JPH03248740A - Mould molding method - Google Patents

Mould molding method

Info

Publication number
JPH03248740A
JPH03248740A JP4095390A JP4095390A JPH03248740A JP H03248740 A JPH03248740 A JP H03248740A JP 4095390 A JP4095390 A JP 4095390A JP 4095390 A JP4095390 A JP 4095390A JP H03248740 A JPH03248740 A JP H03248740A
Authority
JP
Japan
Prior art keywords
inorganic binder
mold
drying
binder
making method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4095390A
Other languages
Japanese (ja)
Other versions
JP2579825B2 (en
Inventor
Toshio Tanaka
俊夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2040953A priority Critical patent/JP2579825B2/en
Publication of JPH03248740A publication Critical patent/JPH03248740A/en
Application granted granted Critical
Publication of JP2579825B2 publication Critical patent/JP2579825B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make a mould having sufficient strength at room temp. and good sand removal performance after pouring molten metal by impregnating inorganic binder having the specific mol ratio of the specific silica and alkali in the mold, which is made by adding organic binder into the molding sand. CONSTITUTION:The molding sand and organic binder are kneaded to execute molding. Successively, the organic binder is impregnated, and after drying, the in organic substance is burnt under high temp. air atmosphere to hold the mold shape with the inorganic binder. By setting the SiO2/Na2O mol ratio in the inorganic binder used at this time to the range of 4.5-6.0, both of the tensile strength at the room temp. and sand removal performance can be satisfied.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、鋳型造型法に関し、さらに詳しくは生産性に
優れ、溶湯注入後の砂落ち性が良い鋳型造型法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a mold making method, and more particularly to a mold making method that is excellent in productivity and has good sand removal properties after pouring molten metal.

〔従来の技術と発明が解決しようとする課題〕鋳物の生
産性を上げるため、有機系バインダーを使用した鋳型造
型プロセスが有るか(シェルモールド法、コールドボッ
クス法など)、これらの造型法によって作られた鋳型は
、特に中子として使用された場合、有機物によりガス欠
陥が発生し易い問題がある。一方、無機系バインダーに
よる鋳型を使用すれば、生産性が非常に悪く、溶湯注入
後の砂落ちが非常に悪いという問題がある。
[Problems to be solved by conventional technology and inventions] In order to increase the productivity of castings, is there a mold making process that uses an organic binder (shell mold method, cold box method, etc.)? Especially when the mold is used as a core, there is a problem that gas defects are likely to occur due to organic matter. On the other hand, if a mold made of an inorganic binder is used, there are problems in that productivity is very low and sand falls off after pouring the molten metal.

従って、本発明の目的は、生産性が良く、鋳型からのガ
ス発生が少なく、溶湯注入後の砂落ち性が良い鋳型造型
法を提供することにある。
Therefore, an object of the present invention is to provide a mold making method that has good productivity, generates less gas from the mold, and has good sand removal properties after pouring the molten metal.

ところで、有機系バインダーと無機系バインダーの両方
を利用する方法は既に提案されている(特公昭51−3
1209号、特開昭83−242439号及び特開平1
−148438号)。特に、特公昭51−31209号
公報及び特開平1−148438号公報には、耐火砂に
有機質粘結剤を加えて成形し、−旦焼成した多孔質の中
子基体にコロイダルシリカ溶液(特公昭51−3120
9号)又はコロイダルシリカとアミン系有機物とからな
る結合剤(特開平1−148438号)を含浸させてな
る精密鋳造用中子か記載されている。しかしながら、こ
れらの中子は、ロストワックス法等による精密鋳造用と
して使用される精密鋳造用中子であり、高温に加熱して
鋳湯した場合における高い抗圧力を得ることを狙いとす
るものである。従って、高温での結合強度維持には富む
か、冷却時の抗圧力は特開平1−148438号の実施
例で報告されているように2〜12kg/c−とかなり
低い。これはコロイダルシリカを含浸させたことに起因
するものであり、常温での低圧力を30〜100kg/
c−程度必要とする通常の鋳型としては用いることかで
きない。
By the way, a method using both an organic binder and an inorganic binder has already been proposed (Japanese Patent Publication No. 51-3).
No. 1209, JP-A-83-242439 and JP-A-1
-148438). In particular, in Japanese Patent Publication No. 31209/1983 and Japanese Patent Application Laid-open No. 148438/1999, a colloidal silica solution (Japanese Patent Application Publication No. 1987-1988) is proposed to be applied to a porous core substrate formed by adding an organic binder to refractory sand and then fired. 51-3120
No. 9) or a precision casting core impregnated with a binder consisting of colloidal silica and an amine-based organic substance (Japanese Patent Application Laid-Open No. 148438/1999). However, these cores are precision casting cores used for precision casting using the lost wax method, etc., and are intended to obtain high resistance pressure when heated to high temperatures and cast. be. Therefore, the bond strength is well maintained at high temperatures, and the coercive pressure during cooling is quite low at 2 to 12 kg/c as reported in the examples of JP-A No. 1-148438. This is due to the impregnation with colloidal silica, and the low pressure at room temperature is 30 to 100 kg/
It cannot be used as a normal mold requiring c-grade.

本発明は、上記ロストワックス法等による精密鋳造用と
は異なり、常温において充分な強度を有すると共に、溶
湯注入後の砂落ち性が良い鋳型を造型しようとするもの
である。
The present invention aims to create a mold that has sufficient strength at room temperature and has good sand removal properties after pouring the molten metal, unlike precision casting molds using the lost wax method and the like.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、上記目的を達成するため、特殊無機粘
結剤を用いることを特徴とする方法と、無機粘結剤含浸
後の乾燥を減圧マイクロ波加熱による乾燥で行なうこと
を特徴とする方法が提供される。
According to the present invention, in order to achieve the above object, a method is characterized in that a special inorganic binder is used, and the drying after impregnation with the inorganic binder is performed by drying by vacuum heating with microwaves. A method is provided.

すなわち、本発明の第一発明によれば、鋳物砂に有機質
粘結剤を加えて造型した鋳型に、SiO2/Na2Oモ
ル比か4.5〜6.0の無機粘結剤を含浸させ、乾燥後
、大気中高温下で有機物を燃焼させ、無機粘結剤で鋳型
形状を保持するようにしたことを特徴とする鋳型造型法
が提供される。この場合、乾燥は自然乾燥、低温乾燥又
は減圧マイクロ波乾燥のいずれの方法によってもよい。
That is, according to the first aspect of the present invention, a mold made by adding an organic binder to foundry sand is impregnated with an inorganic binder at a SiO2/Na2O molar ratio of 4.5 to 6.0, and then dried. There is then provided a mold making method characterized in that the organic matter is burned in the atmosphere at high temperatures and the shape of the mold is maintained with an inorganic binder. In this case, drying may be carried out by any method such as natural drying, low temperature drying or vacuum drying using microwave drying.

本発明の第二発明によれば、鋳物砂に有機質粘結剤を加
えて造型した鋳型に無機粘結剤を含浸させ、減圧マイク
ロ波乾燥を行なった後、大気中高温下で有機物を燃焼さ
せ、無機粘結剤で鋳型形状を保持するようにしたことを
特徴とする鋳型造型法が提供される。
According to the second aspect of the present invention, a mold made by adding an organic binder to foundry sand is impregnated with an inorganic binder, and after vacuum drying with microwaves, the organic matter is combusted in the atmosphere at high temperature. Provided is a mold making method characterized in that the shape of the mold is held by an inorganic binder.

なお、上記いずれの方法においても、無機粘結剤の含浸
層の厚さは、無機粘結剤の含浸を真空減圧下で行ない、
圧力と含浸時間により含浸層の厚さを調整するか、ある
いは無機粘結剤に界面活性剤を添加したものを用いて行
ない、含浸時間により含浸層の厚さを調整することかで
きる。
In any of the above methods, the thickness of the layer impregnated with the inorganic binder is determined by impregnating the inorganic binder under reduced pressure in a vacuum,
The thickness of the impregnated layer can be adjusted by adjusting the pressure and impregnation time, or by using an inorganic binder with a surfactant added, and the thickness of the impregnated layer can be adjusted by adjusting the impregnation time.

〔発明の作用及び態様〕[Operation and mode of the invention]

まず、本発明の鋳型造型法について概説すると、シェル
モールド法、コールドボックス法、フラン法等、従来公
知の造型法により鋳物砂と有機質粘結剤(バインダー)
を混練し、鋳型造型を行なう。次いで、無機粘結剤を含
浸させ、乾燥後、大気中高温下で有機物を燃焼させ、無
機粘結剤で鋳型形状を保持させる。すなわち、「従来造
型法による鋳型造型」=「無機粘結剤含浸」−「乾燥」
−「焼成」という工程から成る。無機粘結剤の含浸層の
厚さは、前記したように減圧含浸の圧力と時間、又は、
浸透剤(界面活性剤)添加により制御できる。
First, to outline the mold making method of the present invention, molding sand and an organic binder (binder) are formed using conventionally known molding methods such as the shell mold method, cold box method, and furan method.
Knead and make a mold. Next, the mold is impregnated with an inorganic binder, and after drying, the organic substance is burned in the atmosphere at high temperature, and the mold shape is maintained by the inorganic binder. In other words, "mold molding by conventional molding method" = "impregnation with inorganic binder" - "drying"
- Consists of a process called "firing". The thickness of the inorganic binder impregnated layer depends on the pressure and time of vacuum impregnation as described above, or
It can be controlled by adding a penetrant (surfactant).

本発明の第一発明によれば、含浸させる無機粘結剤とし
て、S i 02 /Na20モル比が4.5〜6.0
の無機粘結剤を用いることを特徴としている。本発明者
の研究によれば、用いる無機粘結剤のSiO2/Na2
Oモル比が4.5〜6,0の範囲に設定されれば、常温
において30〜1100)cdc−程度の抗折力が得ら
れ、しかも砂落ち性にも優れることが見い出された。従
来用いられているコロイダルシリカ(商品名スノーテッ
クスとして市販されている)は強い浸透性を持ち、乾燥
するとゲル化して無機高分子系粘結剤として働くが、S
 i 02含有率が極めて高いため、これによって鋳型
形状を保持しようとしても、前記したように常温におけ
る抗折力が極めて低く、鋳型として用いることができな
い。一方、水ガラス(Si02/Na20モル比約4.
3)やケイ酸ソーダ(約2.4〜3.3)を用いた場合
、抗折力が高くなり過ぎ、崩壊性の点て問題がある。本
発明の第一発明は、無機粘結剤のSiO2/Na2Oモ
ル比を4.5〜6.0の範囲に設定することにより、常
温下での抗折力及び砂落ち性の両方を満足させたもので
ある。
According to the first aspect of the present invention, the inorganic binder to be impregnated has a Si02/Na20 molar ratio of 4.5 to 6.0.
It is characterized by using an inorganic binder. According to the research of the present inventor, the inorganic binder used is SiO2/Na2
It has been found that when the O molar ratio is set in the range of 4.5 to 6.0, a transverse rupture strength of about 30 to 1100)cdc- can be obtained at room temperature, and the sand removal properties are also excellent. The conventionally used colloidal silica (commercially available under the trade name Snowtex) has strong permeability, turns into a gel when dried, and works as an inorganic polymer binder, but S
Since the i02 content is extremely high, even if an attempt is made to maintain the shape of the mold, the transverse rupture strength at room temperature is extremely low, as described above, and it cannot be used as a mold. On the other hand, water glass (Si02/Na20 molar ratio of about 4.
3) or sodium silicate (approximately 2.4 to 3.3), the transverse rupture strength becomes too high and there is a problem in terms of disintegration. The first invention of the present invention satisfies both the transverse rupture strength and the sand removal property at room temperature by setting the SiO2/Na2O molar ratio of the inorganic binder in the range of 4.5 to 6.0. It is something that

このような特定のSiO2/Na2Oモル比の無機粘結
剤は、コロイダルシリカに不純物を添加したり、あるい
は水ガラスにコロイダルシリカを添加したりする方法に
よって容易に製造することができる。なお、本発明の第
一発明による鋳型造型法においては、無機粘結剤含浸後
の乾燥は、前記したように自然乾燥(放置乾燥)、50
〜150℃での低温乾燥又は減圧マイクロ波乾燥のいず
れの方法でもよい。
Such an inorganic binder having a specific SiO2/Na2O molar ratio can be easily produced by adding impurities to colloidal silica or adding colloidal silica to water glass. In addition, in the mold making method according to the first invention of the present invention, drying after impregnation with an inorganic binder is performed by natural drying (standing drying), 50%
Either low-temperature drying at ~150° C. or reduced-pressure microwave drying may be used.

本発明の第二発明による鋳型造型法においては、無機粘
結剤含浸後の乾燥を減圧マイクロ波乾燥により行なうも
のであり、この場合、無機粘結剤としては上記特定のS
iO2/Na2Oモル比の無機粘結剤の他、コロイダル
シリカなど他の無機粘結剤も用いることができる。すな
わち、無機粘結剤含浸後に減圧マイクロ波乾燥を行なう
ことにより、含浸した無機粘結剤か表面層近くに滲み出
し、水分のみが飛んでしまい、表面近くに粘結剤が多く
析出するため、焼成後に表面強度が高くなると共に、中
央部は結合力が小さくなるため、砂落ち性も良い。また
、水溶液系の無機粘結剤は減圧により沸点が低くなるた
め、短時間の処理で充分であるという利点も得られる。
In the mold making method according to the second aspect of the present invention, drying after impregnation with an inorganic binder is performed by vacuum drying using microwave drying, and in this case, the above-mentioned specific S
In addition to the iO2/Na2O molar ratio inorganic binder, other inorganic binders such as colloidal silica can also be used. In other words, when vacuum drying is performed after impregnation with an inorganic binder, the impregnated inorganic binder oozes out near the surface layer, and only moisture evaporates, causing a large amount of the binder to precipitate near the surface. After firing, the surface strength increases and the bonding force in the center area decreases, resulting in good sand removal properties. Furthermore, since the boiling point of an aqueous inorganic binder is lowered by reducing the pressure, there is an advantage that a short treatment time is sufficient.

また、減圧マイクロ波乾燥を行なうので、高温乾燥の場
合の泡が生成して表面かあばた状になるというようなこ
ともない。
In addition, since vacuum drying is performed under reduced pressure, there is no possibility that bubbles would form on the surface and cause pock marks during high-temperature drying.

なお、無機粘結剤としてコロイダルシリカを用いる場合
には、前記したように常温において鋳型の強度が出にく
いので、乾燥後の焼成は前記特殊無機粘結剤を用いる場
合に比べて高温で行なうことが望ましい。
In addition, when using colloidal silica as an inorganic binder, as mentioned above, the strength of the mold is difficult to obtain at room temperature, so the firing after drying should be performed at a higher temperature than when using the special inorganic binder. is desirable.

〔実 施 例〕〔Example〕

以下、実施例を示して本発明について具体的に説明する
が、本発明か下記実施例により限定されるものでないこ
とはもとよりである。
The present invention will be specifically described below with reference to Examples, but it goes without saying that the present invention is not limited to the Examples below.

実施例1 耐火物ムライトを使用し、シェルモールド法によりφ5
0 X 50 ’ inの試験片を製作し、また鋳型強
度を試験するために併せて抗折試験片110X10X6
0+wの試験片を製作し、表−1に示す各種無機粘結剤
を含浸させ、25〜30℃で24時間放置して乾燥させ
、次いで大気中1000℃×1時間で焼成し、第1図に
示す方法にて鋳鋼の注入(1580℃注入)を行なった
。すなわち、第1図に示すように型1の底部に試験片2
(φ50X50’)を4個セットし、湯道3から注入す
ることにより、焼付テストを行なった。また、砂落ち性
を見るために、第2図に示すように、試験片2から約1
201111M間して配置されたノズル4がら空気圧4
 kg / cdで吹き付けてサンドブラスト処理する
方法により、砂が落ちる状況を調べた結果、S i 0
2 /Na20モル比4.9の特殊無機粘結剤(N o
Example 1 Using refractory mullite, φ5 by shell molding method
A 0 x 50' inch test piece was prepared, and a bending test piece of 110 x 10 x 6 was also prepared to test the mold strength.
A 0+W test piece was prepared, impregnated with various inorganic binders shown in Table 1, left to dry at 25 to 30°C for 24 hours, and then fired in the air at 1000°C for 1 hour. Cast steel was poured (injected at 1580° C.) using the method shown below. That is, as shown in FIG.
A seizure test was conducted by setting four pieces of (φ50×50′) and injecting them from runner 3. In addition, in order to check the sand removal property, as shown in Figure 2, about 1
Air pressure 4 from nozzle 4 arranged between 201111M
As a result of investigating the situation in which sand falls using the method of sandblasting by spraying at kg/cd, S i 0
2/Na20 molar ratio of 4.9 (N o
.

4)を用いた場合には焼付きもなく、3分のサンドブラ
スト処理で砂は落ちたが、他の無機粘結剤を用いた場合
には焼付きを生じ、砂をこさぎ落すことも困難であった
。10X10X60龍の試験片について抗折力を測定し
た結果を表−1に併せて示す。
When using 4), there was no seizure and the sand came off after 3 minutes of sandblasting, but when other inorganic binders were used, seizure occurred and it was difficult to scrape off the sand. Met. Table 1 also shows the results of measuring the transverse rupture strength of the 10X10X60 dragon test piece.

表−1 $1)10X10X60m■試験片を1000”CX1
時間焼成後の強度 *2)特開平1−148438号表1の冷却時の強度に
相当 実施例2 耐火物ムライトを使用し、実施例1と同条件にて試験片
を製作し、コロイダルシリカを含浸させた。試験片の乾
燥方法としては、自然乾燥48時間と減圧マイクロ波乾
燥をそれぞれ行ない、その後、大気中1500℃×1時
間で焼成し、実施例1と同様にして鋳鋼を注入し、砂落
ち性を調べた結果、自然乾燥を48時間行なった場合に
は焼結し、砂は落ちなかったのに対して、減圧マイクロ
波乾燥を行なった場合には、5分のサンドブラスト処理
で内部の砂が落ち、さらに5分処理した結果、表面の砂
も落とすことができた。これは、減圧マイクロ波乾燥で
は含浸した無機粘結剤(コロイダルシリカ)が表面にし
み出し、水分のみが飛んでしまい、表面付近に粘結剤が
多く析出して表面強度は充分となるが、中央部は結合力
か小さくなり、その結果砂落ち性が良くなったためであ
る。抗折力を測定した結果を表−2に示す。
Table-1 $1) 10X10X60m■ Test piece 100”CX1
Strength after time firing *2) Corresponds to the strength after cooling in Table 1 of JP-A-1-148438 Example 2 Using refractory mullite, a test piece was produced under the same conditions as Example 1, and colloidal silica was used. Impregnated. The test pieces were dried by natural drying for 48 hours and by vacuum microwave drying, and then fired in the atmosphere at 1500°C for 1 hour. Cast steel was injected in the same manner as in Example 1 to improve sand removal properties. As a result of the investigation, when air drying was performed for 48 hours, sintering occurred and the sand did not fall off, whereas when low-pressure microwave drying was performed, the sand inside fell off after 5 minutes of sandblasting. As a result of processing for an additional 5 minutes, the sand on the surface was also able to be removed. This is because in vacuum microwave drying, the impregnated inorganic binder (colloidal silica) oozes out to the surface, and only water is blown away, and a large amount of binder precipitates near the surface, resulting in sufficient surface strength. This is because the bonding force in the central part was reduced, and as a result, sand removal properties were improved. Table 2 shows the results of transverse rupture strength measurements.

表−2 *)10X10X60mm試験片を1500℃×1時間
焼成後の強度 〔発明の効果〕 以上のように、本発明の鋳型造型法は、鋳型造型−無機
粘結剤含浸一乾燥一焼成という一連の工程からなる鋳型
造型法において、無機粘結剤としてSiO2/Na2O
モル比が4,5〜6.0の無機粘結剤を用いるか、ある
いは上記乾燥を減圧マイクロ波乾燥により行なうもので
あるため、得られる鋳型は常温において充分な強度を有
すると共に、焼付きもなく、溶湯注入後の砂落ち性も良
い。また、有機系バインダー使用におけるような鋳型か
らのガス発生も少なく、上記一連の工程により生産性よ
く鋳型造型を行なうことができ、さらに減圧マイクロ波
乾燥を行なうことにより乾燥時間を短縮することもでき
る。
Table 2 *) Strength after firing a 10 x 10 x 60 mm test piece at 1500°C for 1 hour [Effects of the invention] As described above, the mold making method of the present invention is a series of mold making - inorganic binder impregnation - drying - firing. In the mold making method consisting of the steps of
Since an inorganic binder with a molar ratio of 4.5 to 6.0 is used or the drying is performed by vacuum microwave drying, the resulting mold has sufficient strength at room temperature and is free from seizure. It also has good sand removal properties after pouring molten metal. In addition, there is less gas generation from the mold, unlike when organic binders are used, and the above series of steps allows for highly productive mold making.In addition, drying time can be shortened by using vacuum microwave drying. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例において行なった焼付テストの注入方式
を示す概略説明図であり、第1図(A)は焼付テスト装
置の平面図、第1図(B)はその縦断面図、第2図は砂
落ち評価の試験方法を示す概略説明図である。 第 1 図 (A) 第 図 3・満1 手続補正書(自発) 平成2年6月11日
FIG. 1 is a schematic explanatory diagram showing the injection method for the seizure test conducted in the example, and FIG. 1(A) is a plan view of the seizure test device, FIG. The figure is a schematic explanatory diagram showing a test method for sand drop evaluation. Figure 1 (A) Figure 3, Part 1 Procedural amendment (voluntary) June 11, 1990

Claims (6)

【特許請求の範囲】[Claims] (1)鋳物砂に有機質粘結剤を加えて造型した鋳型に、
SiO_2/Na_2Oモル比が4.5〜6.0の無機
粘結剤を含浸させ、乾燥後、大気中高温下で有機物を燃
焼させ、無機粘結剤で鋳型形状を保持するようにしたこ
とを特徴とする鋳型造型法。
(1) In a mold made by adding an organic binder to foundry sand,
It was impregnated with an inorganic binder with a SiO_2/Na_2O molar ratio of 4.5 to 6.0, and after drying, the organic matter was burned in the atmosphere at high temperature, and the mold shape was maintained with the inorganic binder. Characteristic mold making method.
(2)無機粘結剤が水ガラス系無機高分子系粘結剤であ
ることを特徴とする請求項1記載の鋳型造型法。
(2) The mold making method according to claim 1, wherein the inorganic binder is a water glass-based inorganic polymer binder.
(3)乾燥を自然乾燥、低温乾燥又は減圧マイクロ波乾
燥により行なうことを特徴とする請求項1又は2記載の
鋳型造型法。
(3) The mold making method according to claim 1 or 2, wherein the drying is carried out by natural drying, low temperature drying, or vacuum drying using microwaves.
(4)鋳物砂に有機質粘結剤を加えて造型した鋳型に無
機粘結剤を含浸させ、減圧マイクロ波乾燥を行なった後
、大気中高温下で有機物を燃焼させ、無機粘結剤で鋳型
形状を保持するようにしたことを特徴とする鋳型造型法
(4) A mold made by adding an organic binder to foundry sand is impregnated with an inorganic binder, and after drying under reduced pressure microwaves, the organic matter is burned in the atmosphere at high temperature, and the inorganic binder is molded into a mold. A mold making method that is characterized by maintaining its shape.
(5)無機粘結剤の含浸を真空減圧下で行ない、圧力と
含浸時間により含浸層の厚さを調整することを特徴とす
る請求項1乃至4のいずれかに記載の鋳型造型法。
(5) The mold making method according to any one of claims 1 to 4, characterized in that the impregnation with the inorganic binder is carried out under vacuum and reduced pressure, and the thickness of the impregnated layer is adjusted by the pressure and impregnation time.
(6)無機粘結剤の含浸を、無機粘結剤に界面活性剤を
添加したものを用いて行ない、含浸時間により含浸層の
厚さを調整することを特徴とする請求項1乃至4のいず
れかに記載の鋳型造型法。
(6) The impregnation of the inorganic binder is carried out using an inorganic binder to which a surfactant is added, and the thickness of the impregnated layer is adjusted by adjusting the impregnation time. The mold making method described in any of the above.
JP2040953A 1990-02-23 1990-02-23 Mold making method Expired - Lifetime JP2579825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2040953A JP2579825B2 (en) 1990-02-23 1990-02-23 Mold making method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2040953A JP2579825B2 (en) 1990-02-23 1990-02-23 Mold making method

Publications (2)

Publication Number Publication Date
JPH03248740A true JPH03248740A (en) 1991-11-06
JP2579825B2 JP2579825B2 (en) 1997-02-12

Family

ID=12594862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2040953A Expired - Lifetime JP2579825B2 (en) 1990-02-23 1990-02-23 Mold making method

Country Status (1)

Country Link
JP (1) JP2579825B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017536243A (en) * 2015-01-20 2017-12-07 ディーアール アクシオン カンパニー リミテッドDr Axion Co.,Ltd. Manufacturing method of core and casting using inorganic binder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5131209A (en) * 1974-09-10 1976-03-17 Matsushita Electric Ind Co Ltd JIKITEEPUHIKI DASHISOCHI
JPS52120225A (en) * 1976-04-03 1977-10-08 Nakata Giken Kk Mold manufacturing
JPH01148438A (en) * 1987-12-01 1989-06-09 Mazda Motor Corp Core for precision casting

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5131209A (en) * 1974-09-10 1976-03-17 Matsushita Electric Ind Co Ltd JIKITEEPUHIKI DASHISOCHI
JPS52120225A (en) * 1976-04-03 1977-10-08 Nakata Giken Kk Mold manufacturing
JPH01148438A (en) * 1987-12-01 1989-06-09 Mazda Motor Corp Core for precision casting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017536243A (en) * 2015-01-20 2017-12-07 ディーアール アクシオン カンパニー リミテッドDr Axion Co.,Ltd. Manufacturing method of core and casting using inorganic binder

Also Published As

Publication number Publication date
JP2579825B2 (en) 1997-02-12

Similar Documents

Publication Publication Date Title
EP0661246B1 (en) Process for preparing refractory molded articles and binders therefor
PT1339512E (en) MOLD FOR FOUNDATION BY INVOLVEMENT AND MANUFACTURING PROCESS
CN109365749B (en) Vacuum hot forming production process for precision manufacturing of fired mold
JP2020514078A (en) Compositions and methods for casting cores in high pressure die castings
JPH01293939A (en) Manufacture of mold for investment casting
CN109420743A (en) A kind of efficient core-making method of water-glass sand air blowing hardening
JP3540842B2 (en) Method of manufacturing ceramic core for casting
JPH03146240A (en) Water soluble core and manufacture thereof and method for casting metal using core thereof
JPH03248740A (en) Mould molding method
JPH01262041A (en) Manufacture of mold and core
CN112275994B (en) Silica sol for preparing precision casting shell
JPH0459148A (en) Molding method for mold
JPH08332547A (en) Casting method and mold and its production
JP2002254135A (en) Mold manufacturing method for casting
JPS6061138A (en) Production of collapsible core
KR100407661B1 (en) Fabrication method of complex-shape refractory material using aluminosilicate fiber
JP2000176601A (en) Production of casting
JP3761414B2 (en) Casting mold and manufacturing method thereof
JPH04270025A (en) Shell mold for casting and removal method therefor
JPH054168B2 (en)
JPS63295037A (en) Molding method for mold for casting
JPS63264246A (en) Production of core for casting
JPH0237937A (en) Precision casting method for casting having narrow mouth hollow part
SU1729681A1 (en) Method for preparing investment molds
JPS63264245A (en) Core for casting