JPH03248750A - Method for coiling and recoiling steel strip - Google Patents

Method for coiling and recoiling steel strip

Info

Publication number
JPH03248750A
JPH03248750A JP4882190A JP4882190A JPH03248750A JP H03248750 A JPH03248750 A JP H03248750A JP 4882190 A JP4882190 A JP 4882190A JP 4882190 A JP4882190 A JP 4882190A JP H03248750 A JPH03248750 A JP H03248750A
Authority
JP
Japan
Prior art keywords
steel
winding
less
unwinding
cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4882190A
Other languages
Japanese (ja)
Inventor
Junji Haji
純治 土師
Junichi Wakita
淳一 脇田
Kazuaki Ezaka
江坂 一彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4882190A priority Critical patent/JPH03248750A/en
Publication of JPH03248750A publication Critical patent/JPH03248750A/en
Pending legal-status Critical Current

Links

Landscapes

  • Winding, Rewinding, Material Storage Devices (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To produce a steel strip based on high productivity and economy by coiling and recoiling at the specific strain velocity after continuously casting a hot-rolling steel for working containing the specific wt.% of C, S, Mn, P, Si, Al and the specific ppm of O in the specific thickness. CONSTITUTION:The hot-rolling steel for working is constituted with wt.% of 0.001-0.3% C, <=0.02% S, 0.06-0.40% Mn, <=0.03% P, 0.001-2.00% Si, <=0.15% Al, <=150ppm O, further Mn/S >=20 and the balance of Fe with inevitable impurities. This steel is continuously cast to <=50mm thickness. After that, this is coiled and recoiled at <=0.2sec<-1> strain velocity. By this method, even if the severe coiling and recoiling are executed, the development of high temp. brittle cracking can be prevented.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、連続鋳造により製造した厚み50mm以下の
鋳鋼帯を歪速度0.2sec−’程度で巻取り巻戻しを
行っても、高温脆化割れの発生を見る事無く、生産性良
く、経済的に巻取り巻戻す方法に関するものである。
Detailed Description of the Invention <Industrial Application Field> The present invention provides high-temperature embrittlement even when a cast steel strip manufactured by continuous casting and having a thickness of 50 mm or less is wound and unwound at a strain rate of about 0.2 sec-'. The present invention relates to a highly productive and economical method for winding and unwinding without causing cracking.

〈従来の技術〉 近年、粗圧延工程の省略により、生産性と経済性を向上
することを目的として、厚みが50■■以下の薄鋳鋼帯
を連続鋳造で製造して仕上圧延のみ行う方法が実用化さ
れつつある。
<Prior art> In recent years, with the aim of improving productivity and economic efficiency by omitting the rough rolling process, a method has been developed in which thin cast steel strips with a thickness of 50 mm or less are manufactured by continuous casting and only finish rolling is performed. It is being put into practical use.

この場合、前記鋳鋼帯が長くなると経済性が更に向上す
る事から、鋳片ではなく薄鋳鋼帯とし、コイル状に巻取
り巻戻す方法が検討されている。
In this case, since economical efficiency is further improved if the cast steel strip becomes longer, a method of using a thin cast steel strip instead of a slab and winding it into a coil shape is being considered.

それには、凝固した鋳鋼帯を鋳造の優の1000℃以上
の高温域で巻取り巻戻す事になる。
To do this, the solidified cast steel strip must be wound and rewound at a high temperature of 1000°C or higher, which is the temperature of casting.

この高温域での巻取り、巻戻しを行う時には高温脆化に
よる鋳片の割れの発生がある。
When winding and unwinding are performed in this high temperature range, cracks may occur in the slab due to high temperature embrittlement.

現在の連続鋳造で製造する厚み200mm以上の鋳片の
直接圧延及びホットチャージ圧延においても鋳片の圧延
時に詭化割れの発生があり、これの防止方法としては、
特開昭55−77901号公報、特開昭55−8420
2号公報、特開昭55−109503号公報、特開昭5
6−33103号公報、特開昭56−41005号公報
特開昭60−187625号公報等の提案がある。
Even in the direct rolling and hot charge rolling of slabs with a thickness of 200 mm or more produced by current continuous casting, cracking cracks occur during rolling of slabs, and methods to prevent this are as follows:
JP-A-55-77901, JP-A-55-8420
Publication No. 2, JP-A-55-109503, JP-A-5
There are proposals such as JP-A No. 6-33103, JP-A-56-41005, and JP-A-60-187625.

しかし何れも圧延時の跪化割れ防止方法であって、変形
形B(加工様式)が異なり、そのため鋳片厚や歪、歪速
度、温度履歴が異なる1鋳調帯の巻取り巻戻し時の脆化
割れ防止方法には、直に適用出来ない。
However, all of these methods are methods for preventing kneeling cracking during rolling, and the deformed form B (processing style) is different, and therefore the slab thickness, strain, strain rate, and temperature history are different during the winding and unwinding of one casting band. It cannot be directly applied to methods for preventing embrittlement cracking.

具体的に言えば、先ず割れの発生は特に引張応力の作用
部分に生じ易いが、圧延の場合は基本的には圧縮応力の
みであり、引張応力は殆ど作用しないのに対し、巻取り
巻戻しの場合は、内側には圧縮応力、外側には引張応力
が作用し、その引張歪は最大で7%程度になる。
Specifically, first of all, cracks are particularly likely to occur in areas where tensile stress is applied, but in the case of rolling, basically only compressive stress acts and almost no tensile stress acts, whereas in rolling and unwinding. In this case, compressive stress acts on the inside and tensile stress acts on the outside, and the maximum tensile strain is about 7%.

又、割れ発生には歪速度が大きく影響するが圧延の場合
、5sec”程度であるのに対し、巻取り巻戻しでは最
大でも0.2sec−’程度であって両者の差は大きい
Furthermore, the strain rate has a large influence on the occurrence of cracks, and in the case of rolling, it is about 5 sec-', whereas in the case of winding and unwinding, it is about 0.2 sec-' at the maximum, and the difference between the two is large.

更に、従来の鋳造法に比べて薄霞鋼帯の連続鋳造では冷
却速度がかなり速くなるため、割れ発生に重要な影響を
与える析出物の析出状況が異なってくる。
Furthermore, since the cooling rate is considerably faster in continuous casting of thin haze steel strips than in conventional casting methods, the precipitation conditions of precipitates, which have an important influence on crack occurrence, are different.

従って圧延と巻取り巻戻しでは、応力状態、歪みの掛か
り方、歪み速度等がかなり異なり、鋳片の冷却速度の違
いにより析出物の析出状況も異なるため、従来鋳造法に
おける直接圧延と薄霞鋼帯の巻取り巻戻しでは、その割
れ発生状況ががなり異なるため、前者の脆化割れ防止方
法をそのまま後者に適用する事は出来ないのである。
Therefore, the stress state, strain application, strain rate, etc. are quite different between rolling and winding and unwinding, and the precipitation situation of precipitates also differs depending on the cooling rate of the slab. When winding and unwinding a steel strip, the conditions in which cracks occur are different, so the former method of preventing embrittlement cracking cannot be directly applied to the latter.

本発明が対象とする、厚み50IIIll以下の薄霞綱
帯の巻取り巻戻しについては、特開昭63−27864
7号公報において、厚み20〜80mm程度のw4′f
it鋳片を曲げ歪速度0.01〜0.001程度で、歪
が2〜6%となる曲率で、巻取る方法が提案されている
Regarding the winding and unwinding of a thin haze rope belt having a thickness of 50IIIll or less, which is the object of the present invention, Japanese Patent Application Laid-Open No. 63-27864
In Publication No. 7, w4'f with a thickness of about 20 to 80 mm
A method has been proposed for winding an IT slab at a bending strain rate of about 0.01 to 0.001 and a curvature that gives a strain of 2 to 6%.

しかし、該提案は鋼成分を特定しておらず、そのため適
用鋼種が多種多様に及ぶにもかかわらす鋼成分によって
高温脆化割れの発生状況が異なる事について考慮されて
いない。
However, this proposal does not specify the steel composition, and therefore, although there are a wide variety of applicable steel types, it does not take into account the fact that the occurrence of high-temperature embrittlement cracking differs depending on the steel composition.

例えばC,Si、Mn、P、Sについては記述があるが
、0については構成・作用・効果の記載がない。
For example, there are descriptions of C, Si, Mn, P, and S, but no description of the composition, action, or effect of 0.

その上、該特開昭63−278647号公報が上記2〜
6%の歪みで巻取る事を提案する前提になっている歪速
度は0.01〜0.001sec−’であり、このレベ
ルでの巻取り巻戻しにおいては、上記提案々件の銅帯成
分範囲でも高温脆化割れ発生の懸念はなくなるが、この
歪速度で薄霞鋼帯を巻取り巻戻すには、巻取り巻戻し径
を大きくするか、巻取り巻戻し速度を遅くするか、或い
はその両方を実施する必要が生じ、不可避的に生産性、
経済性が悪化して薄霞鋼帯製造の実用性は格段に低下す
る。
Moreover, the Japanese Patent Application Laid-Open No. 63-278647 is
The strain rate on which the proposal for winding with a strain of 6% is based is 0.01 to 0.001 sec-', and in winding and unwinding at this level, the copper strip components of the above proposals are However, in order to wind and unwind a thin haze steel strip at this strain rate, it is necessary to increase the winding and unwinding diameter, slow down the winding and unwinding speed, or It becomes necessary to implement both, which inevitably increases productivity and
The economic efficiency deteriorates, and the practicality of manufacturing thin haze steel strips becomes much lower.

しかるに該提案にはこの対策の記載がない。However, the proposal does not mention this countermeasure.

〈発明が解決しようとする課題〉 本発明は、脆化割れの発生状況が異なる鋼種においても
、高温域から急速に降温する厚み50mm以下の薄霞鋼
帯を0.01sec ”を超えて0.2 sec −’
以下の歪速度の範囲においても巻取り巻戻しを可能とし
、厚み50gn以下の1鋳綱帯を生産性良く、経済的に
製造する方法の提供を課題としている。
<Problems to be Solved by the Invention> The present invention is capable of reducing the temperature of a thin haze steel strip of 50 mm or less in thickness exceeding 0.01 sec, which rapidly cools from a high temperature range, even in steel types with different occurrence conditions of embrittlement cracking. 2 sec-'
The object of the present invention is to provide a highly productive and economical method for manufacturing one cast steel strip having a thickness of 50 gn or less, which enables winding and unwinding even in the following strain rate ranges.

く課題を解決するための手段〉 本発明は上記した課題を達成するために、重量%で、 C: 0.001〜0.30%  S:≦0.02%M
n : 0.06 〜0.40%   P :60.0
3%Si : 0.001 〜2.00%   Al:
≦0.150 %O:≦isoppm     但し 
Mn/S≧20その他Fe及び不可避的成分からなる加
工用熱延鋼を厚み50g+■以下で連続鋳造凝固し、薄
霞鋼帯として後、歪速度0.2sec−’以下で巻取り
巻戻す事を手段とする。
Means for Solving the Problems> In order to achieve the above-mentioned problems, the present invention provides the following in weight%: C: 0.001 to 0.30% S: ≦0.02%M
n: 0.06 to 0.40% P: 60.0
3%Si: 0.001 to 2.00% Al:
≦0.150 %O:≦isoppm However
Hot-rolled steel for processing consisting of Mn/S≧20, Fe and other unavoidable components is continuously cast and solidified to a thickness of 50 g+■ or less to form a thin haze steel strip, and then wound and unwound at a strain rate of 0.2 sec-' or less. is the means.

尚本発明で言う加工用熱延鋼とは通常加工用熱延鋼板を
使用する分野で広く用いられている、例えば上記した成
分構成のものを言う。
In the present invention, the hot-rolled steel for processing refers to a steel having the above-mentioned composition, for example, which is widely used in the field where hot-rolled steel sheets for processing are normally used.

〈作用〉 本発明者等は上記した手段を達成するために、重量%で
、 C: 0.001〜0.30%  S:≦0.02%M
n : 0.06 〜0.40%  P:60.03%
Si : 0.001〜0.25%  Al:50.1
50%及びその他Feと不可避的成分を含み、O: 8
0ppmのAfIi4とO: 160pp+sのB鋼の
各加工用熱延鋼を用いて、種々実験検討を繰り返し、第
1図から第3図に示す知見を得た。
<Function> In order to achieve the above-mentioned means, the present inventors set the following in weight%: C: 0.001 to 0.30% S: ≦0.02% M
n: 0.06 to 0.40% P: 60.03%
Si: 0.001-0.25% Al: 50.1
Contains 50% and other Fe and unavoidable components, O: 8
Various experimental studies were repeated using each hot-rolled steel for processing B steel containing 0 ppm AfIi4 and O: 160 pp+s, and the findings shown in FIGS. 1 to 3 were obtained.

第1図のMn/Sと絞り値の関係は、C:0.047重
量%級の薄霞鋼帯の試験結果を示し、Pil1度と絞り
値の関係は、C:0.27重量%級の薄鋳鋼帯の試験結
果を示し、○濃度と絞り値の関係は、C:0.047重
量%級でMn/S≧20の薄鋳鋼帯の試験結果を示した
もので、溶融試料の凝固温度履歴は第3図の3例でE点
及びF点は第3図の3例のものである。
The relationship between Mn/S and the aperture value in Figure 1 shows the test results for a thin haze steel strip with C: 0.047 wt% class, and the relationship between Pil1 degree and aperture value shows the test result of a C: 0.27 wt% class. The relationship between concentration and reduction of area is the test result of thin cast steel strip with C: 0.047 wt% class and Mn/S≧20, and the solidification of the molten sample. The temperature history is the three examples shown in FIG. 3, and the points E and F are for the three examples shown in FIG.

以下に該知見について説明する。The findings will be explained below.

本発明者等は、厚み50mm以下の1鋳銅帯を製造し、
その一部を試験片として第3図1例の温度履歴を経由後
、高温脆化による割れの発生し易い曲率半径30cm、
歪速度0.2sec−’以下の条件で曲げ加工を行い、
高温脆化割れの発生状況を調べると共に、試料を溶融し
て第3図2例の温度履歴を経て後、絞り値(引張り試験
を行った時の試験後の断面積/試験前の断面積X100
(%)〕を調べて高温脆化割れと絞り値の対応関係を確
認し、第2図に示す関係を得た。
The present inventors manufactured one cast copper strip with a thickness of 50 mm or less,
After passing through the temperature history of the example in Figure 3 using a part of it as a test piece, the radius of curvature was 30 cm, where cracking is likely to occur due to high temperature embrittlement.
Bending is performed under conditions of a strain rate of 0.2 sec-' or less,
In addition to investigating the occurrence of high-temperature embrittlement cracking, after melting the sample and undergoing the temperature history shown in Figure 3, the reduction of area value (cross-sectional area after the test when performing the tensile test / cross-sectional area before the test x 100)
(%)] to confirm the correspondence between high-temperature embrittlement cracking and the reduction of area, and the relationship shown in FIG. 2 was obtained.

図中の高温脆化側発生状況の表示は次による。The indication of the occurrence of high-temperature embrittlement in the figure is as follows.

無:割れなし。No: No cracks.

大:1m≦綱板1m2当たり合計割れ長さ中:10C1
1<鋼板1m2当たり合計割れ長さく1m小z   綱
板112当たり合計割れ長さ≦l0CI更に溶融させた
試料を第3回の1例及び2例よりももっと速く、実際の
連鋳綱帯製造時の冷却速度を示す第3図3例の温度履歴
をとった後、引張り試験を行い、その時の絞り値(%)
の成分依存性を確認し、第1図の結果を得た。
Large: 1m≦Total crack length per 1m2 of steel plate Medium: 10C1
1<Total crack length per 1m2 of steel plate 1m small zTotal crack length per 112 steel plates≦l0CI The further melted samples were melted more quickly than in Examples 1 and 2 in the 3rd session, during actual continuous casting steel strip production. Figure 3 shows the cooling rate of
The component dependence of was confirmed, and the results shown in Figure 1 were obtained.

本発明者等は、上記した第1図及び第2図から絞り値が
10%未満の領域では高温脆化割れが増大し、絞り値(
%)が10%以上の領域に入ると高温脆化割れが減少す
る事を知得した。
The present inventors have found that hot embrittlement cracking increases in the area where the reduction of area is less than 10%, and the reduction of area (
%) was found to be in the range of 10% or more, the high temperature embrittlement cracking was reduced.

又、前記絞り値が10%以上の領域に入るのは、Mn/
Sが20以上のA鋼で、前記高温脆化割れの発生が見ら
れなくなるが、Mn/Sが20以上のBEは絞り値が1
0%以上とならず、前記高温脆化割れが発生する事を知
見した。
Furthermore, the aperture value falls within the range of 10% or more when Mn/
In A steel with S of 20 or more, the occurrence of the above-mentioned high-temperature embrittlement cracking is no longer observed, but in BE with Mn/S of 20 or more, the reduction of area is 1.
It was found that the above-mentioned high temperature embrittlement cracking occurs when the temperature does not reach 0% or more.

本発明者等は高温脆化割れの破面を観察し、該割れが、
(Fe、Mn)Sや(Fe、Mn)0等の板状又は微細
球状析出物がオーステナイト粒界面に析出している事に
起因している事を確認した。
The present inventors observed the fracture surface of high-temperature embrittlement cracks, and found that the cracks were
It was confirmed that this was caused by plate-shaped or fine spherical precipitates such as (Fe, Mn) S and (Fe, Mn) 0 being precipitated at the austenite grain interface.

しかも0が160ppHのBEの場合、Mn/Sが20
以上であっても、上記析出物が粒界面に多数析出して脆
化し易くなっている事を知見した。
Moreover, in the case of BE where 0 is 160 ppH, Mn/S is 20
Even with the above conditions, it was found that a large number of the above-mentioned precipitates precipitated at the grain interfaces, making it easy to become brittle.

その結果MnをMnS単体として粒内に析出させて粒界
析出を防止すると、前記高温脆化割れが防止出来る可能
性を見出したが、Mn/Sが20未満では粒界に析出す
る(Fe、Kn)S量が増加し、或いは鋼中○が160
ppm以上になると粒界に析出する(Fe、Mn)0量
が増加して該割れの防止は出来ず、Mn/Sが20以上
になると粒界に析出する(Fe、Mn)S量が減少する
が、同時に鋼中Oが150ppm以下にならないと、粒
界に析出する(Fe、Mn)0量が減少しないので該割
れが防止出来ない事を見出した。
As a result, we found that it is possible to prevent the above-mentioned high-temperature embrittlement cracking by precipitating Mn as a single MnS within grains to prevent grain boundary precipitation.However, when Mn/S is less than 20, precipitation occurs at grain boundaries (Fe, Kn) S amount increases or ○ in steel becomes 160
When Mn/S exceeds 20, the amount of (Fe, Mn) precipitated at grain boundaries increases and cracking cannot be prevented, and when Mn/S exceeds 20, the amount of (Fe, Mn) S precipitated at grain boundaries decreases. However, it has been found that unless the O content in the steel is reduced to 150 ppm or less, the amount of (Fe, Mn) precipitated at the grain boundaries is not reduced, and cracking cannot be prevented.

又、Pは高炭素はど晩化割れに対する影響が大きいが、
0.3重量%程度以下の炭素濃度においては、絞り値は
常に10%より這かに大きな領域にあり、高温脆化への
影響は全く配慮の必要がない事を見出した。
In addition, high carbon P has a large effect on late cracking, but
It has been found that at a carbon concentration of about 0.3% by weight or less, the reduction of area value is always in a region slightly larger than 10%, and there is no need to consider the effect on high temperature embrittlement at all.

本発明者等は、上記した知見から、−船釣に用いられて
いる加工用熱延鋼のCを0.001〜0.3重量%に、
Sを0.02%以下に、0を150ppm以下に、加え
てMn/Sを20以上に規定すると、厚み50m+a以
下の薄鋳鋼帯を高速降温過程で、O,01sec −’
を超え0.2sec”以下の歪速度の過酷な巻取り巻戻
しを行っても、連続鋳造した薄鋳鋼帯に高温脆化割れが
発生しない事を見出し、本発明の課題を達成したのであ
る。
Based on the above-mentioned knowledge, the present inventors have determined that: - C content of hot-rolled steel for processing used for boat fishing is 0.001 to 0.3% by weight;
By specifying S to 0.02% or less, 0 to 150 ppm or less, and Mn/S to 20 or more, a thin cast steel strip with a thickness of 50 m+a or less can be heated at a temperature of 0.01 sec -' in a high-speed cooling process.
They have found that high-temperature embrittlement cracking does not occur in continuously cast thin cast steel strips even when subjected to severe winding and unwinding at strain rates exceeding 0.2 seconds and below, and the object of the present invention has been achieved.

〈実施例〉 1、供試鋼の化学成分 供試鋼の化学成分を表1に示す。<Example> 1. Chemical composition of test steel Table 1 shows the chemical composition of the test steel.

但し、■〜■は鋼種を示す符号で、 ■〜■は本発明の対象鋼種を示し、 ■〜■は比較例の対象鋼種を示す。However, ■~■ are codes indicating the steel type, ■~■ indicate the target steel types of the present invention, ■ to ■ indicate target steel types of comparative examples.

2゜ 巻取り巻戻し条件 (1)  S取り巻戻しコイル重量:約5 (to口) (2)巻取り巻戻し径(醜■) ■ 最内径:300 ■外径: 1500 (3)巻取り巻戻し速度 5〜15  m/win(4
)歪み速度 二 表2に示す。
2° winding and unwinding conditions (1) S winding and unwinding coil weight: approx. 5 (to opening) (2) Winding and unwinding diameter (ugly) ■ Innermost diameter: 300 ■ Outer diameter: 1500 (3) Winding Rewind speed 5-15 m/win (4
) Strain rate 2 is shown in Table 2.

3、高温脆化割れ発生状況 温度履歴が第3図1例の場合の高温脆化割れ発生状況を
表2に示す。
3. Conditions of occurrence of high-temperature embrittlement cracks Table 2 shows the conditions of occurrence of high-temperature embrittlement cracks when the temperature history is as in the example shown in FIG.

(注) (1)  Zは高温脆化割れの発生状況を示し、咳欄の
E、Fは、第3図3例の温度履歴の中のE、F点を示す
(Note) (1) Z indicates the occurrence of high-temperature embrittlement cracking, and E and F in the cough column indicate points E and F in the temperature history of the third example in Fig. 3.

(2)高温脆化側発生状況の表示は次による。(2) The indication of the occurrence of high temperature embrittlement is as follows.

無二割れなし。Unrivaled.

大:1m≦鋼板112当たり合計割れ長さ中:10C1
1<鋼板1 m 2当たり合計割れ長さく1+小:  
 鋼板1 m 2当たり合計割れ長さ5101表2に示
す如く、Mn/S≧20.0:≦150PP11を満た
す鋼種■〜■は、歪速度 0.2sec”においても全
く高温脆化割れが発生しなかった。
Large: 1m≦Total crack length per steel plate 112 Medium: 10C1
1<total crack length per 1 m2 of steel plate 1+small:
Total crack length per 1 m2 of steel plate 5101 As shown in Table 2, steel types ■ to ■ that satisfy Mn/S≧20.0:≦150PP11 do not undergo high-temperature embrittlement cracking at all even at a strain rate of 0.2 seconds. There wasn't.

一方、0:≦150ppmを満たすが、Mn/S≧20
を満たさない鋼種■〜■及びMn/S≧20を満たすが
O:≦150ppmを満たさない鋼種■は、何れも歪速
度0.2sec ”では高温脆化割れが発生した。
On the other hand, 0: satisfies ≦150ppm, but Mn/S≧20
For steel types (■) to (2) which do not satisfy the following conditions and steel type (2) which satisfies Mn/S≧20 but does not satisfy O:≦150 ppm, high-temperature embrittlement cracking occurred at a strain rate of 0.2 sec''.

尚、歪速度が0.001sec−’と0.01sec 
−’では鋼種■と■も高温脆化割れが発生しなかった。
In addition, the strain rate is 0.001 sec-' and 0.01 sec
-', high-temperature embrittlement cracking did not occur in steel types ■ and ■.

〈発明の効果〉 本発明は、厚み50m+n以下の連鋳鋼帯を連続鋳造で
製造するに当たり、Cを0.001〜0.03%、Sを
0.03%以下(何れも重量%)その他Fe及び不可避
的成分からなる溶鋼のMn/S≧20.0≦150pp
+mに調整して鋳造するので、歪速度が0.01sec
 −’を超え0.2sec−’以下の過酷な巻取り巻戻
しを行っても高温脆化割れが発生せず、高い生産性と経
済性の基に厚み50mm以下の連鋳綱帯を連続鋳造で製
造する事を可能としたもので、5業分野にもたらす工業
的効果は極めて大きい。
<Effects of the Invention> In producing a continuously cast steel strip with a thickness of 50 m+n or less by continuous casting, the present invention contains 0.001 to 0.03% of C, 0.03% or less of S (both weight%), and other Fe. and Mn/S of molten steel consisting of unavoidable components ≧20.0≦150pp
Since the casting is adjusted to +m, the strain rate is 0.01 sec.
Continuous casting of continuous cast steel strips with a thickness of 50 mm or less is based on high productivity and economy, with no high-temperature embrittlement cracking even after severe winding and unwinding of more than 0.2 seconds and less than 0.2 seconds. The industrial effect it brings to five industrial fields is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はMn154 ・ 0と、絞り値(%)の関係を
示し、第2図は絞り値(%)と高温脆化による表面割れ
発生との関係を示し、第3図は本発明者等の実験時及び
実施例に用いた連鋳銅帯の冷却温度履歴を示す。
Figure 1 shows the relationship between Mn154/0 and the reduction of area (%), Figure 2 shows the relationship between the reduction of area (%) and the occurrence of surface cracking due to high temperature embrittlement, and Figure 3 shows the relationship between the reduction of area (%) and the occurrence of surface cracking due to high temperature embrittlement. The cooling temperature history of the continuously cast copper strip used in the experiments and examples is shown.

Claims (1)

【特許請求の範囲】[Claims] (1)重量%で、 C:0.001〜0.30% S:≦0.02%Mn:
0.06〜0.40% P:≦0.03%Si:0.0
01〜2.00% Al:≦0.150%O:≦150
ppm但しMn/S≧20 その他Fe及び不可避的成分からなる加工用熱延鋼を厚
み50mm以下で連続鋳造後、0.2sec^−^1以
下の歪速度で巻取り巻戻す事を特徴とする薄鋳鋼帯の巻
取り巻戻し方法。
(1) In weight%, C: 0.001-0.30% S: ≦0.02% Mn:
0.06-0.40% P:≦0.03%Si:0.0
01~2.00% Al:≦0.150%O:≦150
ppm, but Mn/S≧20 After continuous casting of hot-rolled steel for processing consisting of Fe and other unavoidable components to a thickness of 50 mm or less, the method is characterized by winding and unwinding at a strain rate of 0.2 sec^-^1 or less. A method for winding and unwinding thin cast steel strips.
JP4882190A 1990-02-27 1990-02-27 Method for coiling and recoiling steel strip Pending JPH03248750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4882190A JPH03248750A (en) 1990-02-27 1990-02-27 Method for coiling and recoiling steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4882190A JPH03248750A (en) 1990-02-27 1990-02-27 Method for coiling and recoiling steel strip

Publications (1)

Publication Number Publication Date
JPH03248750A true JPH03248750A (en) 1991-11-06

Family

ID=12813889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4882190A Pending JPH03248750A (en) 1990-02-27 1990-02-27 Method for coiling and recoiling steel strip

Country Status (1)

Country Link
JP (1) JPH03248750A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7975754B2 (en) 2007-08-13 2011-07-12 Nucor Corporation Thin cast steel strip with reduced microcracking

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63278647A (en) * 1987-05-11 1988-11-16 Sumitomo Metal Ind Ltd Method for winding continuously cast strip

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63278647A (en) * 1987-05-11 1988-11-16 Sumitomo Metal Ind Ltd Method for winding continuously cast strip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7975754B2 (en) 2007-08-13 2011-07-12 Nucor Corporation Thin cast steel strip with reduced microcracking

Similar Documents

Publication Publication Date Title
RU2436849C2 (en) Steel of low density with good deformability at forming
JP4713709B2 (en) Method for producing a strip of iron-carbon-manganese alloy
JP5846445B2 (en) Cold rolled steel sheet and method for producing the same
JP3610883B2 (en) Method for producing high-tensile steel sheet with excellent bendability
JP7111246B2 (en) hot rolled steel
JPH08337843A (en) High carbon hot rolled steel sheet excellent in punching workability and its production
JP7164071B1 (en) Non-oriented electrical steel sheet
US5102477A (en) Method of manufacturing high permeability fe-ni system alloy
JPH0681036A (en) Production of ferritic stainless steel sheet excellent in ridging characteristic and workability
JPH03248750A (en) Method for coiling and recoiling steel strip
JP3941173B2 (en) Manufacturing method of hot-rolled steel sheet with excellent scale adhesion and corrosion resistance
JPH064891B2 (en) Method for manufacturing non-magnetic steel wire rod
JPS6115929B2 (en)
JP7164069B1 (en) Non-oriented electrical steel sheet
JP3917320B2 (en) Method for producing ferritic stainless steel sheet with excellent ridging resistance
JP7164070B1 (en) Non-oriented electrical steel sheet
JPH02258931A (en) Production of cr stainless steel sheet by thin-wall casting method
KR100940658B1 (en) A Manufacturing Method of Hot Rolled Wire Rod Having Excellent Ability of Descaling
JPH0692617B2 (en) Method for producing hot rolled high strength steel sheet with a composite structure having excellent surface properties and workability
JPH0631394A (en) Production of thin cast slab for non-oriented silicon steel sheet
JPH07126753A (en) Production of fe-ni alloy sheet and its formed product
JPS60408B2 (en) Method for manufacturing non-magnetic hot rolled steel sheet with excellent cold workability
JPS6044377B2 (en) Method for producing soft cold-rolled steel sheets for drawing with excellent aging resistance through continuous annealing
JPH04220143A (en) Method for coiling and uncoiling continuous casting thin cast strip
JPS6328830A (en) Manufacture of high-purity ferritic stainless steel sheet