in a portion away from the 4-installation portion, so that the compressed gas discharged from each slit groove 33, 33 into the bearing gap can be freely discharged to the outside.

本第二実施例に示したラジアル軸受の場合も、前述した
第一実施例に示したスラスト軸受の場合と同様に、スリ
ット溝33と制御絞り弁34との共働作用により、良好
な特性を得る事が出来る。
In the case of the radial bearing shown in the second embodiment, as well as in the case of the thrust bearing shown in the first embodiment described above, good characteristics are achieved due to the cooperative action of the slit groove 33 and the control throttle valve 34. You can get it.

尚、軸受面25 a、 25 b、 42の材質を、炭
素繊維や鉛、錫等を含む銅合金にすると鋼より軟らかく
加工の容易な利点がある。
It should be noted that if the bearing surfaces 25a, 25b, 42 are made of a copper alloy containing carbon fiber, lead, tin, etc., it has the advantage of being softer than steel and easier to process.

摺動性と耐摩耗性との向上を意図した炭素繊維を含む銅
合金は、炭素繊維を1〜10重量%含有している。尚、
炭素繊維が1重量%より少なくても10重量%より多く
ても、摺動性は低くなる。
A copper alloy containing carbon fiber intended to improve sliding properties and wear resistance contains 1 to 10% by weight of carbon fiber. still,
If the carbon fiber content is less than 1% by weight or more than 10% by weight, the sliding properties will be low.

摺動性をあまり重視しない場合は、1重量%より少なく
しても良く、又、反対に、10重量%より多くしても良
い。
If sliding properties are not important, the amount may be less than 1% by weight, or, conversely, may be more than 10% by weight.

又、軸受面25a、25b、42は炭素繊維に代えてグ
ラファイトを含む銅合金で形成しても良い。グラファイ
トは摺動性と耐摩耗性との向上を意図して添加するもの
で、その添加量は1〜10重量%である。グラファイト
が1重量%より少ないと摺動性が低くなる。グラファイ
トが10重量%より多いと強度的に弱くなる。しかし、
グラファイトは摺動性をあまり重視しない場合は、1重
量%より少なくしても良く、又、強度をあまり重視しな
い場合等は、10重量%より多くしても良い。
Furthermore, the bearing surfaces 25a, 25b, and 42 may be formed of a copper alloy containing graphite instead of carbon fiber. Graphite is added with the intention of improving sliding properties and wear resistance, and the amount added is 1 to 10% by weight. If the graphite content is less than 1% by weight, the sliding properties will be low. If the graphite content is more than 10% by weight, the strength will be weakened. but,
The graphite content may be less than 1% by weight when sliding properties are not important, and it may be greater than 10% by weight when strength is not important.

グラファイトは炭素繊維よりは金属から遊離し易い。そ
れ故に、グラファイトを含む銅合金より炭素繊維を含む
銅合金の方が強度が強い。
Graphite is more easily released from metal than carbon fiber. Therefore, a copper alloy containing carbon fibers has higher strength than a copper alloy containing graphite.

更に、軸受面25 a、  25 b、 42の材質を
アルミニウム合金を用いれば、鋼より軟らかいので加工
容易という利点がある。
Furthermore, if an aluminum alloy is used as the material of the bearing surfaces 25a, 25b, 42, there is an advantage that it is easier to process since it is softer than steel.

摺動性と耐摩耗性との向上と軽量化とを意図した炭素繊
維を含むアルミニウム合金は、例えばシリコンが9〜1
6重量%、銅が1〜4重量%、マグネシウムが1〜3重
量%、鉄が1〜5重量%、炭素繊維が1〜10重量%、
そして残部がアルミニウムの配合とする。
For example, an aluminum alloy containing carbon fiber intended to improve sliding properties and wear resistance and to reduce weight has a silicon content of 9 to 1.
6% by weight, copper 1-4% by weight, magnesium 1-3% by weight, iron 1-5% by weight, carbon fiber 1-10% by weight,
The balance is made up of aluminum.

尚、炭素繊維が1重量%より少なくても、反対に10重
量%より多くても、摺動性が低くなる。
Note that if the carbon fiber content is less than 1% by weight, or conversely if it is more than 10% by weight, the sliding properties will be low.

但し、炭素繊維は、摺動性をあまり重視しない場合は1
重量%より少なくしても良く、又、10重量%より多く
しても良い。
However, if carbon fiber does not place much emphasis on sliding properties, 1
It may be less than 10% by weight or more than 10% by weight.

又、軸受面25a、25b、42の材質は、炭素繊維に
代えてグラファイトを含むアルミニウム合金としても良
い。摺動性と耐摩耗性との向上と軽量化とを意図した、
グラファイトを含むアルミニウム合金は、例えばシリコ
ンが9〜16重量%、銅が1〜4重量%、マグネシウム
が1〜3重量%、鉄が1〜5重量%、グラファイトが1
〜10重量%、そして残部がアルミニウムの配合とする
Further, the material of the bearing surfaces 25a, 25b, and 42 may be an aluminum alloy containing graphite instead of carbon fiber. Intended to improve sliding properties and abrasion resistance, and reduce weight.
An aluminum alloy containing graphite contains, for example, 9 to 16% by weight of silicon, 1 to 4% by weight of copper, 1 to 3% by weight of magnesium, 1 to 5% by weight of iron, and 1% by weight of graphite.
~10% by weight, and the balance is aluminum.

尚、グラファイトが1重量%よりも少ないと、摺動性が
低くなる。反対に、グラファイトが10重量%より多い
と強度的に弱くなる。但し、グラファイトは、摺動性を
あまり重視しない場合は1重量%より少なくしても良く
、又、強度をあまり重視しない場合等には、10重量%
より多くして4゜ も良い。
Note that if the graphite content is less than 1% by weight, the sliding properties will be low. On the other hand, if the graphite content is more than 10% by weight, the strength will be weakened. However, graphite may be less than 1% by weight if sliding properties are not important, or 10% by weight if strength is not important.
4 degrees is also good.

グラファイトは炭素!a維よりは金属から遊離し易い。Graphite is carbon! It is easier to release from metal than a-fiber.

それ故に、グラファイトを含むアルミニウム合金より炭
素繊維を含むアルミニウム合金の方が強度が強い。
Therefore, an aluminum alloy containing carbon fiber has higher strength than an aluminum alloy containing graphite.

又、スリット溝26a、26b、33の断面形状は円弧
形でも、或は矩形でも良い。
Further, the cross-sectional shape of the slit grooves 26a, 26b, and 33 may be arcuate or rectangular.

(発明の効果) 本発明の静圧気体軸受は、以上に述べた通り構成され作
用する為、回転部材を支承する為の圧縮気体による自助
振動が発生し難く、静圧気体軸受を組み込んだ工作機械
等の運転を安定して行なえ、しかも軸受剛性も十分に高
くする事が出来る。
(Effects of the Invention) Since the hydrostatic gas bearing of the present invention is configured and operates as described above, it is difficult to generate self-support vibrations due to the compressed gas for supporting the rotating member. Machines, etc. can be operated stably, and bearing rigidity can be made sufficiently high.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜3図は本発明の第一実施例を示しており、第1図
は断面図、第2図は軸受面に形成したスリット溝の形状
を示す、第1図のA−A親図、第3図は制御絞り弁の分
解斜視図、第4図は従来の静圧気体軸受と本発明の静圧
気体軸受との特性の差を示す線図、第5〜7図は本発明
の第二実施例を示しており、第5図は断面図、第6図は
第5図のB−B断面図、第7図は軸受面に形成したスリ
ット溝の形状を示す、第6図のC−C視図、第8図はス
リット溝を形成する方法の1例を示す断面図、第9図は
第1図のD−D親図、第10図は従来の静圧気体軸受の
1例を示す断面図、第11図は制御絞り弁による制御回
路を示す断面図である。 1:軸受部材、2;軸受面、3:回転軸、4a、4b、
5a、5b:凹部、6:第一の制御絞り弁、7:第二の
制御絞り弁、8:ハウジング、9:第一ボート、10:
第一供給管、11:第二ボート、12;第二供給管、1
3:第−室、14:第二室、15:ダイヤフラム、16
:第一絞り流路、17:第二絞り流路、18:軸受隙間
、19:ハウジング、20:内筒、21:外筒、22:
回転部材、23a、23b:フランジ片、24a、24
b二軸受部材、25a、25b:軸受面、26a、26
bニスリツト溝、27a、27b;分配流路、28:制
御絞り弁、29:給気流路、30:凹部、31;ダイヤ
フラム、32:弁座板、33ニスリツト溝、34:制御
絞り弁、35:ホルダ、36:保持孔、37:#4球、
38:押圧棒、41:排気流路、42:軸受面、43:
蓋板、44:通孔。
1 to 3 show a first embodiment of the present invention, FIG. 1 is a sectional view, and FIG. 2 is a parent view taken along line AA in FIG. 1, showing the shape of the slit groove formed on the bearing surface. , FIG. 3 is an exploded perspective view of the control throttle valve, FIG. 4 is a diagram showing the difference in characteristics between the conventional static pressure gas bearing and the static pressure gas bearing of the present invention, and FIGS. Embodiment 2 is shown, FIG. 5 is a sectional view, FIG. 6 is a sectional view taken along line B-B in FIG. 5, and FIG. 7 is a sectional view of FIG. C-C view, FIG. 8 is a sectional view showing an example of a method for forming slit grooves, FIG. 9 is a D-D parent view of FIG. 1, and FIG. 10 is a diagram of a conventional hydrostatic gas bearing. A sectional view showing an example, FIG. 11 is a sectional view showing a control circuit using a control throttle valve. 1: Bearing member, 2: Bearing surface, 3: Rotating shaft, 4a, 4b,
5a, 5b: recess, 6: first control throttle valve, 7: second control throttle valve, 8: housing, 9: first boat, 10:
First supply pipe, 11: Second boat, 12; Second supply pipe, 1
3: 1st chamber, 14: 2nd chamber, 15: diaphragm, 16
: First throttle flow path, 17: Second throttle flow path, 18: Bearing gap, 19: Housing, 20: Inner cylinder, 21: Outer cylinder, 22:
Rotating member, 23a, 23b: Flange piece, 24a, 24
b Two bearing members, 25a, 25b: bearing surface, 26a, 26
b Nislit groove, 27a, 27b; Distribution channel, 28: Control throttle valve, 29: Air supply channel, 30: Recess, 31; Diaphragm, 32: Valve seat plate, 33 Nislit groove, 34: Control throttle valve, 35: Holder, 36: Holding hole, 37: #4 ball,
38: Pressing rod, 41: Exhaust channel, 42: Bearing surface, 43:
Lid plate, 44: Through hole.

Claims (3)

【特許請求の範囲】[Claims] (1)ハウジングと、このハウジングに設けた軸受面と
軸受隙間を介して対向する回転部材と、上記軸受面に形
成され、且つ給気流路を介して圧縮気体の供給源に通じ
るスリット溝と、このスリット溝と供給源との間に設け
られ、且つ板ばねの弾性的変位に基づき、上記スリット
溝への圧縮気体の供給量を調節する制御絞り弁とを具え
た静圧気体軸受。
(1) a housing, a bearing surface provided on the housing, a rotating member facing the bearing surface through a bearing gap, and a slit groove formed on the bearing surface and communicating with a compressed gas supply source via an air supply flow path; A static pressure gas bearing comprising a control throttle valve that is provided between the slit groove and the supply source and that adjusts the amount of compressed gas supplied to the slit groove based on the elastic displacement of the leaf spring.
(2)軸受面が、炭素繊維とグラファイトとの少なくと
も一方を含む、アルミニウム系又は銅系の軟質合金によ
り構成されている、請求項1に記載の静圧気体軸受。
(2) The hydrostatic gas bearing according to claim 1, wherein the bearing surface is made of an aluminum-based or copper-based soft alloy containing at least one of carbon fiber and graphite.
(3)制御絞り弁を、ハウジングに組み込んだ、請求項
1又は請求項2に記載の静圧気体軸受。
(3) The hydrostatic gas bearing according to claim 1 or 2, wherein the control throttle valve is incorporated into the housing.
JP02042691A 1990-02-26 1990-02-26 Hydrostatic gas bearing Expired - Fee Related JP3089271B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP02042691A JP3089271B2 (en) 1990-02-26 1990-02-26 Hydrostatic gas bearing
US07/658,777 US5064297A (en) 1990-02-26 1991-02-21 Static pressure gas bearing with throttling control valve in housing
GB9103921A GB2241992B (en) 1990-02-26 1991-02-25 Static pressure gas bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02042691A JP3089271B2 (en) 1990-02-26 1990-02-26 Hydrostatic gas bearing

Publications (2)

Publication Number Publication Date
JPH03249424A true JPH03249424A (en) 1991-11-07
JP3089271B2 JP3089271B2 (en) 2000-09-18

Family

ID=12643067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02042691A Expired - Fee Related JP3089271B2 (en) 1990-02-26 1990-02-26 Hydrostatic gas bearing

Country Status (1)

Country Link
JP (1) JP3089271B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06115916A (en) * 1992-10-06 1994-04-26 Sanyo Seiki:Kk Gas bearing
JP2006052793A (en) * 2004-08-12 2006-02-23 Konica Minolta Opto Inc Supporting device and processing machine
CN115978092A (en) * 2023-03-21 2023-04-18 中国空气动力研究与发展中心空天技术研究所 Supporting structure of ultra-high speed miniature rotor and design method of supporting structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101859118B1 (en) * 2016-11-24 2018-05-17 주식회사 파이온이엔지 Power on reset circuit of micro controller

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06115916A (en) * 1992-10-06 1994-04-26 Sanyo Seiki:Kk Gas bearing
JP2006052793A (en) * 2004-08-12 2006-02-23 Konica Minolta Opto Inc Supporting device and processing machine
CN115978092A (en) * 2023-03-21 2023-04-18 中国空气动力研究与发展中心空天技术研究所 Supporting structure of ultra-high speed miniature rotor and design method of supporting structure

Also Published As

Publication number Publication date
JP3089271B2 (en) 2000-09-18

Similar Documents

Publication Publication Date Title
JPH10500469A (en) Fluid thin film bearing
JPH11504417A (en) Suspended spring supported squeeze film damping system for shaft bearing device
US20100218652A1 (en) Main spindle device
CN101198439A (en) Actuator for displacing a tool
JPH03249424A (en) Hydrostatic gas bearing
US1486115A (en) Balancing-machine bearing
JPH0361047B2 (en)
US6729762B2 (en) Aerostatic gas bearing
JP2001113402A (en) Spindle unit
JP2006161898A (en) Air sliding device
JPH08261231A (en) Squeezed film dumper bearing
JP2007512150A (en) Deep rolling roller head for split pin crankshaft manufacturing
JP2001116046A (en) Dynamic pressure bearing device
FR3111165B1 (en) Hydraulic machine comprising support bearings for the rotating part
JPH03249423A (en) Hydrostatic gas bearing
JP4508585B2 (en) Air bearing device
JPS60208627A (en) Foil journal bearing
JP2644247B2 (en) Hydrostatic gas bearing
GB2241992A (en) Static pressure gas bearing
JP2814656B2 (en) Hydrostatic gas bearing
WO2022249627A1 (en) Bearing device
JP2000002243A (en) Static pressure air bearing device
JPH0378489B2 (en)
JP4273743B2 (en) Positioning device
JP6500335B2 (en) Static pressure gas bearing rotation guide device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070721

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080721

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080721

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees