JP2814656B2 - Hydrostatic gas bearing - Google Patents
Hydrostatic gas bearingInfo
- Publication number
- JP2814656B2 JP2814656B2 JP4269290A JP4269290A JP2814656B2 JP 2814656 B2 JP2814656 B2 JP 2814656B2 JP 4269290 A JP4269290 A JP 4269290A JP 4269290 A JP4269290 A JP 4269290A JP 2814656 B2 JP2814656 B2 JP 2814656B2
- Authority
- JP
- Japan
- Prior art keywords
- control throttle
- bearing
- throttle valve
- leaf spring
- housing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Magnetic Bearings And Hydrostatic Bearings (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明の静圧気体軸受は、精密工作機械等の回転部分
を支承する場合に利用するもので、本発明は、この様な
静圧気体軸受の小型化と剛性向上とを図るものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The hydrostatic gas bearing of the present invention is used for supporting a rotating part of a precision machine tool or the like. It is intended to reduce the size and improve the rigidity of the bearing.
(従来の技術) 精密工作機械等に組み込まれ、高速で回転する、回転
軸等の回転部材を空気等の圧縮気体の力により支承する
静圧気体軸受が、従来から広く使用されている。(Prior Art) Static pressure gas bearings that are incorporated in precision machine tools and the like and that support a rotating member such as a rotating shaft that rotates at a high speed and that is supported by the force of a compressed gas such as air have been widely used.
第10〜11図は、この様な従来から知られている静圧気
体軸受の1例として、特公昭45−37683号公報に記載さ
れた静圧気体軸受を示している。FIGS. 10 and 11 show a static pressure gas bearing described in Japanese Patent Publication No. 45-37683 as an example of such a conventionally known static pressure gas bearing.
第10図に於いて1は、内周面を円筒状の軸受面2とし
た軸受部材で、この軸受部材1の内側に回転部材である
回転軸3を挿通している。上記軸受面2の上下左右4個
所位置には、それぞれ圧力容積部である凹部4a、4b、5
a、5bを形成し、各凹部4a、4b、5a、5bに圧縮気体を送
り込む事で、上記回転軸3を軸受部材1の内側に、非接
触状態で支承する様にしている。In FIG. 10, reference numeral 1 denotes a bearing member having an inner peripheral surface having a cylindrical bearing surface 2, and a rotating shaft 3 as a rotating member is inserted inside the bearing member 1. At the four positions of the bearing surface 2 at the top, bottom, left and right, concave portions 4a, 4b, 5
The rotary shaft 3 is supported inside the bearing member 1 in a non-contact state by forming a, 5b and sending a compressed gas into each of the recesses 4a, 4b, 5a, 5b.
上記4個の凹部4a、4b、5a、5bの内、上下2個所位置
の凹部4a、4bは第一の制御絞り弁6を介して、左右2個
所位置の凹部5a、5bは第二の制御絞り弁7を介して、そ
れぞれコンプレッサ等の圧縮気体供給源に通じさせてい
る。Of the four recesses 4a, 4b, 5a and 5b, the recesses 4a and 4b at two upper and lower positions are controlled via the first control throttle valve 6, and the recesses 5a and 5b at two right and left positions are controlled by the second control. Each is connected to a compressed gas supply source such as a compressor through a throttle valve 7.
上記第一、第二の制御絞り弁6、7は、軸受面2と回
転軸3の外周面とが同心になる様に、上下の凹部4a、4
b、或は左右の凹部5a、5bに送る圧縮気体の量と圧力と
を調節する為のもので、例えば第11図に示す様に構成さ
れている。The first and second control throttle valves 6 and 7 are provided with upper and lower recesses 4a and 4a so that the bearing surface 2 and the outer peripheral surface of the rotary shaft 3 are concentric.
b, or for adjusting the amount and pressure of the compressed gas to be sent to the left and right recesses 5a and 5b, for example, as shown in FIG.
第一(第二)の制御絞り弁6(7)を構成するハウジ
ング8の片面中央部に設けた第一ポート9と凹部4a(5
a)とは第一供給管10により、他面中央部に設けた第二
ポート11と凹部4b(5b)とは第二供給管12により、それ
ぞれ連通させている。又、上記ハウジング8の中間部に
はダイヤフラム15を設けて、このハウジング8の内側
を、第一ポート9側の第一室13と第二ポート11側の第二
室14とに分割し、これら第一、第二両室13、14に、圧縮
気体供給源から圧縮気体を送り込んでいる。A first port 9 provided in the center of one surface of a housing 8 constituting a first (second) control throttle valve 6 (7) and a recess 4a (5)
a), the second port 11 provided at the center of the other surface and the recess 4b (5b) are connected by the second supply pipe 12, respectively. A diaphragm 15 is provided at an intermediate portion of the housing 8, and the inside of the housing 8 is divided into a first chamber 13 on the first port 9 side and a second chamber 14 on the second port 11 side. A compressed gas is supplied to the first and second chambers 13 and 14 from a compressed gas supply source.
上記ハウジング8の内面で、第一、第二両ポート9、
11の開口部を囲む位置は、全周に亙ってそれぞれ内方に
突出させ、上記ダイヤフラム15の両側には、第一、第二
両ポート9、11と第一、第二両室13、14との間に、それ
ぞれ第一、第二両絞り流路16、17を形成している。On the inner surface of the housing 8, first and second ports 9,
The position surrounding the opening of 11 is protruded inward over the entire circumference, and on both sides of the diaphragm 15, the first and second ports 9, 11 and the first and second chambers 13, Between them, first and second throttle channels 16 and 17 are formed, respectively.
上述の様に構成される為、回転軸3の変位に基づい
て、この回転軸3の外周面と軸受面2とが同心でなくな
った場合、第一、第二の制御絞り弁6、7の作用によ
り、凹部4a、4b、5a、5bに送り込まれる圧縮気体の量と
圧力とが適当に調節され、上記回転軸3の外周面と軸受
面2とが同心になる。Due to the above-described configuration, when the outer peripheral surface of the rotary shaft 3 and the bearing surface 2 are not concentric with each other based on the displacement of the rotary shaft 3, the first and second control throttle valves 6, 7 By the action, the amount and pressure of the compressed gas fed into the recesses 4a, 4b, 5a, 5b are appropriately adjusted, and the outer peripheral surface of the rotating shaft 3 and the bearing surface 2 are concentric.
例えば、第11図に於いて回転軸3が下方に変位した場
合、回転軸3の外周面と軸受面2との間の軸受隙間18の
寸法が、下側で小さく、上側で大きくなる。この寸法変
化に伴ない、下側の凹部4b(5b)内の圧力が高く、上側
の凹部4a(5a)内の圧力が低くなり、第二供給管12によ
り凹部4b(5b)と通じた第二ポート11内の圧力が上昇
し、第一供給管10により凹部4a(5a)と通じた第一ポー
ト9内の圧力が低下する。For example, when the rotating shaft 3 is displaced downward in FIG. 11, the dimension of the bearing gap 18 between the outer peripheral surface of the rotating shaft 3 and the bearing surface 2 is small on the lower side and larger on the upper side. Along with this dimensional change, the pressure in the lower recess 4b (5b) increases, the pressure in the upper recess 4a (5a) decreases, and the second supply pipe 12 communicates with the recess 4b (5b). The pressure in the two ports 11 increases, and the pressure in the first port 9 communicated with the recess 4a (5a) by the first supply pipe 10 decreases.
この結果、第一、第二両ポート9、11を仕切るダイヤ
フラム15が上方に変位し、第二絞り流路17が広く、第一
絞り流路16が狭くなって、下側の凹部4b(5b)内に送り
込む圧縮気体の量と圧力とが大きくなり、上側の凹部4a
(5a)内に送り込まれる圧縮気体の量と圧力とが小さく
なって、回転軸3が第11図で上方に押され、この回転軸
3の変位が解消される。As a result, the diaphragm 15 partitioning the first and second ports 9 and 11 is displaced upward, the second throttle channel 17 is widened, the first throttle channel 16 is narrowed, and the lower concave portion 4b (5b The amount and pressure of the compressed gas fed into the parentheses) increase, and the upper concave portion 4a
The amount and pressure of the compressed gas sent into (5a) decreases, and the rotating shaft 3 is pushed upward in FIG. 11, so that the displacement of the rotating shaft 3 is eliminated.
(発明が解決しようとする課題) ところが、上述の様に構成され作用する、従来の静圧
気体軸受に於いては、次に述べる様な問題があった。(Problems to be Solved by the Invention) However, the conventional hydrostatic gas bearing configured and operated as described above has the following problems.
即ち、従来構造の場合、前記第10図に示した様に、第
一、第二の両制御絞り弁6、7と各凹部4a、4b、5a、5b
とを連通する為の、第一、第二両供給管10、12が長く、
回転軸3が変位した場合に於ける流量制御の応答性が悪
い為、凹部4a、4b、5a、5bに送り込んだ圧縮気体によ
り、自励振動が発生し易く、発生した場合には、静圧気
体軸受を組み込んだ工作機械等の運転を安定して行なえ
なくなってしまう。That is, in the case of the conventional structure, as shown in FIG. 10, both the first and second control throttle valves 6, 7 and the recesses 4a, 4b, 5a, 5b
The first and second supply pipes 10, 12 for communicating with
Since the response of the flow rate control when the rotating shaft 3 is displaced is poor, self-excited vibration is easily generated by the compressed gas sent into the recesses 4a, 4b, 5a, 5b. Operation of a machine tool or the like incorporating a gas bearing cannot be stably performed.
本発明の静圧気体軸受は、上述の様な問題を解決する
ものである。The hydrostatic gas bearing of the present invention solves the above-mentioned problems.
(課題を解決する為の手段) 本発明の静圧気体軸受は、軸受面を有するハウジング
と、この軸受面に形成された複数の圧力容積部と、上部
ハウジングの外面に形成した長孔状の空間部に設けた制
御絞り弁と、上記ハウジング内に形成され、且つ上記制
御絞り弁と上記各圧力容積部とを連通させる分配流路
と、圧縮気体供給源と上記空間部とを連通させる給気流
路とを具えている。(Means for Solving the Problems) A hydrostatic gas bearing according to the present invention includes a housing having a bearing surface, a plurality of pressure volumes formed in the bearing surface, and an elongated hole formed in an outer surface of the upper housing. A control throttle valve provided in the space, a distribution passage formed in the housing and communicating the control throttle valve with each of the pressure volumes, and a supply passage for communicating a compressed gas supply source with the space. An air flow path.
そして、上記制御絞り弁は、長方形状の板ばねと、こ
の板ばねを挟持する1対の長方形状の弁座板とを具え、
各弁座板の板ばねと対向する面の中央部に形成した凹部
の中央には、この凹部の深さ寸法よりも小さな高さ寸法
を有する凸部を形成し、この凸部の中央には、各弁座板
と板ばねとの間に存在する空間と上記分配流路とを連通
する通孔を形成している。The control throttle valve includes a rectangular leaf spring and a pair of rectangular valve seat plates that sandwich the leaf spring.
A convex portion having a height smaller than the depth of the concave portion is formed at the center of the concave portion formed at the central portion of the surface of each valve seat plate facing the leaf spring, and the central portion of the convex portion is formed at the center of the concave portion. In addition, a through hole is formed to communicate a space existing between each valve seat plate and the leaf spring with the distribution channel.
(作用) 上述の様に構成される本発明の静圧気体軸受の場合、
回転部材を支承する為の圧縮気体は、制御絞り弁と圧力
容積部とを通じて軸受隙間に送り込まれ、上記回転部材
を軸受部材に対して、非接触状態で支承する。(Operation) In the case of the hydrostatic gas bearing of the present invention configured as described above,
Compressed gas for supporting the rotating member is sent into the bearing gap through the control throttle valve and the pressure volume, and supports the rotating member in a non-contact state with the bearing member.
本発明の静圧気体軸受の場合、制御絞り弁をハウジン
グに内蔵し、この制御絞り弁と圧力容積部とを結ぶ分配
流路を短くしている為、制御絞り弁の応答性が向上し、
自励振動が発生しにくくなって、静圧気体軸受を組み込
んだ装置の運転を安定した状態で行なえる。In the case of the hydrostatic gas bearing of the present invention, the control throttle valve is built in the housing, and the distribution flow path connecting the control throttle valve and the pressure volume section is shortened, so that the responsiveness of the control throttle valve is improved,
Self-excited vibration is less likely to occur, and the operation of the device incorporating the hydrostatic gas bearing can be performed in a stable state.
又、制御絞り弁を構成する板ばね及び弁座板を長方形
状とし、上記制御絞り弁を収納する為の空間部を、長孔
状とした為、複数の制御絞り弁を狭い面積内に設置する
事が可能となり、静圧気体軸受の小型化を図れる。Further, the leaf spring and the valve seat plate constituting the control throttle valve are rectangular, and the space for accommodating the control throttle valve is elongated, so that a plurality of control throttle valves are installed in a small area. And the size of the hydrostatic gas bearing can be reduced.
(実施例) 次に、図示の実施例を説明しつつ、本発明を更に詳し
く説明する。(Example) Next, the present invention will be described in more detail while describing the illustrated example.
第1〜8図は本発明の実施例を示しており、第1図は
第8図のA−A線で切断してスラスト軸受部分を示す断
面図、第2図はスラスト軸受面に形成したスリット溝の
形状を示す、第1図のB−B視図、第3図は第8図のC
−C線で切断してラジアル軸受部分を示す断面図、第4
図は第3図のD−D断面図、第5図はラジアル軸受面に
形成したスリット溝の形状を示す、第4図のE−E視
図、第6図は制御絞り弁の分解斜視図、第7図は制御絞
り弁の組み付け状態を示す、第6図のF−F断面に相当
する図、第8図は制御絞り弁の配置状態を示す、第1図
のG−G視図である。1 to 8 show an embodiment of the present invention. FIG. 1 is a cross-sectional view showing a thrust bearing portion cut along a line AA in FIG. 8, and FIG. 2 is formed on a thrust bearing surface. FIG. 1 is a view taken along the line BB of FIG. 1 showing the shape of the slit groove, and FIG.
FIG. 4 is a sectional view showing a radial bearing portion taken along line C of FIG.
FIG. 3 is a sectional view taken along the line DD in FIG. 3, FIG. 5 is a view taken along the line EE in FIG. 4, and FIG. 6 is an exploded perspective view of the control throttle valve. FIG. 7 is a view corresponding to a section taken along line FF of FIG. 6, showing an assembled state of the control throttle valve, and FIG. 8 is a view taken along the line GG of FIG. 1 showing an arrangement state of the control throttle valve. is there.
第1図に於いて、それぞれ短筒状に形成された内筒22
に外筒23を外嵌固定している。内筒22の内側には、円管
状の回転部材24が挿通されており、この回転部材24の両
端部にそれぞれ固定されたフランジ片25a、25bの内側面
と、上記内筒22と外筒23との端面に固定した軸受部材26
a、26bとが対向している。そして、内筒22と外筒23と軸
受部材26a、26bとで、ハウジング21を構成している。In FIG. 1, inner cylinders 22 each formed in a short cylindrical shape are shown.
The outer cylinder 23 is externally fitted and fixed. A cylindrical rotary member 24 is inserted inside the inner cylinder 22, and the inner surfaces of the flange pieces 25a and 25b fixed to both ends of the rotary member 24, the inner cylinder 22 and the outer cylinder 23, respectively. Bearing member 26 fixed to the end face of
a and 26b face each other. The housing 21 is composed of the inner cylinder 22, the outer cylinder 23, and the bearing members 26a and 26b.
内筒22と外筒23との間に挟まれる様にして、これら部
材22、23の端面に固定された各軸受部材26a、26bは、そ
れぞれの外側面を軸受面27a、27bとしており、各軸受面
27a、27bに、それぞれ第2図に示す様に、複数の同心円
弧部とこれら複数の同心円弧部同士を連続させる放射部
とから成る、圧力容積部であるスリット溝28a、28bを形
成している。Each of the bearing members 26a, 26b fixed to the end faces of these members 22, 23 in such a manner as to be sandwiched between the inner cylinder 22 and the outer cylinder 23 has respective outer surfaces as bearing surfaces 27a, 27b. Bearing surface
As shown in FIG. 2, slit grooves 28a and 28b, each of which is a pressure volume section, are formed of a plurality of concentric arc portions and a radiating portion connecting the plurality of concentric arc portions to each other, as shown in FIG. I have.
各スリット溝28a、28bはそれぞれ、分配流路29a、29b
と、外筒23内に設けられた制御絞り弁30aと、給気流路3
1とを介して、コンプレッサ等の圧縮気体供給源に通じ
ており、各スリット溝28a、28bに圧縮気体を送り込む事
で、上記回転部材24をハウジング21が非接触状態で支承
する様にしている。Each slit groove 28a, 28b is a distribution channel 29a, 29b, respectively.
And a control throttle valve 30a provided in the outer cylinder 23;
1 and a compressed gas supply source such as a compressor, and the compressed gas is fed into each of the slit grooves 28a and 28b so that the housing 21 supports the rotating member 24 in a non-contact state. .
即ち、上記各スリット溝28a、28b内に送り込まれた圧
縮気体により、上記軸受面27a、27bとフランジ片25a、2
5bの内側面との間に軸受隙間を形成し、回転部材24がハ
ウジング21の内筒22の内側で、各フランジ片25a、25bと
各軸受部材26a、26bとが互いに接触する異なく回転する
様にしている。That is, the compressed gas sent into each of the slit grooves 28a, 28b causes the bearing surfaces 27a, 27b and the flange pieces 25a, 2
A bearing gap is formed between the bearing member and the inner surface of the housing 5b, and the rotating member 24 rotates inside the inner cylinder 22 of the housing 21 so that the flange pieces 25a, 25b and the bearing members 26a, 26b come into contact with each other. I am doing it.
各スリット溝28a、28bに通じる分配流路29a、29bと給
気流路31との間に設けた制御絞り弁30aは、前述した従
来構造に於ける第一、第二の制御絞り弁6、7(第10〜
11図参照)と同様に機能して、両スリット溝28a、28bへ
の圧縮気体の供給量を調節し、フランジ片25aの内側面
と軸受面27aとの間の軸受隙間の大きさと、フランジ片2
5bの内側面と軸受面27bとの間の軸受隙間の大きさとが
大きく異ならない様にするものである。The control throttle valve 30a provided between the supply flow passage 31 and the distribution flow passages 29a, 29b communicating with the slit grooves 28a, 28b is the first and second control throttle valve 6, 7 in the above-described conventional structure. (10th ~
11), the amount of compressed gas supplied to both slit grooves 28a and 28b is adjusted, and the size of the bearing gap between the inner surface of the flange piece 25a and the bearing surface 27a is determined. Two
This is to prevent the size of the bearing gap between the inner surface of 5b and the bearing surface 27b from being largely different.
但し、本発明に使用する制御絞り弁の場合、この様な
制御絞り弁30aを、第6図に示す様に、長方形状で、厚
さが0.1〜0.35mm程度の板ばね32と、この板ばね32を挟
持する1対の長方形状の弁座板37、37と、両弁座板37、
37を取り付けるボルトとから構成すると共に、これら各
部材32、37から成る制御絞り弁30aを、上記外筒23の外
面に形成した、長孔状の空間部である凹部33a内に装着
している。However, in the case of the control throttle valve used in the present invention, such a control throttle valve 30a is provided with a leaf spring 32 having a rectangular shape and a thickness of about 0.1 to 0.35 mm as shown in FIG. A pair of rectangular valve seat plates 37, 37 for holding the spring 32;
A control throttle valve 30a composed of these members 32 and 37 is mounted in a concave portion 33a which is a long hole-shaped space formed on the outer surface of the outer cylinder 23. .
尚、静圧気体軸受用制御絞り弁30aの場合は、板ばね3
2の厚さが0.1mm未満の場合、圧力変化に対応した板ばね
32の動きが過敏になり過ぎて、制御絞り弁30aによる制
御が安定せずに、自励振動が発生し易くなる。反対に、
板ばね32の厚さが0.35mmを越えた場合、板ばね32の動き
がにぶくなり過ぎて、制御絞り弁30aによる制御があま
り行なわれなくなる。この為、板ばね32の厚さを、上記
範囲に限定した。In the case of the control throttle valve 30a for a static pressure gas bearing, the leaf spring 3
When the thickness of 2 is less than 0.1mm, leaf spring corresponding to pressure change
The movement of 32 becomes too sensitive, and the control by the control throttle valve 30a is not stabilized, and self-excited vibration is likely to occur. Conversely,
When the thickness of the leaf spring 32 exceeds 0.35 mm, the movement of the leaf spring 32 becomes excessively rough, and the control by the control throttle valve 30a is not performed much. For this reason, the thickness of the leaf spring 32 is limited to the above range.
上記各弁座板37、37の、板ばね32と対向する面の中央
部には、凹部34、34を形成しており、各凹部34、34の中
央には、各凹部34、34の深さ寸法dよりも小さな高さ寸
法h(<d)を有する凸部35、35を形成している。更
に、各凸部35、35の中央には、各弁座板37、37と板ばね
32との間に存在する空間36、36と前記分配流路29a、29b
とを連通する為、第7図に示す様に、内径が1〜3mm程
度の通孔42、42を形成している。そして、これら各部材
32、37より成る制御絞り弁30aを装着した凹部33aの開口
部を蓋板38により塞いでいる。蓋板38には、スリット溝
28bに通じる分配流路29bの一部を形成し、1対の分配流
路29a、29bが上記制御絞り弁30aに対して、両側から接
続される様にしている。Recesses 34, 34 are formed in the center of the surface of each of the valve seat plates 37, 37 facing the leaf spring 32, and the depth of each of the recesses 34, 34 is The protrusions 35 having a height dimension h (<d) smaller than the height dimension d are formed. Further, in the center of each convex portion 35, 35, each valve seat plate 37, 37 and a plate spring
32 and the distribution channels 29a, 29b
As shown in FIG. 7, through-holes 42, 42 having an inner diameter of about 1 to 3 mm are formed in order to communicate with. And each of these members
The opening of the concave portion 33a in which the control throttle valve 30a composed of 32 and 37 is mounted is closed by a cover plate 38. The cover plate 38 has a slit groove
A part of a distribution channel 29b communicating with 28b is formed, and a pair of distribution channels 29a and 29b are connected to the control throttle valve 30a from both sides.
尚、通孔42の内径が1mm未満であると、各スリット溝2
8a、28bへの圧縮気体の供給量が不足し、回転部材24の
支持が不十分となる。反対に、通孔42の内径が3mmを越
えた場合、凸部35の板ばね32側の面の面積が小さくなっ
て、凸部35と板ばね32との間の空間36の絞り効果が小さ
くなり、圧縮気体の流れの乱れが大きくなって、回転部
材24の支持が不安定になる。この為、各通孔42、42の内
径を、1〜3mmとした。If the inner diameter of the through hole 42 is less than 1 mm, each slit groove 2
The supply amount of the compressed gas to 8a and 28b is insufficient, and the support of the rotating member 24 is insufficient. Conversely, when the inner diameter of the through hole 42 exceeds 3 mm, the area of the surface of the convex portion 35 on the leaf spring 32 side decreases, and the aperture effect of the space 36 between the convex portion 35 and the leaf spring 32 decreases. As a result, the turbulence of the flow of the compressed gas increases, and the support of the rotating member 24 becomes unstable. For this reason, the inner diameter of each through hole 42 is set to 1 to 3 mm.
更に、内筒22の内周面に設けられた軸受面39には、圧
力容積部である、第5図に示す様な『日』字形のスリッ
ト溝40、40を、軸方向2個所に4個ずつ、合計8個形成
している。そして、第3、4、8図に示す様に、外筒23
の外周面に形成した長孔状の空間部である、凹部33b〜3
3eに内蔵した、長方形状の板ばね32と弁座板37、37とを
具えた制御絞り弁30b〜30eと分配流路41、41とを通じ
て、各スリット溝40、40に圧縮気体を供給する様にして
いる。Further, on the bearing surface 39 provided on the inner peripheral surface of the inner cylinder 22, there are provided slit grooves 40, 40 of a "day" shape as shown in FIG. A total of eight pieces are formed for each piece. Then, as shown in FIGS.
Concave portions 33b to 3 which are long hole-shaped space portions formed on the outer peripheral surface of
Compressed gas is supplied to each of the slit grooves 40, 40 through the control throttle valves 30b to 30e including the rectangular leaf spring 32 and the valve seat plates 37, 37 built in 3e and the distribution channels 41, 41. I am doing it.
上述の様に構成される本発明の静圧気体軸受の場合、
回転部材24を支承する為の圧縮気体は、各スリット溝28
a、28b、40、40を通じて、各フランジ片25a、25bの内側
面と軸受面27a、27bとの間、及び回転部材24の外周面と
軸受面39との間の軸受隙間に送り込まれ、軸受部材であ
るハウジング21の内側に回転部材24を、非接触状態で支
承する。回転部材24が軸方向(第1図の左右方向)にず
れた場合には、制御絞り弁30aの作用によりこのずれを
修正し、又、回転部材24が軸と直角方向にずれた場合や
傾斜した場合には、制御絞り弁30b〜30eの作用により、
このずれや傾斜を修正する。In the case of the hydrostatic gas bearing of the present invention configured as described above,
The compressed gas for supporting the rotating member 24 is supplied to each slit groove 28
a, 28b, 40, 40, are fed into the bearing gap between the inner surface of each flange piece 25a, 25b and the bearing surface 27a, 27b, and between the outer peripheral surface of the rotating member 24 and the bearing surface 39, A rotating member 24 is supported inside the housing 21 as a member in a non-contact state. When the rotating member 24 is displaced in the axial direction (the left-right direction in FIG. 1), the displacement is corrected by the action of the control throttle valve 30a. In this case, due to the operation of the control throttle valves 30b to 30e,
Correct this shift or tilt.
更に、本発明の静圧気体軸受の場合、第8図に示す様
に複数個(5個)の制御絞り弁30a〜30eをハウジング21
に内蔵し、各制御絞り弁30a〜30eと圧力容積部であるス
リット溝28a、28b、40、40とを結ぶ分配流路29a、29b、
41、41を短くしている為、各制御絞り弁30a〜30eの応答
性が向上し、自励振動が発生しにくくなって、静圧気体
軸受を組み込んだ装置の運転を安定した状態で行なえ
る。Further, in the case of the hydrostatic gas bearing of the present invention, a plurality (five) of control throttle valves 30a to 30e are connected to the housing 21 as shown in FIG.
The distribution flow paths 29a, 29b linking the control throttle valves 30a to 30e and the slit grooves 28a, 28b, 40, 40, which are pressure capacity sections,
Since 41 and 41 are shortened, the responsiveness of each control throttle valve 30a-30e is improved, self-excited vibration is less likely to occur, and the operation of the device incorporating the static pressure gas bearing can be performed in a stable state. You.
尚、第9図に示す様に、ハウジング8の外面に、それ
ぞれが円形の凹部19、19を形成し、各凹部19、19の内側
に円形の制御絞り弁20、20を組み込むと、隣り合う凹部
19、19同士が干渉しない様にする為に、隣り合う凹部1
9、19同士の間隔を十分に広くする必要が生じ、制御絞
り弁20、20の設置スペースが広くなって、静圧気体軸受
が大型化してしまう。As shown in FIG. 9, circular recesses 19, 19 are formed on the outer surface of the housing 8, and circular control throttle valves 20, 20 are installed inside the recesses 19, 19, respectively. Recess
Adjacent recesses 1 to prevent interference between 19 and 19
It is necessary to make the interval between 9, 9 sufficiently large, so that the installation space for the control throttle valves 20, 20 becomes large and the hydrostatic gas bearing becomes large.
この為本発明の場合、各制御絞り弁30a〜30eを構成す
る板ばね32及び弁座板37、37を長方形状とし、上記各制
御絞り弁30a〜30eを収納する為の凹部33a〜33eを長孔状
として、第8図に示す様に、複数の制御絞り弁30a〜30e
を狭い面積内に設置する事が可能とし、静圧気体軸受の
小型化を図れる様にした。For this reason, in the case of the present invention, the leaf spring 32 and the valve seat plates 37, 37 constituting each of the control throttle valves 30a to 30e have a rectangular shape, and the concave portions 33a to 33e for accommodating the control throttle valves 30a to 30e are provided. As shown in FIG. 8, a plurality of control throttle valves 30a to 30e
Can be installed in a small area, and the size of the hydrostatic gas bearing can be reduced.
尚、ラジアル方向の変位とスラスト方向の変位との両
方向を制御絞り弁により規制する為には、少なくとも3
個の制御絞り弁が必要となり、更に回転軸3の傾斜を抑
える為、軸方向に亙って2組のラジアル軸受を設ける場
合には、5個の制御絞り弁が必要となる。In order to control both the radial displacement and the thrust displacement by the control throttle valve, at least 3
In the case where two sets of radial bearings are provided in the axial direction in order to suppress the inclination of the rotating shaft 3, five control throttle valves are required.
又、図示された1対のスラスト軸受により、回転軸3
の傾斜を抑える為には、スラスト軸受用の制御絞り弁が
4個必要である。The rotating shaft 3 is provided by a pair of thrust bearings shown in FIG.
In order to suppress the inclination of the thrust bearing, four control throttle valves for the thrust bearing are required.
(発明の効果) 本発明の静圧気体軸受は、以上に述べた通り構成され
作用する為、回転部材を支承する為の圧縮気体による自
励振動が発生し難く、しかも小型の静圧気体軸受を提供
する事が出来る。(Effects of the Invention) Since the hydrostatic gas bearing of the present invention is constructed and operates as described above, self-excited vibration due to compressed gas for supporting the rotating member is unlikely to occur, and furthermore, a small hydrostatic gas bearing. Can be provided.
第1〜8図は本発明の実施例を示しており、第1図は第
8図のA−A線で切断してスラスト軸受部分を示す断面
図、第2図はスラスト軸受面に形成したスリット溝の形
状を示す、第1図のB−B視図、第3図は第8図のC−
C線で切断してラジアル軸受部分を示す断面図、第4図
は第3図のD−D断面図、第5図はラジアル軸受面に形
成したスリット溝の形状を示す、第4図のE−E視図、
第6図は制御絞り弁の分解斜視図、第7図は制御絞り弁
の組み付け状態を示す、第6図のF−F断面に相当する
図、第8図は制御絞り弁の配置状態を示す、第1図のG
−G視図、第9図は円形の制御絞り弁を配置した状態を
示す、第8図と同様の図、第10図は従来の静圧気体軸受
の1例を示す断面図、第11図は制御絞り弁による制御回
路を示す断面図である。 1:軸受部材、2:軸受面、3:回転軸、4a、4b、5a、5b:凹
部、6:第一の制御絞り弁、7:第二の制御絞り弁、8:ハウ
ジング、9:第一ポート、10:第一供給管、11:第二ポー
ト、12:第二供給管、13:第一室、14:第二室、15:ダイヤ
フラム、16:第一絞り流路、17:第二絞り流路、18:軸受
隙間、19:凹部、20:制御絞り弁、21:ハウジング、22:内
筒、23:外筒、24:回転部材、25a、25b:フランジ片、26
a、26b:軸受部材、27a、27b:軸受面、28a、28b:スリッ
ト溝、29a、29b:分配流路、30a、30b、30c、30d、30e:
制御絞り弁、31:給気流路、32:板ばね、33a、33b、33
c、33d、33e、34:凹部、35:凸部、36:空間、37:弁座
板、38:蓋板、39:軸受面、40:スリット溝、41:分配流
路、42:通孔。1 to 8 show an embodiment of the present invention. FIG. 1 is a cross-sectional view showing a thrust bearing portion cut along a line AA in FIG. 8, and FIG. 2 is formed on a thrust bearing surface. FIG. 3 is a BB view of FIG. 1 showing the shape of the slit groove, and FIG.
FIG. 4 is a cross-sectional view showing the radial bearing portion cut along the line C, FIG. 4 is a cross-sectional view taken along line DD of FIG. 3, and FIG. 5 shows the shape of a slit groove formed on the radial bearing surface. -E view,
6 is an exploded perspective view of the control throttle valve, FIG. 7 shows an assembled state of the control throttle valve, a view corresponding to a section taken along line FF of FIG. 6, and FIG. 8 shows an arrangement state of the control throttle valve. G in FIG.
FIG. 9 is a view similar to FIG. 8, showing a state in which a circular control throttle valve is arranged, FIG. 10 is a sectional view showing an example of a conventional hydrostatic gas bearing, FIG. FIG. 3 is a sectional view showing a control circuit using a control throttle valve. 1: bearing member, 2: bearing surface, 3: rotating shaft, 4a, 4b, 5a, 5b: recess, 6: first control throttle valve, 7: second control throttle valve, 8: housing, 9: No. 1 port, 10: first supply pipe, 11: second port, 12: second supply pipe, 13: first chamber, 14: second chamber, 15: diaphragm, 16: first throttle channel, 17: first Two throttle channels, 18: bearing gap, 19: recess, 20: control throttle valve, 21: housing, 22: inner cylinder, 23: outer cylinder, 24: rotating member, 25a, 25b: flange piece, 26
a, 26b: bearing member, 27a, 27b: bearing surface, 28a, 28b: slit groove, 29a, 29b: distribution channel, 30a, 30b, 30c, 30d, 30e:
Control throttle valve, 31: air supply flow path, 32: leaf spring, 33a, 33b, 33
c, 33d, 33e, 34: concave, 35: convex, 36: space, 37: valve seat plate, 38: lid plate, 39: bearing surface, 40: slit groove, 41: distribution channel, 42: through hole .
Claims (3)
に形成された複数の圧力容積部と、上部ハウジングの外
面に形成した長孔状の空間部に設けた制御絞り弁と、上
記ハウジング内に形成され、且つ上記制御絞り弁と上記
各圧力容積部とを連通させる分配流路と、圧縮気体供給
源と上記空間部とを連通させる給気流路とを具え、上記
制御絞り弁は、長方形状の板ばねと、この板ばねを挟持
する1対の長方形状の弁座板とを具え、各弁座板の板ば
ねと対向する面の中央部に形成した凹部の中央には、こ
の凹部の深さ寸法よりも小さな高さ寸法を有する凸部を
形成し、この凸部の中央には、各弁座板と板ばねとの間
に存在する空間と上記分配流路とを連通する通孔を形成
した静圧気体軸受。1. A housing having a bearing surface, a plurality of pressure volumes formed in the bearing surface, a control throttle valve provided in a slot-like space formed on an outer surface of an upper housing, and a housing inside the housing. And a distribution flow path that communicates the control throttle valve with each of the pressure volume parts, and an air supply flow path that communicates the compressed gas supply source with the space part. A plate-shaped leaf spring and a pair of rectangular valve seat plates sandwiching the leaf spring. The concave portion is formed at the center of the concave portion formed at the center of the surface of each valve seat plate facing the leaf spring. A convex portion having a height dimension smaller than the depth dimension of the valve member is formed, and a central portion of the convex portion communicates with a space existing between each valve seat plate and the leaf spring and the distribution channel. Hydrostatic gas bearing with holes.
れており、各空間部にそれぞれ制御絞り弁が設けられて
いる、請求項1に記載の静圧気体軸受。2. The hydrostatic gas bearing according to claim 1, wherein a plurality of spaces are formed on an outer surface of the housing, and a control throttle valve is provided in each space.
さが0.1〜0.35mmである、請求項1又は請求項2に記載
の静圧気体軸受。3. The hydrostatic gas bearing according to claim 1, wherein the inner diameter of the through hole is 1 to 3 mm, and the thickness of the leaf spring is 0.1 to 0.35 mm.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4269290A JP2814656B2 (en) | 1990-02-26 | 1990-02-26 | Hydrostatic gas bearing |
US07/658,777 US5064297A (en) | 1990-02-26 | 1991-02-21 | Static pressure gas bearing with throttling control valve in housing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4269290A JP2814656B2 (en) | 1990-02-26 | 1990-02-26 | Hydrostatic gas bearing |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03249425A JPH03249425A (en) | 1991-11-07 |
JP2814656B2 true JP2814656B2 (en) | 1998-10-27 |
Family
ID=12643098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4269290A Expired - Fee Related JP2814656B2 (en) | 1990-02-26 | 1990-02-26 | Hydrostatic gas bearing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2814656B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5874185B2 (en) * | 2010-11-04 | 2016-03-02 | 株式会社ジェイテクト | Hydrostatic bearing device |
-
1990
- 1990-02-26 JP JP4269290A patent/JP2814656B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH03249425A (en) | 1991-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4971280B2 (en) | Device for limiting flow velocity under low pressure differential | |
US7682082B2 (en) | Compact surface self-compensated hydrostatic bearings | |
CN101191508B (en) | Linear actuator | |
US4872394A (en) | Bent axis type axial piston pump or motor | |
EP0923727B1 (en) | Improved fluid control valve arrangement | |
JP2007002862A (en) | Hydrostatic bearing | |
JPH0886380A (en) | Pilot valve | |
JP2814656B2 (en) | Hydrostatic gas bearing | |
WO2000029753A1 (en) | Fluid actuator | |
CN115325217A (en) | Vehicle thermal management multi-way valve and vehicle thermal management system | |
JP3089270B2 (en) | Hydrostatic gas bearing | |
JPH09193797A (en) | Self-abrasion compensating valve | |
JP2009092196A (en) | Static pressure gas bearing | |
WO2022218406A1 (en) | Control valve and sealing component | |
JP5831170B2 (en) | Variable throttle hydrostatic bearing | |
US20210254739A1 (en) | Valve | |
JPH11201212A (en) | Damping valve of hydraulic shock absorber | |
JP3088593B2 (en) | Hydrostatic gas bearing | |
JP2557733Y2 (en) | Hydrostatic gas bearing | |
JPH0459681B2 (en) | ||
EP1072794A2 (en) | Multi - Diaphragm actuator | |
JPH09210062A (en) | Parallelism adjusting device of rotary shaft | |
CN113192869B (en) | Air inlet mechanism and semiconductor process equipment | |
JP3911696B2 (en) | Mounting structure of fluid pressure cylinder | |
JP7320649B2 (en) | motor rotor cooling system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20070814 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080814 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 10 Free format text: PAYMENT UNTIL: 20080814 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20090814 |
|
LAPS | Cancellation because of no payment of annual fees |