JPH03249147A - Intermetallic compound ti-al base alloy excellent in oxidation resistance and its manufacture - Google Patents

Intermetallic compound ti-al base alloy excellent in oxidation resistance and its manufacture

Info

Publication number
JPH03249147A
JPH03249147A JP4642190A JP4642190A JPH03249147A JP H03249147 A JPH03249147 A JP H03249147A JP 4642190 A JP4642190 A JP 4642190A JP 4642190 A JP4642190 A JP 4642190A JP H03249147 A JPH03249147 A JP H03249147A
Authority
JP
Japan
Prior art keywords
alloy
oxidation resistance
weight
intermetallic compound
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4642190A
Other languages
Japanese (ja)
Inventor
Hiroyuki Anada
博之 穴田
Hisashi Maeda
尚志 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4642190A priority Critical patent/JPH03249147A/en
Publication of JPH03249147A publication Critical patent/JPH03249147A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals

Abstract

PURPOSE:To improve the oxidation resistance of a Ti-Al base alloy at a high temp. by subjecting the ingot of a Ti-Al base alloy having specified Al content to hot working at a specified temp. and draft and refining its crystalline grains. CONSTITUTION:An intermetallic compound Ti-Al base alloy contg., by weight, 31 to 44% Al, or furthermore contg. total 0.1 to 7.5% of one or two kinds of Mn and V and the balance Ti with inevitable impurities is manufactured. The ingot of this alloy is extruded at 900 to 1450 deg.C extruding temp. and 1.3 to 15 extrusion ratio. Moreover, this ingot is rolled at 900 to 1450 deg.C rolling temp. and 10 to 80% reduction ratio. By the hot working under this conditions, the alloy is recrystallized into 0.05 to 10mum crystalline grain size. If required, this alloy is furthermore incorporated with one or >=two kinds among 0.1 to 7.5% Mo, 0.2 to 1.0% Y and 0.1 to 1.2% Si. This alloy has excellent oxidation resistance as well as high specific strength characteristics of the alloy and is therefore suitable to the use for aircraft members or the like.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、軽量で且つ高温強度に優れ、将来の航空機、
超音速旅客機、スペース・ブレーン等の部材として期待
されている金属間化合物TiA42基合金に係わり、詳
しくは高温での耐酸化性を改善した金属間化合物Til
/!基合金とその製造方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention is lightweight and has excellent high-temperature strength, and is useful for future aircraft,
The intermetallic compound TiA42-based alloy is expected to be used as a material for supersonic airliners, space brains, etc. In detail, the intermetallic compound TiA has improved oxidation resistance at high temperatures.
/! This article relates to base alloys and their manufacturing methods.

(従来の技術) Ti−Aj!2元系合金において、i含有量が35〜4
4%で、残部が実質Tiである合金組成の範囲では、T
iAlの金属間化合物単相となることが知られている。
(Prior art) Ti-Aj! In binary alloys, i content is 35 to 4
4% and the balance is substantially Ti.
It is known that the intermetallic compound of iAl becomes a single phase.

このTiAl相は比重が約3.8でTiの比重4.5よ
りも小さく、非常に軽量である。また、800℃程度の
温度まで室温の強度が低下せず、むしろ温度上昇ととも
に強度が高くなるといった特徴を有している。このこと
からTiAl基合金は軽量、高強度で且つ耐酸化性の要
求されるジェットエンジン用部材等への応用が期待され
ている。
This TiAl phase has a specific gravity of about 3.8, which is smaller than the specific gravity of Ti, which is 4.5, and is extremely lightweight. Moreover, the strength at room temperature does not decrease up to a temperature of about 800° C., but rather increases as the temperature rises. For this reason, TiAl-based alloys are expected to be applied to jet engine parts and the like that require light weight, high strength, and oxidation resistance.

ところが、TiAl基合金の欠点は常温延性および高温
での耐酸化性に乏しいことである。TiAl1基合金は
800°C以下の温度での耐酸化性はTi合金より優れ
るが、800℃を超える温度領域では急速に耐酸化性が
劣化する0例えば、Mnを添加したTiAf基合金は、
常温延性が改善された合金であるが、第3元素無添加の
TiA j!基合金に比較して800°C以上での高温
耐酸化性に劣る。
However, the disadvantage of TiAl-based alloys is that they have poor room temperature ductility and poor oxidation resistance at high temperatures. TiAl single-based alloys have better oxidation resistance than Ti alloys at temperatures below 800°C, but oxidation resistance rapidly deteriorates at temperatures above 800°C. For example, TiAf-based alloys with Mn added are
Although it is an alloy with improved room temperature ductility, TiA j! without the addition of a third element! Poor high temperature oxidation resistance at temperatures above 800°C compared to base alloys.

TiA l基合金は、元来その基本組成であるTiおよ
びAlはそれぞれ単体では非常に酸化されやすい金属で
ある。これらがTiA j!基合金となることで特別な
結晶構造(面心正方晶)を有する金属間化合物と呼ばれ
るものとなる。  TiAl基合金がこのような特別な
結晶構造を有する場合、その合金の耐酸化性を向上させ
るためには、合金表面に生成するTiおよびAlの酸化
物のうち、八l t’sの酸化皮膜が緻密にかつ長期間
安定に存在し、酸化反応の保護皮膜として働くことが必
要であるといわれている。緻密なA Il t(hの酸
化皮膜の生成には、TiAffi2元系合金を2 X 
10−’Paといった低酸素分圧下において熱処理する
のが有効であるとの報告がある(小林等、日本金属学会
誌、第53巻(1989)P、251)、 Lかし、A
 1 toiの酸化皮膜の保護性は酸化反応が進み、皮
膜層の増加によるクランクの発生とともに減少するので
、この方法で緻密なA j! !03の酸化皮膜を形成
しても、長期間安定に保護皮膜として保つのはむずかし
い。
In the TiAl-based alloy, Ti and Al, which are the basic composition thereof, are metals that are easily oxidized when used alone. These are TiA j! When it becomes a base alloy, it becomes what is called an intermetallic compound with a special crystal structure (face-centered tetragonal). When a TiAl-based alloy has such a special crystal structure, in order to improve the oxidation resistance of the alloy, it is necessary to remove 8l t's oxide film from among the Ti and Al oxides that form on the alloy surface. It is said that it is necessary to exist in a dense and stable manner for a long period of time and to function as a protective film against oxidation reactions. To form a dense oxide film, a TiAffi binary alloy is used at 2X
There are reports that heat treatment under a low oxygen partial pressure of 10-'Pa is effective (Kobayashi et al., Journal of the Japan Institute of Metals, Vol. 53 (1989) P, 251), L. Kashi, A.
The protective properties of the oxide film of 1 toi decrease as the oxidation reaction progresses and cranks occur due to the increase in the film layer, so this method can be used to create a dense A j! ! Even if the oxide film of No. 03 is formed, it is difficult to maintain it as a stable protective film for a long period of time.

一方、特開昭63−111152号公報には、TiAl
1基合金の耐酸化性の改善にはSt添加が有効であると
記載されている。これはSiの添加により、合金表面に
Singの緻密な酸化皮膜が生成し、これが酸化時の保
護皮膜となり、耐酸化性向上効果を発揮するからである
。しかし、St単独では耐酸化性の向上に限りがある。
On the other hand, in Japanese Patent Application Laid-Open No. 63-111152, TiAl
It is stated that the addition of St is effective in improving the oxidation resistance of single-base alloys. This is because the addition of Si forms a dense oxide film of Sing on the alloy surface, which becomes a protective film during oxidation and exhibits the effect of improving oxidation resistance. However, there is a limit to the improvement in oxidation resistance when using St alone.

(発明が解決しようとする課題) TiA j!基合金は、軽量で且つ高温強度に優れるが
、航空機等の部材の材料として用いるためには良好な耐
酸化性も具備していることが必須である。
(Problem to be solved by the invention) TiA j! The base alloy is lightweight and has excellent high-temperature strength, but it is essential that it also has good oxidation resistance in order to be used as a material for parts such as aircraft.

本発明の課題は、高温での耐酸化性、特に800″C以
上での耐酸化性を改善したTiAl基合金と、その製造
方法を提供することにある。
An object of the present invention is to provide a TiAl-based alloy with improved oxidation resistance at high temperatures, particularly oxidation resistance at 800''C or higher, and a method for producing the same.

(課題を解決するための手段) TiAl基合金の耐酸化性向上のためには、表面に生成
するTiおよび^iの酸化物のうちA1.t03の酸化
皮膜が緻密にかつ長期間安定に存在し、酸化反応の保護
皮膜として働くことが必要である。
(Means for Solving the Problems) In order to improve the oxidation resistance of TiAl-based alloys, A1. It is necessary for the t03 oxide film to exist densely and stably for a long period of time, and to function as a protective film against oxidation reactions.

本発明者らは、このAffi、03の保護性を高めるこ
とを目的に検討を行い、下記の知見を得た。
The present inventors conducted studies with the aim of increasing the protective properties of Affi, 03, and obtained the following knowledge.

■ TiA j!基合金に生成する酸化皮膜層は、Af
!、0.層とTi(h層であり、これらが混合している
。このためAl!ICh層の保護性が充分に発揮されな
い。
■ TiA j! The oxide film layer formed on the base alloy is Af
! ,0. The Al!ICh layer is a mixture of the Al!ICh layer and the Ti(h layer).For this reason, the protective properties of the Al!ICh layer are not sufficiently exhibited.

■ へ1801層の保護性を充分に発揮させるには、T
i0g層よりも早期にA l tOs層を生成させる必
要がある。
■ To fully demonstrate the protective properties of the 1801 layer, T
It is necessary to generate the Al tOs layer earlier than the i0g layer.

■ TiA l基合金の結晶粒を微細化すると、合金中
における^!の表面への拡散速度が上がり、表面皮膜と
金属との界面においてTi01層よりもAjjgos層
の方が速く生成する。
■ When the crystal grains of a TiAl-based alloy are made finer, the crystal grains in the alloy are reduced! The diffusion rate to the surface increases, and the Ajjgos layer is formed faster than the Ti01 layer at the interface between the surface film and the metal.

■ 上記■の結晶粒微細化はTiA−j!基合金を熱間
加工して再結結晶させる方法が有効である。二〇〇と上
記■は常温延性改善のために添加したMn、■を含むT
iAffi基合金においても有効である。
■ The grain refinement mentioned in (■) above is TiA-j! An effective method is to hot work the base alloy and recrystallize it. 200 and the above ■ are T containing Mn and ■ added to improve room temperature ductility.
It is also effective for iAffi-based alloys.

■ TiAl基合金中にMo、 Yの1種以上、または
/およびSiを添加すると、A f 、02層が緻密化
し、且つ、皮膜中に生成する歪み量も減少して酸化進行
による皮膜中のクラック発生が減少する。その結果、結
晶粒微細化効果と相まってA It zCh層の保護性
は一層高くなる。
■ When one or more of Mo, Y, or/and Si is added to the TiAl-based alloy, the A f , 02 layer becomes denser, and the amount of strain generated in the film is also reduced, reducing the amount of strain in the film due to the progress of oxidation. Cracks are reduced. As a result, combined with the crystal grain refinement effect, the protective properties of the A It zCh layer become even higher.

上記知見に基づ(本発明は、下記の(1)〜(4)を要
旨とする。
Based on the above findings (the gist of the present invention is (1) to (4) below).

(1)  31〜44重量%のAlを含育し、残りTi
および不可避不純物からなり、結晶粒径が0.05〜l
Oμmである耐酸化性に優れた金属間化合物TiAl基
合金。
(1) Contains 31 to 44% by weight of Al, with the remainder being Ti
and unavoidable impurities, with a crystal grain size of 0.05 to 1
An intermetallic compound TiAl-based alloy with excellent oxidation resistance of 0 μm.

(2)31〜44重量%のAlとそれぞれ0.1〜7.
5重量%のMnおよび■の1種又は2種を合計量で0.
1〜7.5重量%含有し、残りTiおよび不可避不純物
がらなり、結晶粒径が0.05〜lOμ層である耐酸化
性に優れた金属間化合物TiAffi基合金。
(2) 31-44% by weight of Al and 0.1-7% by weight, respectively.
The total amount of 5% by weight of Mn and one or both of the following is 0.
An intermetallic compound TiAffi-based alloy containing 1 to 7.5% by weight, the remainder consisting of Ti and unavoidable impurities, and having a crystal grain size of 0.05 to 1Oμ layer and excellent in oxidation resistance.

(3)請求項(11又は(2)に記載の成分に加えて、
さらに0.1〜7.5重量%のMo、 0.2〜1.0
重量%のYおよび0.1〜1.2重量%のSiの1種又
は2種以上を含有し、結晶粒径が0.05〜10μ閣で
ある耐酸化性に優れた金属間化合物TiA Il基合金
(3) In addition to the components described in claim (11 or (2)),
Further 0.1-7.5% by weight of Mo, 0.2-1.0
TiA Il is an intermetallic compound with excellent oxidation resistance that contains one or more of Y in weight% and Si in 0.1 to 1.2 weight%, and has a crystal grain size of 0.05 to 10 μm. Base alloy.

(4)請求項(])、(2)又は(3)に記載の化学成
分のインゴットを、押出温度900〜1450℃、押出
比1.3〜15で押出加工するか又は圧延温度900〜
1450℃、圧延比10〜80%で圧延加工を行い、結
晶粒径を0.05〜lOμmに再結晶させることを特徴
とする金属間化合物TiAl4基合金の製造方法。
(4) The ingot of the chemical component according to claim (]), (2) or (3) is extruded at an extrusion temperature of 900 to 1450°C and an extrusion ratio of 1.3 to 15, or rolled at a rolling temperature of 900 to 150°C.
A method for producing an intermetallic compound TiAl4-based alloy, which comprises rolling at 1450° C. and a rolling ratio of 10 to 80% to recrystallize the crystal grain size to 0.05 to 10 μm.

本発明において、結晶粒径とは平均粒径を意味する。平
均粒径の算出方法としては、例えば、試験片の組織を光
学顕微鏡にて500倍に拡大して観察し、各結晶粒の長
径と短径からその結晶粒の平均粒径を求め、これを任意
の3視野の全ての結晶粒について行い、最終的に平均す
るという方法がある。
In the present invention, the crystal grain size means the average grain size. To calculate the average grain size, for example, the structure of the test piece is observed under an optical microscope at 500 times magnification, and the average grain size of each crystal grain is determined from the major and minor axes. There is a method of performing this on all crystal grains in three arbitrary fields of view and finally averaging.

(作用) 以下、本発明について詳細に説明する。(effect) The present invention will be explained in detail below.

まず、前記(1)〜(3)のTiA j!基合金に共通
する成分のAfと結晶粒度について述べる。
First, TiA j! of (1) to (3) above! The common components Af and crystal grain size of the base alloy will be described.

I A2は本合金の根幹をなす元素である。へ!含有量を3
1〜44重量%としたのは、TiA l金属間化合物の
結晶構造をとる必要性からである。この範囲を外れると
Tis^l相、TiA 1.相、TiA 1 s相のい
ずれかが生成し、合金の延性が低下する。^lは上記範
囲内で多口に含有させる方が望ましい、この方が耐酸化
性を発揮する保護皮膜である八120゜が効率よく生成
する。
IA2 is the element that forms the basis of this alloy. fart! The content is 3
The reason why it is set at 1 to 44% by weight is because it is necessary to maintain the crystal structure of the TiAl intermetallic compound. Outside this range, Tis^l phase, TiA 1. phase, TiA 1 s phase is formed, and the ductility of the alloy decreases. It is preferable to contain a large amount of ^l within the above range, as this will more efficiently form a protective film exhibiting oxidation resistance.

結晶粒径: 合金の結晶粒径を制御することにより1.03の早期生
成に必要なAffiの拡散速度を制御することができる
。即ち、素材のインゴットは結晶粒が大きく、耐酸化性
に劣るが、この結晶粒を微細化することでAfの拡散速
度が増大し、八!□0.の生成が促進される結果、その
保護性によって耐酸化性は向上する。結晶粒の微細化は
後述する熱間加工と再結晶による方法で達成することが
できる。
Grain size: By controlling the grain size of the alloy, the diffusion rate of Affi required for the early formation of 1.03 can be controlled. In other words, the raw material ingot has large crystal grains and poor oxidation resistance, but by making these crystal grains finer, the diffusion rate of Af increases, and 8! □0. As a result, the oxidation resistance is improved due to its protective properties. Refining of crystal grains can be achieved by hot working and recrystallization described below.

微細化による耐酸化性の向上効果は、結晶粒径が10μ
m以下から現れるが、0.05μ園よりさらに微細化し
ても、それ以上の耐酸化性向上効果は得られない、また
、0.05μm未満の微細結晶粒とするのは実生産上困
難である。望ましい結晶粒の大きさは0.2〜0.5μ
mである、この範囲が最も耐酸化性の改善効果が高い。
The effect of improving oxidation resistance due to refinement is that the crystal grain size is 10 μm.
It appears from below 0.05 μm, but even if it becomes finer than 0.05 μm, no further improvement in oxidation resistance can be obtained, and it is difficult to achieve fine crystal grains of less than 0.05 μm in actual production. . Desirable grain size is 0.2-0.5μ
m, and this range has the highest effect of improving oxidation resistance.

本願(1)のTiAl基合金は、前記範囲でA2を含み
、残部が実質的にTiからなる結晶粒径が0.05〜1
0μ■の合金である。この合金にMnおよび■の1種又
は2種添加したものが、本願(2)のTiAffi基合
金である。
The TiAl-based alloy of the present application (1) contains A2 in the above range, and the remainder is substantially Ti, and has a crystal grain size of 0.05 to 1.
It is an alloy of 0μ■. The TiAffi-based alloy of the present application (2) is obtained by adding one or both of Mn and (2) to this alloy.

Mnおよび■: MnおよびVはTiA1!基合金の常温延性を改善する
目的で1種又は2種添加される。常温延性の改善効果は
、MnおよびVともそれぞれ又は合計量で0.1重量%
の含有量から現れるが、それぞれ又は合計量で7.5重
量%を超えて含有すると寧ろ常温延性は低下する。なお
、Mnは常温延性を改善する反面、耐酸化性に悪影響を
及ぼす元素であるや従って、Mnを添加する場合は、常
温延性の確保できる範囲で低目の含を量とするのがよい
。或いは、Yと複合添加すればMnの悪影響を抑制する
ことができる。
Mn and ■: Mn and V are TiA1! One or two elements are added for the purpose of improving the room temperature ductility of the base alloy. The effect of improving room temperature ductility is 0.1% by weight for both Mn and V individually or in total.
However, if each or the total amount exceeds 7.5% by weight, room temperature ductility deteriorates. Although Mn improves room-temperature ductility, it is an element that has a negative effect on oxidation resistance. Therefore, when adding Mn, it is preferable to use a low content within a range that can ensure room-temperature ductility. Alternatively, if Mn is added in combination with Y, the adverse effects of Mn can be suppressed.

(1)および(2)のTiAl1基合金は、従来のTi
A42基合金に比べて耐酸化性に優れる。これは結晶粒
が微細であるからである。これらのTiA l基合金に
、Mo、 YおよびSiの1種又は2種以上添加し、耐
酸化性をさらに改善したのが(3)のTiAl1基合金
である。
The TiAl base alloys (1) and (2) are conventional TiAl
Excellent oxidation resistance compared to A42-based alloys. This is because the crystal grains are fine. The TiAl single-base alloy (3) is obtained by adding one or more of Mo, Y, and Si to these TiAl base alloys to further improve the oxidation resistance.

Mo、 YおよびSi: これらの元素はいずれも合金の耐酸化性を改善する効果
がある。即ち、MoおよびYは耐酸化性保護皮膜である
AI!tO,の安定化に効果を発揮する。
Mo, Y and Si: All of these elements have the effect of improving the oxidation resistance of the alloy. That is, Mo and Y are oxidation-resistant protective coatings, such as AI! It is effective in stabilizing tO.

さらに、この他にYはMnの添加による耐酸化性への悪
影響を抑制する効果があり、ガ0は常温延性を改善する
効果がある。
Furthermore, in addition to this, Y has the effect of suppressing the adverse effect on oxidation resistance due to the addition of Mn, and Ga0 has the effect of improving room temperature ductility.

Moの場合、上記効果は0.1重量%の含有量から発揮
されるが、7.5重量%を超えて含有すると寧ろ耐酸化
性は低下する。Yの場合、0.2重量%の含有量から耐
酸化性保護皮膜であるAl2.O,の安定化に効果を示
すが、1.0重量%を超えて含有するとAl2zOsの
安定化効果は消失し、耐酸化性は向上しない。
In the case of Mo, the above effects are exhibited from a content of 0.1% by weight, but if the content exceeds 7.5% by weight, the oxidation resistance is rather reduced. In the case of Y, the oxidation-resistant protective film Al2. It is effective in stabilizing Al2zOs, but if the content exceeds 1.0% by weight, the stabilizing effect of Al2zOs disappears and the oxidation resistance does not improve.

Siはへ〇、Os皮膜の緻密化および安定化に効果を発
揮する。この効果はMoと複合添加されてさらに大きく
なり、Yの存在下ではさらに顕著となる。
Si is effective in densifying and stabilizing the Os film. This effect becomes even greater when added in combination with Mo, and becomes even more pronounced in the presence of Y.

しかし、0.1重量%未満の含有量では上記のような効
果がなく、1.2重量%を超えて含有するとAl!t(
hの安定化効果が失われ、耐酸化性は低下する。
However, if the content is less than 0.1% by weight, there is no effect as described above, and if the content exceeds 1.2% by weight, Al! t(
The stabilizing effect of h is lost and the oxidation resistance is reduced.

よって、MOは0.1〜7.5重量%の含有量、Yは0
.2〜1.0重量%の含有量、Siは0.1〜1.2重
量%の含有量とした。望ましいYの含有量は0.25〜
0.75重量%である。この範囲が最も耐酸化性改善効
果が高い。
Therefore, MO has a content of 0.1 to 7.5% by weight, and Y has a content of 0.
.. The content was 2 to 1.0% by weight, and the content of Si was 0.1 to 1.2% by weight. Desirable Y content is 0.25~
It is 0.75% by weight. This range has the highest oxidation resistance improvement effect.

前記微細結晶組織は、次の方法で得ることができる。即
ち、前記化学組成のインゴットを溶解法又は粉末冶金法
のいずれかの方法で製造し、これに熱間押出加工または
熱間圧延のいずれかの熱間圧延を施し、再結晶させる方
法である0例えば、溶解法で製造したインゴットの場合
、針状組織をしており結晶粒径は大きく、これに均質化
熱処理を施しても結晶粒径は30μ層以上の粗大組織で
あるが、熱間加工と再結晶で結晶粒径を10μm以下に
することができる。
The fine crystal structure can be obtained by the following method. That is, it is a method in which an ingot having the above chemical composition is produced by either a melting method or a powder metallurgy method, and then subjected to hot rolling, either hot extrusion or hot rolling, and then recrystallized. For example, ingots manufactured by the melting method have an acicular structure with large crystal grains, and even after homogenization heat treatment, the crystal grains remain coarse with a layer size of 30μ or more, but hot processing The crystal grain size can be reduced to 10 μm or less by recrystallization.

熱間加工としては押出加工又は圧延加工が有効である。Extrusion processing or rolling processing is effective as hot processing.

  TiAl1基合金は変形抵抗が高く、加工が困難で
あるため、押出加工又は圧延加工のいずれの場合でも、
900℃以上の温度で行うのがよい。
TiAl mono-based alloy has high deformation resistance and is difficult to process, so whether it is extruded or rolled,
It is preferable to carry out the process at a temperature of 900°C or higher.

しかし、あまり高温で加工すると酸化や窒化の問題が生
じるため、上限は1450℃に止めるのがよい。
However, if processed at too high a temperature, problems of oxidation and nitridation will occur, so the upper limit should be kept at 1450°C.

加工と再結晶による微細化効果が得られる最低の加工度
は、押出加工では押出比1.3、圧延加工では圧延比1
5%である。加工度を高くとるほど結晶粒はより微細化
され、耐酸化性の向上にとって有利であるが、丁jA 
l基合金は難加工性材料であるから高加工度の加工はむ
ずかしい、従って、上限はおのずと限定される。押出加
工の場合はこの上限は押出比15程度であり、圧延加工
の場合には圧延比80%程度である。
The minimum working degree that can obtain the refinement effect through processing and recrystallization is an extrusion ratio of 1.3 for extrusion processing and a rolling ratio of 1 for rolling processing.
It is 5%. The higher the degree of processing, the finer the grains become, which is advantageous for improving oxidation resistance.
Since l-based alloys are difficult-to-work materials, it is difficult to process them to a high degree of workability, so the upper limit is naturally limited. In the case of extrusion processing, this upper limit is about an extrusion ratio of 15, and in the case of rolling processing, the upper limit is about 80% of the rolling ratio.

加工時における加熱雰囲気は、大気中でもよいが、^r
、 He等の不活性ガス雰囲気とする方が望ましい。
The heating atmosphere during processing may be in the air, but
, It is preferable to use an inert gas atmosphere such as He.

熱間加工後は自己の保有熱で再結晶が進み、結晶粒径は
10μm以下となる。再結晶は別途再結晶焼鈍工程を設
けて実施してもよい、この場合、800〜1100°C
の温度で行うのがよく、長時間加熱すると粒成長が起こ
るので加熱時間は3時間以下が望ましい。
After hot working, recrystallization proceeds due to its own heat, and the crystal grain size becomes 10 μm or less. Recrystallization may be carried out by providing a separate recrystallization annealing step, in which case the temperature is 800 to 1100°C.
The heating time is preferably 3 hours or less since grain growth occurs if heated for a long time.

上記方法で熱間加工して再結晶すれば、溶製インゴット
では結晶粒径を0.1μm程度にまで微細化することが
できる。粉末から製造したインゴットを使用すれば、こ
れ以下の微細結晶粒とすることもできる。
If hot worked and recrystallized using the above method, the crystal grain size of the melted ingot can be reduced to about 0.1 μm. If an ingot made from powder is used, it is possible to obtain finer grains than this.

(実施例) 第1表に示す化学成分の合金を製造した。素材インゴッ
トは、阻8および階12を除いては非消耗電極式Arア
ーク溶解炉により溶製し、NO,8および隘12は、T
iとA2の粉末をArガス雰囲気中で400時間混合し
た混合物を1000°Cでホットプレスして焼結体とし
た後、高密度化を目的に押出加工した。
(Example) An alloy having the chemical composition shown in Table 1 was manufactured. The raw material ingots were melted in a non-consumable electrode type Ar arc melting furnace except for No. 8 and No. 12.
A mixture of powders i and A2 mixed for 400 hours in an Ar gas atmosphere was hot pressed at 1000°C to form a sintered body, which was then extruded for the purpose of high density.

前記溶製後のインゴットは、1200℃で24時間の真
空熱処理を施し、組織を均質化した。この時点での平均
結晶粒径は約30μmであり、粉末焼結材の平均結晶粒
径は15μ糟であった。
The ingot after the melting process was subjected to vacuum heat treatment at 1200° C. for 24 hours to homogenize the structure. The average crystal grain size at this point was about 30 μm, and the average crystal grain size of the powder sintered material was 15 μm.

次いで、これらのインゴットに第1表に示す条件で熱間
押出加工または熱間圧延加工を施し、再結晶させた。但
し、距36は均質化の真空熱処理をしたままである。
These ingots were then subjected to hot extrusion or hot rolling under the conditions shown in Table 1 to recrystallize them. However, the distance 36 is still subjected to the vacuum heat treatment for homogenization.

均質化処理熱処理のままのインゴットおよび加工材から
粒径測定用試験片と耐酸化試験用試験片(lam’ X
10m5+’ X40mm’ )を切り出し、結晶粒径
と耐酸化性を調べた。これらの結果を第1表に併記する
A test piece for grain size measurement and a test piece for oxidation resistance test (lam'
A piece (10m5+' x 40mm') was cut out and the crystal grain size and oxidation resistance were examined. These results are also listed in Table 1.

耐酸化性は試験片の全表面をSiCペーパー(1800
)で研磨し、アセトン脱脂した後、下記の酸化試験して
調べた。
For oxidation resistance, the entire surface of the test piece was coated with SiC paper (1800
) and degreased with acetone, the following oxidation test was performed.

酸化試験は大気酸化試験とし、電気抵抗式管状炉を用い
、炉心管端開放の条件で930℃で100時間加熱し、
そのときの酸化による重量増加を測定することで評価し
た。なお、試験片は個々に高純度Ajigos製のルツ
ボに入れ、酸化により生成した皮膜は残らず回収し、重
量測定に加えた。
The oxidation test was an atmospheric oxidation test, using an electric resistance tube furnace and heating at 930°C for 100 hours with the furnace tube end open.
Evaluation was made by measuring the weight increase due to oxidation at that time. The test pieces were individually placed in a high-purity Ajigos crucible, and all the film produced by oxidation was collected and added to the weight measurement.

(以下、余白) 第1表から、本発明例はいずれも酸化増量が小さく、耐
酸化性に優れることがわかる。耐酸化性改善効果はTi
  Aj!2元系の合金のみならず、第3元素を添加し
た合金においても発揮されている。
(Hereinafter, blank space) Table 1 shows that all of the examples of the present invention have a small oxidation weight gain and are excellent in oxidation resistance. Ti improves oxidation resistance
Aj! This effect is exhibited not only in binary alloys but also in alloys to which a third element is added.

即ち、MO% Y% si添加合金では結晶粒微細化の
効果が顕著に発揮されており、耐酸化性は一段と優れて
いる。また、延性改善のために添加されるMn、■を含
む合金についても同様の効果が認められる。
That is, the MO% Y% Si-added alloy exhibits a remarkable effect of grain refinement, and its oxidation resistance is even more excellent. Similar effects are also observed for alloys containing Mn and (2) added to improve ductility.

(発明の効果) 実施例に示したように本発明のTiAffili合金は
、優れた耐酸化性を有しており、TrA j!基合金本
来の高い比強度特性と併せて航空機部材等への使用に適
するものである。
(Effects of the Invention) As shown in the examples, the TiAffili alloy of the present invention has excellent oxidation resistance, and TrA j! Combined with the high specific strength characteristics inherent to base alloys, it is suitable for use in aircraft components, etc.

Claims (4)

【特許請求の範囲】[Claims] (1)31〜44重量%のAlを含有し、残りTiおよ
び不可避不純物からなり、結晶粒径が0.05〜10μ
mである耐酸化性に優れた金属間化合物TiAl基合金
(1) Contains 31-44% by weight of Al, remaining Ti and unavoidable impurities, and has a crystal grain size of 0.05-10μ
An intermetallic compound TiAl-based alloy with excellent oxidation resistance.
(2)31〜44重量%のAlとそれぞれ0.1〜7.
5重量%のMnおよびVの1種又は2種を合計量で0.
1〜7.5重量%含有し、残りTiおよび不可避不純物
からなり、結晶粒径が0.05〜10μmである耐酸化
性に優れた金属間化合物TiAl基合金。
(2) 31-44% by weight of Al and 0.1-7% by weight, respectively.
5% by weight of one or both of Mn and V in a total amount of 0.
An intermetallic compound TiAl-based alloy containing 1 to 7.5% by weight, the remainder consisting of Ti and unavoidable impurities, and having a crystal grain size of 0.05 to 10 μm and excellent in oxidation resistance.
(3)請求項(1)又は(2)に記載の成分に加えて、
さらに0.1〜7.5重量%のMo、0.2〜1.0重
量%のYおよび0.1〜1.2重量%のSiの1種又は
2種以上を含有し、結晶粒径が0.05〜10μmであ
る耐酸化性に優れた金属間化合物TiAl基合金。
(3) In addition to the components described in claim (1) or (2),
Furthermore, it contains one or more of 0.1 to 7.5 wt% Mo, 0.2 to 1.0 wt% Y, and 0.1 to 1.2 wt% Si, and An intermetallic compound TiAl-based alloy having an excellent oxidation resistance of 0.05 to 10 μm.
(4)請求項(1)、(2)又は(3)に記載の化学成
分のインゴットを、押出温度900〜1450℃、押出
比1.3〜15で押出加工するか又は圧延温度900〜
1450℃、圧延比10〜80%で圧延加工を行い、結
晶粒径を0.05〜10μmに再結晶させることを特徴
とする金属間化合物TiAl基合金の製造方法。
(4) The ingot of the chemical component according to claim (1), (2) or (3) is extruded at an extrusion temperature of 900 to 1450°C and an extrusion ratio of 1.3 to 15, or rolled at a rolling temperature of 900 to 1450°C.
A method for producing an intermetallic compound TiAl-based alloy, which comprises rolling at 1450°C and a rolling ratio of 10 to 80% to recrystallize the crystal grain size to 0.05 to 10 μm.
JP4642190A 1990-02-27 1990-02-27 Intermetallic compound ti-al base alloy excellent in oxidation resistance and its manufacture Pending JPH03249147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4642190A JPH03249147A (en) 1990-02-27 1990-02-27 Intermetallic compound ti-al base alloy excellent in oxidation resistance and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4642190A JPH03249147A (en) 1990-02-27 1990-02-27 Intermetallic compound ti-al base alloy excellent in oxidation resistance and its manufacture

Publications (1)

Publication Number Publication Date
JPH03249147A true JPH03249147A (en) 1991-11-07

Family

ID=12746689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4642190A Pending JPH03249147A (en) 1990-02-27 1990-02-27 Intermetallic compound ti-al base alloy excellent in oxidation resistance and its manufacture

Country Status (1)

Country Link
JP (1) JPH03249147A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271830A (en) * 1992-03-27 1993-10-19 Sumitomo Metal Ind Ltd Tial intermetallic compound based alloy member
US5562999A (en) * 1992-07-07 1996-10-08 Mtu Motoren-Und Turbinen-Union Muenchen Gmbh Component made of an intermetallic compound with an aluminum diffusion coating
WO1998021375A1 (en) * 1996-11-09 1998-05-22 Georg Frommeyer TiAl ALLOY AND ITS USE
KR100412426B1 (en) * 2001-07-18 2003-12-31 학교법인 인하학원 TiAl-based intermetallics compound comprising yttrium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271830A (en) * 1992-03-27 1993-10-19 Sumitomo Metal Ind Ltd Tial intermetallic compound based alloy member
US5562999A (en) * 1992-07-07 1996-10-08 Mtu Motoren-Und Turbinen-Union Muenchen Gmbh Component made of an intermetallic compound with an aluminum diffusion coating
WO1998021375A1 (en) * 1996-11-09 1998-05-22 Georg Frommeyer TiAl ALLOY AND ITS USE
KR100412426B1 (en) * 2001-07-18 2003-12-31 학교법인 인하학원 TiAl-based intermetallics compound comprising yttrium

Similar Documents

Publication Publication Date Title
EP2388345B1 (en) Fine grain niobium wrought products obtained by VAR ingot metallurgy
TWI572721B (en) High strength alpha/beta titanium alloy
JP2012067386A (en) Titanium target for sputtering
CA3109173A1 (en) Creep resistant titanium alloys
JP7144840B2 (en) Titanium alloy, method for producing the same, and engine parts using the same
CN108977693A (en) A kind of recrystallization high-strength titanium alloy and preparation method thereof
MXPA05011491A (en) Fine grain niobium sheet via ingot metallurgy.
JP5747410B2 (en) Heat resistant titanium alloy
JPH03249147A (en) Intermetallic compound ti-al base alloy excellent in oxidation resistance and its manufacture
JPH0663049B2 (en) Titanium alloy with excellent superplastic workability
JP5070617B2 (en) Tantalum-silicon alloy and products containing the same and method of manufacturing the same
JP2817427B2 (en) Method for producing TiAl intermetallic compound Ti alloy excellent in strength and ductility
JP3374553B2 (en) Method for producing Ti-Al-based intermetallic compound-based alloy
JP7387139B2 (en) Titanium alloy, its manufacturing method, and engine parts using it
US2899303A (en) Alpha titanium alloys containing
JP2728305B2 (en) Hot working method of intermetallic compound TiA ▲ -based alloy
JPH03193851A (en) Production of tial-base alloy having extremely superfine structure
JP2687641B2 (en) High toughness TiA (1) Method for producing intermetallic compound-based Ti alloy material
JP7233658B2 (en) Titanium aluminide alloy material for hot forging and method for forging titanium aluminide alloy material
JPH03219034A (en) Intermetallic compound ti-al base alloy excellent in oxidation resistance
JP3078567B2 (en) Method for producing intermetallic compound
JPH0353049A (en) Heat treatment for intermetallic compound tial-base alloy
JP2022045612A (en) Titanium alloy, and manufacturing method of the same, and engine component using the same
CN116590572A (en) Antioxidant high-temperature titanium alloy and preparation method thereof
JPH0625778A (en) Titanium alloy excellent in corrosion resistance nonoxidizing acid and workability