JPH03249423A - Hydrostatic gas bearing - Google Patents

Hydrostatic gas bearing

Info

Publication number
JPH03249423A
JPH03249423A JP4269090A JP4269090A JPH03249423A JP H03249423 A JPH03249423 A JP H03249423A JP 4269090 A JP4269090 A JP 4269090A JP 4269090 A JP4269090 A JP 4269090A JP H03249423 A JPH03249423 A JP H03249423A
Authority
JP
Japan
Prior art keywords
bearing
depth
slit
slit grooves
slit groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4269090A
Other languages
Japanese (ja)
Other versions
JP3089270B2 (en
Inventor
Mamoru Tanaka
守 田中
Masayuki Suzuki
雅之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP02042690A priority Critical patent/JP3089270B2/en
Priority to US07/658,777 priority patent/US5064297A/en
Priority to GB9103921A priority patent/GB2241992B/en
Publication of JPH03249423A publication Critical patent/JPH03249423A/en
Application granted granted Critical
Publication of JP3089270B2 publication Critical patent/JP3089270B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To prevent automatic vibration, and to improve the rigidity of a bearing by providing a slit groove whose depth is three to eight times as large as the size of a bearing gap, and whose width is one to five times as large as the depth, on a bearing surface. CONSTITUTION:A rotational shaft 3 is inserted into the inside of a bearing member 1 whose inner circumferential surface is a bearing surface 2, while slit grooves 19a, 19b, 20a, 20b are formed on four points of the bearing surface 2, and by sending compressed air to the slit groove, the rotational shaft 3 is supported on the inside of the bearing member 1 in a non-contact condition. The slit grooves 19a, 19b are communicated with a compressed air supply source such as a compressor through a first control restrictor 6, while the slit grooves 20a, 20b are communicated therewith through a second control restrictor 7. The depth (d) of the slit grooves 19a, 19b, 20a, 20b is three to eight times as large as the size (h) of a bearing gap 18, while the width (w) is one to five times as large as the depth (d). The generation of self-excited vibration can be suppressed thereby, and the rigidity of the bearing can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明の静圧気体軸受は、精密工作機械等の回転部分を
支承する場合に利用するもので、本発明は、この様な静
圧気体軸受の剛性向上を図るものである。
Detailed Description of the Invention (Field of Industrial Application) The hydrostatic gas bearing of the present invention is used to support rotating parts of precision machine tools, etc. This is intended to improve the rigidity of the bearing.

(従来の技術) 精密工作機械等に組み込まれ、高速で回転する回転軸等
の回転部材を、空気等の圧縮気体の力により支承する静
圧気体軸受が、従来から広く使用されている。
(Prior Art) Hydrostatic gas bearings have been widely used in the past, which are incorporated into precision machine tools and support rotating members such as rotating shafts that rotate at high speed using the force of compressed gas such as air.

第9〜10図は、この様な従来から知られている静圧気
体軸受の1例として、特公昭45−37683号公報に
記載された静圧気体軸受を示している。
9 and 10 show a hydrostatic gas bearing described in Japanese Patent Publication No. 45-37683 as an example of such a conventionally known hydrostatic gas bearing.

第9図に於いて1は、内周面を円筒状の軸受面2とした
軸受部材で、この軸受部材1の内側に回転軸3を挿通し
ている。上記軸受面2の上下左右4個所位置には、それ
ぞれ凹部4a、4b、5a、5bを形成し、各凹部4a
、4b、5a、5bに圧縮気体を送り込む事で、上記回
転軸3を軸受部材1の内側に、非接触状態で支承する様
にしている。
In FIG. 9, reference numeral 1 denotes a bearing member whose inner peripheral surface has a cylindrical bearing surface 2, and a rotary shaft 3 is inserted into the inside of this bearing member 1. Recesses 4a, 4b, 5a, and 5b are formed at four positions on the upper, lower, left, and right sides of the bearing surface 2, and each recess 4a
, 4b, 5a, and 5b, the rotating shaft 3 is supported inside the bearing member 1 in a non-contact manner.

上記4個の凹部4a、4b、5a、5bの内、上下2個
所位置の凹部4a、4bは第一の制御絞り弁6を介して
、左右2個所位置の凹部5a、5bは第二の制御絞り弁
7を介して、それぞれコンプレッサ等の圧縮気体供給源
に通じさせている。
Of the four recesses 4a, 4b, 5a, and 5b, the recesses 4a and 4b located at two positions above and below are controlled via the first control throttle valve 6, and the recesses 5a and 5b located at two positions on the left and right are controlled by the second control. Each of them is connected to a compressed gas supply source such as a compressor via a throttle valve 7.

上記第一、第二の制御絞り弁6.7は、軸受面2と回転
軸3の外周面とが同心になる様に、上下の凹部4a、4
b、或は左右の凹部5a、5bに送る圧縮気体の量と圧
力とを調節する為のもので、例えば第10図に示す様に
構成されている。
The first and second control throttle valves 6.7 have upper and lower recesses 4a, 4 so that the bearing surface 2 and the outer peripheral surface of the rotating shaft 3 are concentric.
b, or to adjust the amount and pressure of compressed gas sent to the left and right recesses 5a, 5b, and is configured as shown in FIG. 10, for example.

第一(第二)の制御絞り弁6(7)を構成するハウジン
グ8の片面中央部に設けた第一ボート9と凹部4a (
5a)とは第一供給管10により、他面中央部に設けた
第二ボート11と凹部4b(5b)とは第二供給管12
により、それぞれ連通させている。又、上記ハウジング
8の中間部にはダイヤフラム15を設けて、このハウジ
ング8の内側を、第一ボート9側の第−室13と第一ボ
ート11側の第二室14とに分割し、これら第、第二両
室13.14に、圧縮気体供給源から圧縮気体を送り込
んでいる。
A first boat 9 and a recess 4a (
5a) is connected to the first supply pipe 10, and the second boat 11 provided in the center of the other side and the recessed portion 4b (5b) are connected to the second supply pipe 12.
This allows them to communicate with each other. A diaphragm 15 is provided in the middle of the housing 8 to divide the inside of the housing 8 into a first chamber 13 on the first boat 9 side and a second chamber 14 on the first boat 11 side. Compressed gas is fed into both the first and second chambers 13, 14 from a compressed gas supply source.

上記ハウジング8の内面で、第一、第二側ボート9.1
1の開口部を囲む位置は、全周に亙ってそれぞれ内方に
突出させ、上記ダイヤフラム15の両側には、第一、第
二側ボート9.11と第一、第二両室13.14との間
に、それぞれ第一、第二側絞り流路16.17を形成し
ている。
On the inner surface of the housing 8, the first and second side boats 9.1
The positions surrounding the opening of the diaphragm 15 project inwardly over the entire circumference, and on both sides of the diaphragm 15 there are first and second side boats 9.11 and both first and second chambers 13.1. 14, first and second side throttle channels 16 and 17 are formed, respectively.

上述の様に構成される為、回転軸3の変位に基づいて、
この回転軸3の外周面と軸受面2とが同心でなくなった
場合、第一、第二の制御絞り弁6.7の作用により、凹
部4a、4b、5a、5bに送り込まれる圧縮空気の量
と圧力とが適当に調節され、上記回転軸3の外周面と軸
受面2とが同心になる。
Since it is configured as described above, based on the displacement of the rotating shaft 3,
When the outer peripheral surface of the rotating shaft 3 and the bearing surface 2 are no longer concentric, the amount of compressed air sent into the recesses 4a, 4b, 5a, 5b by the action of the first and second control throttle valves 6.7. and pressure are adjusted appropriately, and the outer circumferential surface of the rotating shaft 3 and the bearing surface 2 become concentric.

例えば、第10図に於いて回転軸3が下方に変位した場
合、回転軸3の外周面と軸受面2との間の軸受隙間18
の寸法が、下側で小さく、上側で大きくなる。この寸法
変化に伴ない、下側の凹部4b (5b)内の圧力が高
く、上側の凹部4a(5a)内の圧力が低くなり、第二
供給管12により凹部4b (5b)と通じた第二ボー
ト11内の圧力が上昇し、第一供給管10により凹部4
a(5a)と通じた第一ボート9内の圧力が低下する。
For example, when the rotating shaft 3 is displaced downward in FIG. 10, the bearing gap 18 between the outer peripheral surface of the rotating shaft 3 and the bearing surface 2
The dimensions of are smaller at the bottom and larger at the top. Along with this dimensional change, the pressure inside the lower recess 4b (5b) becomes high, the pressure inside the upper recess 4a (5a) decreases, and the second supply pipe 12 communicates with the recess 4b (5b). The pressure inside the second boat 11 increases, and the first supply pipe 10 causes the recess 4 to
The pressure in the first boat 9 communicating with a (5a) decreases.

この結果、第一、第二側ポート9.11を仕切るダイヤ
フラム15が上方に変位し、第二絞り流路17が広く、
第一絞り流路16が狭くなって、下側の凹部4b (5
b)内に送り込む圧縮気体の量と圧力とが犬ぎくなり、
上側の凹部4a(5a)内に送り込まれる圧縮気体の量
と圧力とが小さくなって、回転軸3が第10図で上方に
押され、この回転軸3の変位が解消される。
As a result, the diaphragm 15 that partitions the first and second side ports 9.11 is displaced upward, and the second throttle channel 17 is widened.
The first throttle channel 16 becomes narrower, and the lower recess 4b (5
b) The amount and pressure of compressed gas sent into the interior become too large,
The amount and pressure of the compressed gas sent into the upper recess 4a (5a) are reduced, and the rotating shaft 3 is pushed upward in FIG. 10, thereby eliminating the displacement of the rotating shaft 3.

(発明が解決しようとする課題) ところが、上述の汀に構成され作用する、従来の静圧気
体軸受に1髪・では、次に述べる様な問題があった。
(Problems to be Solved by the Invention) However, the conventional static pressure gas bearing that is configured and operates on the above-mentioned shore has the following problems.

即ち、従来構造の場合、軸受隙間18に圧縮気体を供給
する為の凹部4a、4b、5a、5bが、大きな凹みで
あった為、これらの凹部4a。
That is, in the case of the conventional structure, the recesses 4a, 4b, 5a, and 5b for supplying compressed gas to the bearing gap 18 were large recesses, so these recesses 4a.

4b、5a、5bに送り込んだ圧縮気体により、自助振
動が発生し易く、発生した場合には、静圧気体軸受を組
み込んだ工作機械等の運転を安定して行なえなくなって
しまう。
The compressed gas fed into the bearings 4b, 5a, and 5b tends to cause self-support vibration, and if this occurs, it becomes impossible to stably operate a machine tool or the like incorporating the hydrostatic gas bearing.

特に、軸受剛性を高める為、各凹部4a、4b、5a、
sbに供給する気体の圧力を上昇させると、上述の様な
自励振動が発生し易くなるので、軸受剛性を高めるのに
限度があった。
In particular, in order to increase bearing rigidity, each recess 4a, 4b, 5a,
If the pressure of the gas supplied to sb is increased, self-excited vibrations as described above are likely to occur, so there is a limit to how much the bearing rigidity can be increased.

本発明の静圧気体軸受は、上述の様な問題を解決するも
のである。
The hydrostatic gas bearing of the present invention solves the above-mentioned problems.

(課題を解決する為の手段) 本発明の静圧気体軸受は、固定の軸受部材と、この軸受
部材に設けた軸受面と軸受隙間を介して対向する回転部
材と、上記軸受面に形成され、且つ供給口を通じて圧縮
気体の供給源に通しるスリット溝とから構成されている
(Means for Solving the Problems) A hydrostatic gas bearing of the present invention comprises: a fixed bearing member; a rotating member that faces a bearing surface provided on the bearing member with a bearing gap therebetween; and a rotating member formed on the bearing surface. , and a slit groove through which the compressed gas supply source is passed through the supply port.

そして、上記スリット溝の深さdは、軸受隙間寸法りの
3〜8倍とし、上記スリット溝の幅Wは、上記深さdの
1〜5倍としている。
The depth d of the slit groove is 3 to 8 times the bearing gap dimension, and the width W of the slit groove is 1 to 5 times the depth d.

(作  用) 上述の様に構成される本発明の静圧気体軸受の場合、回
転部材を支承する為の圧縮気体は、スリット溝を通じて
軸受隙間に送り込まれるが、スリット溝の形状が工夫さ
れている事により、自助振動が発生し難くなり、静圧気
体軸受を組み込んだ装置を安定した状態で運転する事が
出来、又、圧縮気体の圧力を高めて、軸受剛性を向上さ
せる事も可能となる。
(Function) In the case of the hydrostatic gas bearing of the present invention configured as described above, the compressed gas for supporting the rotating member is sent into the bearing gap through the slit groove, but the shape of the slit groove is devised. This makes it difficult for self-supported vibrations to occur, allowing devices incorporating static pressure gas bearings to operate in a stable state, and also making it possible to increase the pressure of compressed gas and improve bearing rigidity. Become.

(実施例) 次に、図示の実施例を説明しつつ、本発明を更に詳しく
説明する。
(Example) Next, the present invention will be explained in more detail while explaining the illustrated embodiment.

第1〜3図は本発明の第一実施例を示しており、第1図
は全体構成を示す断面図、第2図はスリット溝の形状を
示す、第1図のA矢視図、第3図は第2図のB−B断面
図である。
1 to 3 show a first embodiment of the present invention, FIG. 1 is a cross-sectional view showing the overall structure, FIG. 2 is a view in the direction of arrow A in FIG. FIG. 3 is a sectional view taken along line BB in FIG. 2.

1は、内周面を円筒状の軸受面2とした軸受部材で、こ
の軸受部材1の内側に、外径が50〜150mm程度の
回転軸3を挿通している。上記軸受面2の上下左右4個
所位置には、それぞれスリット溝19a、19b、20
a、20bを形成し、各スリット溝19a、19b、2
0a、20bに圧縮気体を送り込む事で、上記回転軸3
を軸受部材1の内側に、非接触状態で支承する様にして
いる。
1 is a bearing member whose inner peripheral surface is a cylindrical bearing surface 2, and a rotating shaft 3 having an outer diameter of approximately 50 to 150 mm is inserted into the inside of this bearing member 1. Slit grooves 19a, 19b, and 20 are provided at four positions on the upper, lower, left, and right sides of the bearing surface 2, respectively.
a, 20b, and each slit groove 19a, 19b, 2
By sending compressed gas to 0a and 20b, the rotating shaft 3
is supported inside the bearing member 1 in a non-contact manner.

即ち、上記各スリット溝19a、19b、20a、20
b内に送り込まれた圧縮気体により、上記軸受面2と回
転軸3の外周面との間に、寸法がhの軸受隙間18を全
周に亙って形成し、回転軸3が軸受部材1の内側で、両
部材3.1同士が互いに接触する事なく回転する様にし
ている。
That is, each of the slit grooves 19a, 19b, 20a, 20
By the compressed gas sent into the bearing member 1, a bearing gap 18 having a dimension h is formed between the bearing surface 2 and the outer peripheral surface of the rotating shaft 3 over the entire circumference, and the rotating shaft 3 is connected to the bearing member 1. Inside the housing, both members 3.1 are rotated without coming into contact with each other.

又、上記4個のスリット溝19a、19b、20a、2
0bの内、上下2個所位置のスリット溝19a、19b
は第一の制御絞り弁6を介して、左右2個所位置のスリ
ット溝20a、20bは第二の制御絞り弁7を介して、
それぞれコンプレッサ等の圧縮気体供給源に通しさせて
いる。
In addition, the four slit grooves 19a, 19b, 20a, 2
0b, slit grooves 19a and 19b at two positions above and below
through the first control throttle valve 6, and the slit grooves 20a and 20b at two positions on the left and right through the second control throttle valve 7.
Each is passed through a compressed gas supply source such as a compressor.

上記第一、第二の制御絞り弁6.7は、前述した従来構
造の場合と同様に、軸受面2と回転軸3の外周面とが同
心になる様に、上下のスリット溝19a、19b1或は
左右のスリット溝20a120bに送る圧縮気体の量を
調節する為のもので、前述した第10図に示す様に構成
されており、各制御絞り弁6.7の両端部にその一端を
接続された第一、第二供給管10.12の他端を、上記
各スリット溝19a、19b、20a、20bの中央部
に通じさせている。
The first and second control throttle valves 6.7 have upper and lower slit grooves 19a, 19b1 so that the bearing surface 2 and the outer circumferential surface of the rotating shaft 3 are concentric with each other, as in the case of the conventional structure described above. Alternatively, it is used to adjust the amount of compressed gas sent to the left and right slit grooves 20a and 120b, and is configured as shown in FIG. The other ends of the first and second supply pipes 10.12 are communicated with the center portions of the respective slit grooves 19a, 19b, 20a, 20b.

各スリット溝19a、19b、20a、20bは、それ
ぞれ第2図に示す様にr田J字形に形成されている。
Each of the slit grooves 19a, 19b, 20a, and 20b is formed in a J-shape as shown in FIG.

この様な各スリット溝19a、19b、20a、20b
の深さdは、前記軸受隙間18の寸法h(通常5〜20
μm)の3〜8倍(d=(3〜8)h)とし、上記スリ
ット溝の幅Wは、上記深さdの1〜5倍(w=(1〜5
)d)としている。
Each slit groove 19a, 19b, 20a, 20b like this
The depth d is the dimension h (usually 5 to 20 mm) of the bearing gap 18.
The width W of the slit groove is 1 to 5 times the depth d (w=(1 to 5) h).
) d).

上述の様に構成される本発明の静圧気体軸受の場合、回
転軸3を支承する為の圧縮気体は、各スリット溝19a
、19b、20a、20bを通じて軸受隙間18に送り
込まれ、軸受部材1の内側に回転軸3を、非接触状態で
支承すると共に、回転軸3外周面の中心と軸受面2の中
心とがずれた場合には、第一、第二の両制御絞り弁6.
7の作用により、このずれを修正する。
In the case of the static pressure gas bearing of the present invention configured as described above, compressed gas for supporting the rotating shaft 3 is supplied to each slit groove 19a.
, 19b, 20a, and 20b into the bearing gap 18, and supports the rotating shaft 3 inside the bearing member 1 in a non-contact state, and the center of the outer peripheral surface of the rotating shaft 3 and the center of the bearing surface 2 are misaligned. In this case, both the first and second controlled throttle valves6.
7 corrects this deviation.

更に、本発明の静圧気体軸受の場合、スリット溝19a
、19b、20a、20bの形状が、上述の様に工夫さ
れている事により、自助振動が発生し難くなり、静圧気
体軸受を組み込んだP!密工作機械等の装置を安定した
状態で運転する事が出来、又、気体の圧力を高めて、軸
受剛性を向上させる事も可能となる。この場合に於いて
、本発明の静圧気体軸受の場合、実用的な気体消費量(
例えば、1軸受当たりで5〜501. /min )で
、十分な軸受剛性を得る事が出来る。
Furthermore, in the case of the hydrostatic gas bearing of the present invention, the slit groove 19a
, 19b, 20a, and 20b are devised as described above, making it difficult for self-supported vibration to occur, and P! which incorporates a hydrostatic gas bearing. It is possible to operate equipment such as dense machine tools in a stable state, and it is also possible to increase the gas pressure and improve the bearing rigidity. In this case, in the case of the static pressure gas bearing of the present invention, the practical gas consumption (
For example, 5 to 501 centimeters per bearing. /min), sufficient bearing rigidity can be obtained.

尚、スリット溝19a、19b、20a、20bの形状
を、上述の様に定める理由は、次の通りである。
The reason why the shapes of the slit grooves 19a, 19b, 20a, and 20b are determined as described above is as follows.

先ず、各スリット溝19a、19b、20a。First, each slit groove 19a, 19b, 20a.

20bの深さdを軸受隙間18の寸法りの3〜8倍(d
=(3〜8)h)とした理由は、深さdを隙間寸法りの
3倍よりも小さくした場合(d〈3h)、各スリット溝
19a、19b、20a、20b内に送り込まれた圧縮
気体が、溝全体に互って広がりにくく、各スリット溝1
9a、19b、20a、20b内に存在する圧縮気体の
圧力が均一となり難い為、軸受剛性が低くなり、反対に
、深さdを隙間寸法りの8倍よりも大きくした場合(d
>8h)、各スリット溝19a、19b、20a、20
bの容積が大きくなって、自助振動が発生し易くなる為
である。
The depth d of 20b is 3 to 8 times the dimension of the bearing gap 18 (d
= (3~8)h) is because when the depth d is made smaller than three times the gap size (d<3h), the compression sent into each slit groove 19a, 19b, 20a, 20b The gas is difficult to spread across the entire groove, and each slit groove 1
Since the pressure of the compressed gas existing in 9a, 19b, 20a, and 20b is difficult to be uniform, the bearing rigidity decreases.On the contrary, if the depth d is made larger than eight times the gap size (d
>8h), each slit groove 19a, 19b, 20a, 20
This is because the volume of b becomes larger and self-help vibration is more likely to occur.

又、各スリット溝19a、19b、20a、20bの幅
Wを深さdの1〜5倍(w=(1〜5)d)とした理由
は次の通りである。即ち、幅Wを深さdよりも小さくし
た場合(wed)、スリット溝19a、19b、20a
、20bの加工作業が難しくなり、静圧気体軸受の製作
費が徒に高くなり、又、各スリット溝19a、19b、
20a、2Ob内の気体の圧力が全体に亙って均一化さ
れないので、軸受剛性が低くなる。反対に、幅Wを深さ
dの5倍よりも大きくした場合(W〉5d)、軸受面2
に形成するスリット溝の体積が大きくなって、自助振動
が発生し易くなる。尚、各スリット溝19a、19b、
20a、20bの断面形状は、矩形でも、或は円弧形で
も良い。
The reason why the width W of each slit groove 19a, 19b, 20a, and 20b is set to 1 to 5 times the depth d (w=(1 to 5)d) is as follows. That is, when the width W is made smaller than the depth d (wed), the slit grooves 19a, 19b, 20a
, 20b becomes difficult, the manufacturing cost of the static pressure gas bearing becomes unnecessarily high, and each slit groove 19a, 19b,
Since the pressure of the gas inside 20a and 2Ob is not made uniform throughout, the bearing rigidity decreases. On the other hand, when the width W is made larger than five times the depth d (W>5d), the bearing surface 2
The volume of the slit groove formed in the groove increases, making it easier for self-help vibration to occur. In addition, each slit groove 19a, 19b,
The cross-sectional shape of 20a and 20b may be rectangular or arcuate.

次に、第4図は本発明の第二実施例を示している。Next, FIG. 4 shows a second embodiment of the present invention.

前述の第一実施例が、スリット溝19a119b、20
a、20bの全体形状をr田1字形としていたのに対し
、本実施例の場合は、互いに平行な複数の分配溝部21
.21の中央部同士を、連結溝部22で連続させた形状
としている。
In the first embodiment described above, the slit grooves 19a119b, 20
While the overall shape of a and 20b was an R-shape, in the case of this embodiment, a plurality of distribution grooves 21 parallel to each other are used.
.. The central portions of 21 are connected to each other by a connecting groove portion 22.

その他の構成と作用とに就いては、スリット溝の幅や深
さも含め、前述した第一実施例の場合と同様である。
The other configurations and operations, including the width and depth of the slit grooves, are the same as in the first embodiment described above.

次に、第5〜6図は本発明の第三実施例を示しており、
第5図は第6図のC−C断面図、第6図は第5図のD−
D断面図である。
Next, FIGS. 5 and 6 show a third embodiment of the present invention,
Figure 5 is a sectional view taken along line C-C in Figure 6, and figure 6 is a cross-sectional view taken along line D-- in Figure 5.
It is a D sectional view.

前述した第一〜第二実施例が、本発明をラジアル軸受に
適用した実施例であフたのに対し、本実施例、及び後述
する第四実施例は、本発明をスラスト軸受に通用した実
施例である。
While the first and second embodiments described above were examples in which the present invention was applied to a radial bearing, this embodiment and the fourth embodiment to be described later apply the present invention to a thrust bearing. This is an example.

回転軸23の両端部にフランジ部24.24を固定した
回転部材25の周囲には、両フランジ部24.24に挟
まれる様にして、円輪状の軸受部材26が設けられてい
る。
A circular bearing member 26 is provided around the rotating member 25, which has flange portions 24.24 fixed to both ends of the rotating shaft 23, so as to be sandwiched between both the flange portions 24.24.

そして、この軸受部材26の両側面に設けられた軸受面
28a、28bに、それぞれ第6図に示す様に、同心円
状の溝部と放射状の溝部とを組み合わせた、スリット溝
27a、27bを形成し、各スリット溝27a、27b
に圧縮気体を送り込む事により、各フランジ部24.2
4が軸受部材26と接触する事なく、回転軸23及びフ
ランジ部24.24が回転する様にしている。
Slit grooves 27a and 27b, which are a combination of concentric grooves and radial grooves, are formed in bearing surfaces 28a and 28b provided on both sides of the bearing member 26, respectively, as shown in FIG. , each slit groove 27a, 27b
By sending compressed gas into each flange part 24.2
The rotating shaft 23 and the flange portions 24 and 24 are made to rotate without the bearing member 26 coming into contact with the bearing member 26.

又、軸受部材26の内側には、それぞれスリット溝27
a、27bの底部に通じる制御絞り弁29を設けて、各
スリット溝27a、27bに供給する圧縮気体の量を調
節し、各軸受面28a、28bと各フランジ部24.2
4の内面との間の軸受隙間30の寸法が、互いに同じに
なる様にしている。
Further, slit grooves 27 are formed inside the bearing member 26, respectively.
A control throttle valve 29 communicating with the bottom of each slit groove 27a, 27b is provided to adjust the amount of compressed gas supplied to each slit groove 27a, 27b, and to control the amount of compressed gas supplied to each bearing surface 28a, 28b and each flange portion 24.2.
The dimensions of the bearing gap 30 between the bearing gap 30 and the inner surface of the bearing 4 are made to be the same.

上記各スリット溝27a、27bの幅や深さを前述した
範囲に規制する事は、第一〜第二実施例の場合と同様で
ある。
The width and depth of each of the slit grooves 27a and 27b are restricted to the ranges described above, as in the first and second embodiments.

次に、第7〜8図は本発明の第四実施例を示している。Next, FIGS. 7 and 8 show a fourth embodiment of the present invention.

本実施例の場合、軸受部材26の軸受面284゜ a、28bに形成するスリット溝27a、27bを、1
本の円形溝部と、この円形溝部を横切って設けられた複
数の放射溝部とから構成している。
In the case of this embodiment, the slit grooves 27a and 27b formed in the bearing surfaces 284°a and 28b of the bearing member 26 are
It consists of a circular groove of the book and a plurality of radial grooves provided across the circular groove.

その他の構成と作用とに就いては、スリット溝の幅や深
さも含め、前述した第三実施例の場合と同様である。
The other configurations and operations, including the width and depth of the slit grooves, are the same as in the third embodiment described above.

(発明の効果) 本発明の静圧気体軸受は、以上に述べた通り構成され作
用する為、回転部材を支承する為の圧縮気体による自動
振動が発生し難く、静圧気体軸受を組み込んだ工作機械
等の運転を安定して行なえるだけでなく、実用的な気体
消費量で、十分に軸受剛性を高める事が出来る。
(Effects of the Invention) Since the hydrostatic gas bearing of the present invention is constructed and operates as described above, it is difficult for automatic vibrations to occur due to the compressed gas for supporting rotating members, and it is possible to use the hydrostatic gas bearing in a workpiece incorporating the hydrostatic gas bearing. Not only can machinery be operated stably, but bearing rigidity can be sufficiently increased with a practical amount of gas consumption.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜3図は本発明の第一実施例を示しており、第1図
は全体構成を示す断面図、第2図はスリット溝の形状を
示す、第1図のA矢視図、第3図は第2図のB−B断面
図、第4図は本発明の第二実施例を示す断面図、第5〜
6図は本発明の第三実施例を示しており、第5図は第6
図のC−C断面図、第6図は第5図のD−D断面図、第
7〜8図は本発明の第四実施例を示す、第5〜6図と同
様の図、第9図は従来の静圧気体軸受の1例を示す断面
図、第10図は制御絞り弁による制御回路を示す断面図
である。 1:軸受部材、2:軸受面、3:回転軸、4a、4b、
5a、5b:凹部、6.第一の制御絞り弁、7:第二の
制御絞り弁、8;ハウジング、9・第一ボート、10:
第一供給管、11:第二ボート、12:第二供給管、1
3:第−室、14:第二室、15.ダイヤフラム、16
:第一絞り流路、178第二絞り流路、18:軸受隙間
、19a、19b、20a、20bニスリツト溝、21
・分配溝部、22:連結溝部、23:回転軸、24 フ
ランジ部、25:回転部材、26:軸受部材、27a、
27bニスリツト溝、28a、28b、軸受面、29.
制御絞り弁、30:軸受隙間。 第 図
1 to 3 show a first embodiment of the present invention, FIG. 1 is a cross-sectional view showing the overall structure, FIG. 2 is a view in the direction of arrow A in FIG. 3 is a sectional view taken along the line BB in FIG. 2, FIG. 4 is a sectional view showing the second embodiment of the present invention, and 5-
6 shows the third embodiment of the present invention, and FIG. 5 shows the sixth embodiment.
6 is a sectional view taken along line DD in FIG. 5, FIGS. 7 and 8 are views similar to FIGS. This figure is a sectional view showing an example of a conventional static pressure gas bearing, and FIG. 10 is a sectional view showing a control circuit using a control throttle valve. 1: Bearing member, 2: Bearing surface, 3: Rotating shaft, 4a, 4b,
5a, 5b: recess, 6. First control throttle valve, 7: Second control throttle valve, 8; Housing, 9/First boat, 10:
First supply pipe, 11: Second boat, 12: Second supply pipe, 1
3: Room 1, 14: Room 2, 15. diaphragm, 16
: First throttle channel, 178 Second throttle channel, 18: Bearing gap, 19a, 19b, 20a, 20b Nislit groove, 21
- Distribution groove part, 22: Connection groove part, 23: Rotating shaft, 24 Flange part, 25: Rotating member, 26: Bearing member, 27a,
27b Nislit groove, 28a, 28b, bearing surface, 29.
Control throttle valve, 30: Bearing clearance. Diagram

Claims (1)

【特許請求の範囲】[Claims] (1)固定の軸受部材と、この軸受部材に設けた軸受面
と軸受隙間を介して対向する回転部材と、上記軸受面に
形成され、且つ供給口を通じて圧縮気体の供給源に通じ
るスリット溝とから成り、このスリット溝の深さdは、
軸受隙間寸法hの3〜8倍であり、上記スリット溝の幅
wは、上記深さdの1〜5倍である静圧気体軸受。
(1) A fixed bearing member, a rotating member that faces a bearing surface provided on the bearing member through a bearing gap, and a slit groove formed on the bearing surface and communicating with a supply source of compressed gas through a supply port. The depth d of this slit groove is
The hydrostatic gas bearing is 3 to 8 times the bearing gap size h, and the width w of the slit groove is 1 to 5 times the depth d.
JP02042690A 1990-02-26 1990-02-26 Hydrostatic gas bearing Expired - Fee Related JP3089270B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP02042690A JP3089270B2 (en) 1990-02-26 1990-02-26 Hydrostatic gas bearing
US07/658,777 US5064297A (en) 1990-02-26 1991-02-21 Static pressure gas bearing with throttling control valve in housing
GB9103921A GB2241992B (en) 1990-02-26 1991-02-25 Static pressure gas bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02042690A JP3089270B2 (en) 1990-02-26 1990-02-26 Hydrostatic gas bearing

Publications (2)

Publication Number Publication Date
JPH03249423A true JPH03249423A (en) 1991-11-07
JP3089270B2 JP3089270B2 (en) 2000-09-18

Family

ID=12643036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02042690A Expired - Fee Related JP3089270B2 (en) 1990-02-26 1990-02-26 Hydrostatic gas bearing

Country Status (1)

Country Link
JP (1) JP3089270B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007054437A1 (en) * 2005-11-09 2007-05-18 BSH Bosch und Siemens Hausgeräte GmbH Compressor
JP2010249315A (en) * 2009-03-25 2010-11-04 Canon Inc Static pressure gas bearing
JP2016148455A (en) * 2016-04-13 2016-08-18 オイレス工業株式会社 Static pressure gas bearing and linear motion guide device using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015051155A (en) * 2013-09-06 2015-03-19 株式会社アサヒ Work bench or wagon
CN107061483B (en) * 2017-06-16 2019-08-27 江苏昊鹏机械有限公司 A kind of automobile hub bearing and monitoring method of On-line Fault monitoring

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007054437A1 (en) * 2005-11-09 2007-05-18 BSH Bosch und Siemens Hausgeräte GmbH Compressor
JP2010249315A (en) * 2009-03-25 2010-11-04 Canon Inc Static pressure gas bearing
JP2016148455A (en) * 2016-04-13 2016-08-18 オイレス工業株式会社 Static pressure gas bearing and linear motion guide device using the same

Also Published As

Publication number Publication date
JP3089270B2 (en) 2000-09-18

Similar Documents

Publication Publication Date Title
KR100552304B1 (en) Inclining and rotating table apparatus
US5772334A (en) Fluid film bearings
JPH01206194A (en) Fluid swivel and method of adjusting space of fluid swivel
JPH02195017A (en) Static pressure air bearing spindle
JPS63280873A (en) Adjustable axial piston machine
KR20070050824A (en) Straight conveying device for vacuum
JPH03249423A (en) Hydrostatic gas bearing
US5106208A (en) Proportioned piston ring seals
US5169240A (en) Proportioned piston ring seals
US5872875A (en) Hydrodynamic shaft bearing with concentric outer hydrostatic bearing
US3158039A (en) Dynamic balancing system for rotating structures
JPS62141309A (en) Porous static pressure gas bearing
JP2814656B2 (en) Hydrostatic gas bearing
KR20050099534A (en) Vacuum feeding joint
JP2001140882A (en) Static pressure gas bearing device
JPH0510330A (en) Static pressure bearing device
JPH03249424A (en) Hydrostatic gas bearing
JPH0582907B2 (en)
JP2557733Y2 (en) Hydrostatic gas bearing
JPH0988976A (en) Oil feeder of rolling bearing
JP4031867B2 (en) Hydrostatic air bearing device
JP2005331039A (en) Porous static pressure journal bearing
JP2510397Y2 (en) Seal device
JPS6030522Y2 (en) Pressure equalization structure of shaft sealing device
JPH04171370A (en) Noncontact type shaft seal device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070721

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080721

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees