JP2002254135A - Mold manufacturing method for casting - Google Patents

Mold manufacturing method for casting

Info

Publication number
JP2002254135A
JP2002254135A JP2001058878A JP2001058878A JP2002254135A JP 2002254135 A JP2002254135 A JP 2002254135A JP 2001058878 A JP2001058878 A JP 2001058878A JP 2001058878 A JP2001058878 A JP 2001058878A JP 2002254135 A JP2002254135 A JP 2002254135A
Authority
JP
Japan
Prior art keywords
mold
casting
binder
molten metal
cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001058878A
Other languages
Japanese (ja)
Inventor
Masami Hatta
雅美 八田
Takayuki Sasai
隆之 笹井
Seishin Ueda
精心 上田
Eiji Nakano
英治 中野
Tomomi Hayata
智臣 早田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2001058878A priority Critical patent/JP2002254135A/en
Publication of JP2002254135A publication Critical patent/JP2002254135A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a mold manufacturing method for casting capable of improving strength at high temperature in which molten metal can be cast while maintaining heating temperature or also improving operability of mold- disassembly by increasing a breaking-down property of the mold after casting, and further facilitating control of a caking agent, and furthermore easily adjusting bonding strength of the impregnated caking agent, when casting a thin-walled exhausting system parts, which are made of heat-resistant cast steel such as austenite heat-resistant cast steel and the like, having 2 to 3 mm of thickness in major portions. SOLUTION: After forming a mold in a desired shape by caking binder containing metal of the I group of the periodic table at 4 to 25 weight % in molding sand, an inorganic caking agent including SiO2 /Na2 O with 3 and over of mole ratio is impregnated and increased in temperature, and then, molten metal is cast. Further, the inorganic caking agent is a silicate solution or colloidal silica.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋳造用鋳型に関
し、詳しくは、無機系粘結剤が含浸され、昇温され溶融
金属が鋳込まれる鋳造用鋳型の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a casting mold, and more particularly, to a method of manufacturing a casting mold in which an inorganic binder is impregnated, heated and molten metal is cast.

【0002】[0002]

【従来技術】溶融金属が鋳込まれる鋳造用鋳型(以下
「鋳造用鋳型」を単に「鋳型」という)には、有機系粘
結剤を用いて造型される、シェルモールド鋳型、コール
ドボックス鋳型などがある。これらの鋳型に形成したキ
ャビティに、鋳鋼などの溶融金属を約1500℃〜16
00℃の高温で鋳込むと、有機系粘結剤に含まれる有機
物が燃えて分解ガスが発生し、鋳込まれた鋳物にガス欠
陥が発生しやすい。また有機粘結剤を用いて造型した鋳
型は、鋳型自体を高温に予熱しておくことが困難なの
で、狭い箇所が連続するキャビティを持つ鋳型に溶融金
属を鋳込むと、鋳込み中に溶融金属の一部が固まって湯
廻り不良を生ずることもある。このため薄肉品の鋳造は
困難であった。これは、耐熱性に富む無機系粘結剤を用
いることで上述した問題を回避することが考えられる
が、無機系粘結剤は粘結強度が弱いため造型が困難であ
り、たとえ造型できても溶融金属を鋳込む際に、溶融金
属に接触する部位の鋳型が焼結されて部分的に強度が増
し、鋳込み後の鋳型の崩壊性が悪くなるなどの難点があ
る。
2. Description of the Related Art Casting molds into which a molten metal is cast (hereinafter, "casting molds" are simply referred to as "molds") include shell molds, cold box molds, etc., which are formed using an organic binder. There is. In a cavity formed in these molds, molten metal such as cast steel is heated at a temperature of about 1500 ° C. to 16 ° C.
When casting is performed at a high temperature of 00 ° C., organic substances contained in the organic binder are burned to generate decomposition gas, and gas defects are liable to occur in the cast casting. In addition, since it is difficult to preheat the mold itself to a high temperature in a mold molded using an organic binder, if the molten metal is cast into a mold having a cavity in which narrow portions are continuous, the molten metal is cast during casting. Some of them may harden and cause poor running. For this reason, it was difficult to cast a thin product. This is considered to avoid the above-mentioned problem by using an inorganic binder having high heat resistance, but it is difficult to mold the inorganic binder because the binding strength is weak. However, when the molten metal is cast, there is a problem that the mold in a portion in contact with the molten metal is sintered and the strength is partially increased, and the disintegration of the cast after casting is deteriorated.

【0003】これを解決しようと、特開平3−2487
40号公報には、鋳物砂に有機系粘結剤を加えて造型し
た鋳型に、コロイダルシリカに不純物を添加、又は水ガ
ラスにコロイダルシリカを添加して、SiO2/Na2
モル比が4.5〜6.0となる無機系粘結剤を含浸さ
せ、低温乾燥又は減圧マイクロ波乾燥後、大気中高温下
で有機物を燃焼させ、無機系粘結剤で鋳型形状を保持す
る鋳型造型法の記載がある。また、同公報には、無機系
粘結剤に界面活性剤を添加して、含浸を真空減圧下で行
ない、圧力と含浸時間により含浸層の厚さを調整する記
載がある。また同公報には、コロイダルシリカはSiO
2含有率が極めて高いため、常温における抗折力が極め
て低く、鋳型として用いることができず、一方、水ガラ
ス(SiO 2/Na2Oモル比約4.3)や珪酸ソーダ
(約2.4〜3.3)では抗折力が高くなり過ぎ、崩壊
性で問題となるとの記載もある。そして、特開平3−2
48740号公報によれば、得られる鋳型は常温におい
て充分な強度を有すると共に、焼付きもなく、溶湯注入
後の砂落ち性も良く、また、有機系粘結剤の使用におけ
るような鋳型からのガス発生も少なく、一連の工程によ
り生産性よく鋳型造型を行うことができ、さらに減圧マ
イクロ波乾燥を行うことにより乾燥時間を短縮すること
もできるとしている。
In order to solve this problem, Japanese Patent Laid-Open No. Hei 3-2487 discloses a method.
No. 40 discloses that molding sand is made by adding an organic binder to molding sand.
Add impurities to colloidal silica or add water
Add colloidal silica to the glassTwo/ NaTwoO
Impregnated with an inorganic binder having a molar ratio of 4.5 to 6.0
After drying at low temperature or microwave drying under reduced pressure,
Burn organic matter with and maintain mold shape with inorganic binder
There is a description of a mold making method. The publication also states that inorganic
A surfactant is added to the binder and impregnation is performed under reduced pressure.
No, adjust the thickness of the impregnated layer by pressure and impregnation time
There is. The publication also states that colloidal silica is SiO
TwoExtremely high bending strength at room temperature due to extremely high content
Low and cannot be used as a mold,
(SiO Two/ NaTwoO mole ratio of about 4.3) or sodium silicate
(About 2.4 to 3.3), the transverse rupture strength becomes too high and collapses
There is also a statement that there is a problem with gender. And Japanese Patent Laid-Open No. 3-2
According to Japanese Patent No. 48740, the obtained mold is at room temperature.
With sufficient strength and no seizure, molten metal injection
Good sand removal after use
Generation of gas from the mold,
Mold production with good productivity.
Reduce drying time by performing microwave drying
It can also be done.

【0004】また別の特開平7−232967号公報に
は、(a)骨材と第1のバインダによって成形品素体を
成形する工程;(b)周期律表4A族または4B族(炭
素を除く)と3A族又は3B族の金属アルコキシド及び
その部分加水分解物から選ばれた1種または2種類以上
の金属アルコキシド類と、アルカリ金属又はアルカリ土
類金属のアルカリ化合物を含むアルコール溶液からなる
第2のバインダを、工程(a)によって成形された成形
品素体に含浸させ加水分解させる工程;(c)成形品素
体を乾燥し高温焼成する工程、以上の工程からなる鋳型
の製造方法の記載がある。そして、特開平7−2329
67号公報によれば、第2のバインダがアルコール溶液
であることから、成形品素体内への浸透が容易であり、
表面から内部へ効率よく含浸され、低温から高温までの
鋳型強度を増大させることができる。そして、中子を成
形する場合には、鋳込み時の中子からのガス発生が少な
いので、生型鋳造、金型鋳造やダイカスト鋳造にそのま
ま用いることが可能で、中子に上述した第2のバインダ
を傾斜含浸することが可能となる。更に、鋳型内部の強
度は上がっていないから、鋳造後の崩壊性も良く型ばら
しの作業性がよく、鋳型を焼成した直後の高温の鋳型に
注湯することにより、湯まわりが良くなり、製品の薄肉
化が可能になって、ステンレス鋳鋼等の薄肉製品の鋳造
が可能になるとしている。
Further, Japanese Patent Application Laid-Open No. 7-232967 discloses that (a) a step of forming a molded body using an aggregate and a first binder; and (b) a group 4A or 4B group of the periodic table. Excluding) a metal alkoxide of Group 3A or 3B and one or more metal alkoxides selected from partial hydrolysates thereof, and an alcohol solution containing an alkali compound of an alkali metal or an alkaline earth metal. (C) impregnating and hydrolyzing the molded article body formed by the step (a) with the binder of step (a); (c) drying the molded article body and firing it at a high temperature; There is a description. And Japanese Patent Laid-Open No. 7-2329
According to Japanese Patent Publication No. 67, since the second binder is an alcohol solution, it is easy to penetrate into the molded article body,
It is efficiently impregnated from the surface to the inside, and can increase the mold strength from low to high temperatures. When the core is formed, since gas generation from the core during casting is small, it can be used as it is for green mold casting, die casting or die casting, and the second core described above is used for the core. This makes it possible to impregnate the binder. In addition, since the strength inside the mold has not increased, the disintegration after casting is good and the workability of mold release is good, and pouring into a high-temperature mold immediately after firing the mold improves the run-around, and the product It is said that it becomes possible to cast thin products such as stainless cast steel.

【0005】[0005]

【発明が解決しようとする課題】ところで、近年、排気
マニホルド、過給機のハウジング、ディフューザなどの
排気系部品においては、1000℃を超える排気ガスに
曝されての耐久性確保のためオーステナイト系耐熱鋳鋼
などの耐熱鋳鋼で、また、エンジン始動時における排気
ガス浄化用触媒の初期機能確保のため、熱容量を小さく
するために主要部肉厚を2〜3mmの薄肉にすることが
要求されてきている。このためには、高温に維持した鋳
型に溶融金属を約1500〜1600℃の高温で鋳込む
のが良いと言われている。
In recent years, exhaust system components such as an exhaust manifold, a supercharger housing, and a diffuser have been used in austenitic heat-resistant systems to ensure durability when exposed to exhaust gas exceeding 1000 ° C. Heat-resistant cast steel such as cast steel, and in order to secure the initial function of the exhaust gas purifying catalyst at the time of starting the engine, it is required that the thickness of the main part be reduced to 2-3 mm in order to reduce the heat capacity. . To this end, it is said that the molten metal is preferably cast at a high temperature of about 1500 to 1600 ° C. in a mold maintained at a high temperature.

【0006】しかしながら、前述の特開平3−2487
40号公報記載の鋳型では、鋳型を焼成後の高温を維持
した状態で溶融金属を約1500〜1600℃で鋳込む
と、鋳型の高温強度が不足して鋳造できないことがあ
り、中子に用いた場合には溶湯注入後に崩壊できず、鋳
造後の鋳物に砂付きが発生しやすいことがある。また、
含浸時間を制御して粘結剤の含浸層厚さを制御すること
は実質的に困難を伴う。
[0006] However, the above-mentioned Japanese Patent Application Laid-Open No. Hei 3-2487.
In the mold described in Japanese Patent No. 40, if the molten metal is cast at about 1500 to 1600 ° C. while maintaining the high temperature after firing the mold, the cast may not be able to cast due to insufficient high-temperature strength of the mold. If it does, it cannot be collapsed after the molten metal is poured, and the casting after casting may be liable to be sanded. Also,
It is substantially difficult to control the thickness of the impregnated layer of the binder by controlling the impregnation time.

【0007】一方、特開平7−232967号公報記載
の鋳型では、第2のバインダがアルコール溶液であるこ
とから、成形品素体内へ過剰に浸透してしまい、注湯後
の崩壊性が悪くなる。また、原料の中に多少毒性のもの
がある有機物を使用するため、健康障害のおそれがあ
り、これらの欠点を改善して、環境にやさしい鋳型とす
る必要がある。また、無機系粘結剤に比較して原料が約
10倍も高く、また完成までに時間がかかり、結果的に
鋳型費及び鋳物の原価を増大させる。また、特開平7−
232967号公報で用いるアルカリ金属は、その性質
が基本的に不安定であるので管理面でより注意が必要で
ある。
On the other hand, in the mold described in Japanese Patent Application Laid-Open No. 7-232967, since the second binder is an alcohol solution, the second binder excessively permeates into the molded article body, resulting in poor disintegration after pouring. . In addition, since an organic material having some toxicity is used in the raw materials, there is a risk of health problems, and it is necessary to improve these drawbacks and to provide an environmentally friendly mold. Also, the raw material is about ten times higher than the inorganic binder, and it takes time to complete, resulting in an increase in mold cost and casting cost. In addition, Japanese Patent Application Laid-Open
Alkali metals used in Japanese Patent No. 232967 need to be more carefully managed since their properties are basically unstable.

【0008】本発明は上記課題に鑑みてなされたもので
あって、オーステナイト系耐熱鋳鋼などの耐熱鋳鋼で、
主要部肉厚が2〜3mmと薄肉の排気系部品などを鋳造
する際に、焼成後の高温を維持したまま溶融金属を鋳込
むことができる鋳型の高温強度と、又は鋳込み後の鋳型
の崩壊性を増して型ばらしの作業性を良くし、更に、粘
結剤の管理が容易で、また含浸した粘結剤の結合強度を
容易に調整できる鋳型を得ることにある。
The present invention has been made in view of the above problems, and is directed to a heat-resistant cast steel such as an austenitic heat-resistant cast steel.
When casting a thin exhaust system component with a main part thickness of 2 to 3 mm, the high temperature strength of the mold that can cast the molten metal while maintaining the high temperature after firing, or the collapse of the mold after casting Another object of the present invention is to provide a mold capable of improving the workability of mold release by increasing the moldability, further facilitating the control of the binder, and easily adjusting the bonding strength of the impregnated binder.

【0009】[0009]

【課題を解決するための手段】本発明者らは、焼成後の
高温を維持したまま溶融金属を鋳込む鋳型で、バインダ
に周期律表1族の金属を含有させ、SiO2/Na2Oの
モル比を特定した無機系粘結剤を用いることで、上記課
題が解決できるとの知見を得、本発明に想到した。
Means for Solving the Problems The present inventors have used a mold for casting a molten metal while maintaining a high temperature after firing. The mold contains a metal of Group 1 of the periodic table in a binder, and contains SiO 2 / Na 2 O. It has been found that the above problem can be solved by using an inorganic binder having a specified molar ratio, and the present invention has been reached.

【0010】即ち、本発明の鋳型の製造方法は、鋳物砂
に周期律表1族の金属を有したバインダを粘結させて所
望形状に造型された後、SiO2/Na2Oのモル比が3
以上の無機系粘結剤が含浸され、昇温され溶融金属が鋳
込まれることを特徴とする。ここで、SiO2/Na2
のモル比を50以上としたのは、SiO2/Na2Oのモ
ル比が3未満では、高温強度が大きすぎて崩壊性が悪く
なるとともに加使時間が短くなるからである。好ましく
は5〜100である。
That is, according to the method for producing a mold of the present invention, a molding sand is formed into a desired shape by bonding a binder containing a metal of Group 1 of the periodic table to a molding sand, and then a SiO 2 / Na 2 O molar ratio is obtained. Is 3
It is characterized in that the above-mentioned inorganic binder is impregnated, the temperature is raised, and a molten metal is cast. Here, SiO 2 / Na 2 O
The reason why the molar ratio is 50 or more is that if the molar ratio of SiO 2 / Na 2 O is less than 3, the high-temperature strength is too large, the disintegration is deteriorated, and the service time is shortened. Preferably it is 5-100.

【0011】本発明において、バインダ中に周期律表1
族の金属を質量%で4〜25%含むことが好ましい。こ
こで、周期律表1族の金属を質量%で4〜25%含むと
したのは、4%未満では鋳型に硬化層が形成されず高温
強度が低下するからである。一方、25%を超えると高
温強度が大きすぎて崩壊性が悪くなるからである。
[0011] In the present invention, the periodic table 1 in the binder
It is preferable to contain 4 to 25% by mass of a group III metal. Here, the reason that the metal of Group 1 of the periodic table is contained in an amount of 4 to 25% by mass is that if it is less than 4%, a cured layer is not formed on the mold and the high-temperature strength is reduced. On the other hand, if it exceeds 25%, the high-temperature strength is too large and the disintegration property deteriorates.

【0012】さらに、本発明においては、前記無機系粘
結剤が珪酸塩水溶液、又はコロイダルシリカであること
が好ましい。無機系粘結剤を珪酸塩水溶液、又はコロイ
ダルシリカとすることで、粘結剤の管理が容易となる。
なお、SiO2/Na2Oの濃度の調整は、例えば市販で
所定のモル比とした珪酸塩水溶液に、希釈できる範囲で
水を加えることで容易に行うことができる。
Further, in the present invention, it is preferable that the inorganic binder is an aqueous silicate solution or colloidal silica. When the inorganic binder is an aqueous silicate solution or colloidal silica, the management of the binder is facilitated.
The concentration of SiO 2 / Na 2 O can be easily adjusted by, for example, adding water to a commercially available silicate aqueous solution having a predetermined molar ratio within a dilutable range.

【0013】[0013]

【発明の実施の形態】以下、発明の実施の形態を詳細に
説明する。 (実施の形態)図1は、実施の形態に係る鋳型の要部断
面図であり、図2は無機系粘結剤を含浸する装置の概略
断面図である。図1で、1は鋳型であり、この鋳型1
は、下型2aと上型2bからなる主型2と、主型2内に
配置される中子3からなり、主型2と中子3ほかで形成
されるキャビティ4は主要部の間隙が3mmであり、ま
た主型2には湯口5及び湯道6を設けている。そして、
下型2a、上型2b及び中子3は、以下の工程により製
作している。下型2a、上型2b、中子3は、シェルモ
ールド法、コールドボックス法、フラン法などの造型法
により鋳物砂と周期律表1族の金属を4〜25質量%含
有した粘結剤を混練し造型を行う。そして、下型2a及
び上型2bを図2の含浸装置に装入し、真空ポンプによ
り減圧室21の下半分に貯留された無機粘結剤22をコ
ロイダルシリカとして、この無機粘結剤22に浸漬した
後、減圧室21を減圧して、コロイダルシリカを鋳型1
の砂粒の微細な気孔内に含浸させる。なお、コロイダル
シリカのSiO2/Na2Oはモル比で3以上を好ましい
範囲として含浸させている。
Embodiments of the present invention will be described below in detail. (Embodiment) FIG. 1 is a sectional view of a main part of a mold according to an embodiment, and FIG. 2 is a schematic sectional view of an apparatus for impregnating an inorganic binder. In FIG. 1, reference numeral 1 denotes a mold.
Is composed of a main mold 2 composed of a lower mold 2a and an upper mold 2b, and a core 3 disposed in the main mold 2. A cavity 4 formed by the main mold 2, the core 3, and the like has a gap of a main part. The main mold 2 is provided with a gate 5 and a runner 6. And
The lower mold 2a, the upper mold 2b, and the core 3 are manufactured by the following steps. The lower mold 2a, the upper mold 2b, and the core 3 are prepared by using a molding method such as a shell mold method, a cold box method, or a furan method, with molding sand and a binder containing 4 to 25% by mass of a metal of Group 1 of the periodic table. Knead and mold. Then, the lower mold 2a and the upper mold 2b are charged into the impregnating device shown in FIG. 2, and the inorganic binder 22 stored in the lower half of the decompression chamber 21 by a vacuum pump is used as colloidal silica. After immersion, the decompression chamber 21 was depressurized, and colloidal silica was
Impregnated into the fine pores of the sand grains. The colloidal silica is impregnated with SiO 2 / Na 2 O at a molar ratio of preferably 3 or more.

【0014】次に、含浸装置から取り出した下型2a、
上型2b及び中子3に対してマイクロ波乾燥を行う。更
に、下型2a、上型2b及び中子3を組み立てて鋳型1
とし、焼成炉(図示せず)に入れて、大気中、700〜
1200℃×1時間で焼成する。鋳型を焼成すること
で、有機粘結剤を焼失すると共に無機系粘結剤中のSi
2/Na2Oが砂粒の微細な気孔内で焼結され、砂粒間
が結合される。そして、焼成直後の高温が維持された約
800〜1000℃の鋳型に、例えばオーステナイト系
耐熱鋳鋼組成で約1500〜1600℃と高温の溶融金
属を湯口5から鋳込む。主型2は、コロイダルシリカの
SiO2/Na2Oを、モル比で3以上の範囲として含浸
し、焼成しているので、溶融金属に充分に耐え得る高温
強度を有している。また鋳型1は、溶融金属が鋳込まれ
る温度に近い、約800〜1000℃の高温に予熱され
ているので、キャビティ4への湯廻りが良好となる。次
に、鋳込み後、常温状態に戻して鋳型1と鋳物とを分離
する。中子3に、無機系粘結剤としてコロイダルシリカ
のSiO2/Na2Oをモル比で50以上にして含浸し、
焼成し、砂粒間の結合を比較的弱くしているので、中子
3は容易に崩壊して鋳物から分離される。
Next, the lower mold 2a taken out of the impregnating device,
The upper mold 2b and the core 3 are subjected to microwave drying. Further, the lower mold 2a, the upper mold 2b and the core 3 are assembled to form the mold 1
And put in a firing furnace (not shown),
Baking at 1200 ° C. × 1 hour. By firing the mold, the organic binder is burned off and the Si in the inorganic binder is removed.
O 2 / Na 2 O is sintered in the fine pores of the sand grains, and the sand grains are connected. Then, a molten metal having a high temperature of about 1500 to 1600 ° C., for example, of a heat-resistant austenitic cast steel composition, is cast from the gate 5 into a mold of about 800 to 1000 ° C. maintained at a high temperature immediately after firing. The main mold 2 is impregnated with colloidal silica SiO 2 / Na 2 O in a molar ratio of 3 or more and fired, and therefore has a high temperature strength enough to withstand the molten metal. Also, since the mold 1 is preheated to a high temperature of about 800 to 1000 ° C., which is close to the temperature at which the molten metal is cast, the flow of the molten metal into the cavity 4 becomes good. Next, after the casting, the temperature is returned to the room temperature, and the mold 1 and the casting are separated. The core 3 is impregnated with SiO 2 / Na 2 O of colloidal silica as an inorganic binder at a molar ratio of 50 or more,
The core 3 is easily disintegrated and separated from the casting because it has been fired and the bond between the sand grains is relatively weak.

【0015】[0015]

【実施例】次に、実施例について説明する。周期律表1
族金属の質量比を変化させて含有させたバインダを混合
した鋳物砂で、20×10×60(mm)の抗折試験片
と、φ50×H50(mm)の崩壊性試験片を造型した
後、含浸装置に装入した。そして、含浸装置の減圧室に
貯留された無機粘結剤をコロイダルシリカ又は珪酸塩水
溶液として、SiO2/Na2Oのモル比と濃度を変えて
試験片に含浸させ、次にマイクロ波乾燥した。更に試験
片を焼成炉に入れ、大気中、1000℃×1時間で焼成
した。次に、焼成後の抗折試験片について、残留強度
(N/cm2 )及び高温強度(N/cm2 )を測定し
た。なお、残留強度(N/cm2 )は、抗折試験片が常
温に戻った状態で、スパン50mmで両先端半径が2m
mの金属製支点にセットし、上部から加圧くさびによっ
て一定速度の荷重を加え、抗折試験片が折れたときの最
大荷重から求めた。また、高温強度(N/cm2 )は、
焼成直後の高温が維持された状態の抗折試験片を、炉か
ら取り出して直ちに、スパン50mmで両先端半径が2
mmの金属製支点にセットし、上部から加圧くさびによ
って一定速度の荷重を加え、抗折試験片が折れたときの
最大荷重から求めた。そして、鋳型は取り扱いの面か
ら、残留強度は200N/cm2 以上必要とするので、
抗折力が200N/cm2 未満を(×)、200〜50
0N/cm2 を(○)、500N/cm2 以上を(◎)
として評価した。また、高温の溶融金属を鋳込むうえで
少なくとも、高温強度は100N/cm2 以上必要とす
るので、抗折力が100N/cm2 未満を(×)、10
0〜300N/cm2 を(○)、300N/cm2 以上
を(◎)として評価した。一方、崩壊性試験片を中子に
用いて、オーステナイト系耐熱鋳鋼組成の溶融金属を鋳
込み、鋳造後、鋳物への砂付きの程度を評価した。な
お、崩壊性の評価は、1回のショットブラストで砂落ち
したものを(◎)、2〜3回を(○)、3回を超えるも
のを(×)とした。残留強度と高温強度の試験結果と評
価結果、及び崩壊性の評価結果を表1に示す。
Next, an embodiment will be described. Periodic Table 1
After molding a 20 × 10 × 60 (mm) bending test piece and a φ50 × H50 (mm) collapsible test piece with molding sand mixed with a binder containing varying mass ratio of group metal. , And charged to the impregnation apparatus. Then, the test piece was impregnated with the inorganic binder stored in the decompression chamber of the impregnation device as a colloidal silica or silicate aqueous solution while changing the molar ratio and concentration of SiO 2 / Na 2 O, and then microwave dried. . Further, the test piece was placed in a firing furnace and fired at 1000 ° C. for 1 hour in the atmosphere. Next, the residual strength (N / cm 2 ) and high-temperature strength (N / cm 2 ) of the bending test specimen after firing were measured. The residual strength (N / cm 2 ) was measured at a span of 50 mm and a radius at both ends of 2 m in a state where the bending test piece returned to normal temperature.
m was set on a metal fulcrum, a load at a constant speed was applied from above by a pressure wedge, and the maximum load when the bending test specimen was broken was determined. The high-temperature strength (N / cm 2 )
Immediately after taking out the bending test piece in a state where the high temperature was maintained immediately after firing from the furnace, the span was 50 mm, and both tip radii were 2 mm.
mm was set on a metal fulcrum, a load at a constant speed was applied from above by a pressure wedge, and the maximum load when the bending test specimen was broken was determined. Since the mold requires a residual strength of 200 N / cm 2 or more in terms of handling,
When the transverse rupture force is less than 200 N / cm 2 (×), 200 to 50
The 0N / cm 2 (○), 500N / cm 2 or more (◎)
Was evaluated. Further, since at least the high-temperature strength is required to be 100 N / cm 2 or more in casting the high-temperature molten metal, the transverse rupture strength is less than 100 N / cm 2 (×),
The 0~300N / cm 2 (○), was evaluated 300N / cm 2 or more as (◎). On the other hand, using a collapsible test piece as a core, a molten metal having an austenitic heat-resistant cast steel composition was cast, and after casting, the degree of sand on the casting was evaluated. In addition, the evaluation of disintegration was evaluated as (◎) when sand was dropped by one shot blast, (○) when 2-3 times, and (×) when more than 3 times. Table 1 shows the test results and evaluation results of the residual strength and the high-temperature strength, and the evaluation results of the disintegration property.

【0016】 (表1) ハ゛インタ゛中の 無機系粘結剤 SiO2/N2O 評価結果 1族金属(%) の種類 モル比 残留強度 高温強度 崩壊性 比較例1 - コロイタ゛ルシリカ 2 × × × 比較例2 - コロイタ゛ルシリカ 40 ○ ○ × 実施例1 Na 6 コロイタ゛ルシリカ 5 ◎ ◎ ○ 実施例2 Na 12 コロイタ゛ルシリカ 30 ◎ ◎ ◎ 実施例3 K 15 珪酸塩水溶液 60 ○ ○ ◎ 実施例4 K 24 珪酸塩水溶液 115 ○ ○ ◎ 比較例3 Na 7 コロイタ゛ルシリカ 2 ○ ○ × 比較例4 Na 7 珪酸塩水溶液 2 × ○ × 比較例5 Na 30 珪酸塩水溶液 60 × ○ ×(Table 1) Inorganic binder SiO in the painterTwo/ NTwoOEvaluation results  Group 1 metal (%) Type Molar ratio Residual strength High temperature strength Collapsible  Comparative Example 1-Colloidal Silica 2 × × × Comparative Example 2-Colloidal Silica 40 ○ ○ × Example 1 Na 6 Colloidal Silica 5 ◎ ◎ ○ Example 2 Na 12 Colloidal Silica 30 ◎ ◎ ◎ Example 3 K15 Silicate Aqueous Solution 60 ○ ○ ◎ Example 4 K 24 silicate aqueous solution 115 ○ ○ ◎ Comparative Example 3 Na 7 colloidal silica 2 ○ ○ × Comparative Example 4 Na 7 silicate aqueous solution 2 × ○ × Comparative Example 5 Na 30 silicate aqueous solution 60 × ○ ×

【0017】表1から、実施例1、2は、鋳型バインダ
中に周期律表1族金属であるNaを4〜25%含有し、
コロイダルシリカのSiO2/Na2Oを、モル比で3以
上の範囲として含浸し、焼成しているので、残留強度、
高温強度を有する鋳型となっていることがわかる。ま
た、実施例3、4は、鋳型バインダ中に周期律表1族金
属であるKを4〜25%含有し、珪酸塩水溶液のSiO
2/Na2Oをモル比で3以上の範囲として含浸し、焼成
しているので、崩壊性の良い鋳型となっていることがわ
かる。一方、比較例1〜2の鋳型は、鋳型バインダ中に
周期律表1族金属を含まないので、残留強度、高温強度
及び崩壊性の何れかの評価が低い。また、比較例3、4
の鋳型は、鋳型バインダ中に周期律表1族金属であるN
aを4〜25%含有しているが、コロイダルシリカ又は
珪酸塩水溶液のSiO2/Na2Oモル比が3未満であ
り、常温強度、高温強度が低く、比較例5の鋳型は、珪
酸塩水溶液のSiO2/Na2Oモル比が3以上である
が、鋳型バインダ中の周期律表1族金属であるNaを4
〜25%を超えて含有しており、常温強度、高温強度が
低く何れにしても比較例1〜6は、鋳型を焼成後、焼成
温度を維持したままで直ちに高温の溶融金属を鋳込む鋳
型としては、まだ問題が残されている。
From Table 1, Examples 1 and 2 show that the template binder contains 4 to 25% of Na, which is a Group 1 metal of the periodic table,
Since colloidal silica SiO 2 / Na 2 O is impregnated in a molar ratio of 3 or more and calcined, the residual strength,
It can be seen that the mold has high-temperature strength. In Examples 3 and 4, the mold binder contained 4 to 25% of K, which is a Group 1 metal of the periodic table,
The 2 / Na 2 O impregnated as 3 or more ranges in a molar ratio, since the firing, it is understood that the disintegrating good mold. On the other hand, since the molds of Comparative Examples 1 and 2 do not contain a Group 1 metal of the periodic table in the mold binder, any of the residual strength, high-temperature strength and disintegration are low. Comparative Examples 3 and 4
Is made of N, which is a Group 1 metal of the periodic table, in a mold binder.
a is 4 to 25%, but the colloidal silica or silicate aqueous solution has a SiO 2 / Na 2 O molar ratio of less than 3, low room temperature strength and high temperature strength. The molar ratio of SiO 2 / Na 2 O in the aqueous solution is 3 or more, but Na, which is a Group 1 metal of the Periodic Table in the template binder, is 4%.
In any of Comparative Examples 1 to 6, the mold containing a molten metal of high temperature immediately after maintaining the sintering temperature after firing the mold. As yet, the problem remains.

【0018】[0018]

【発明の効果】以上、詳細に説明のとおり、本発明の鋳
型は、バインダに周期律表1族の金属を含有させ、無機
粘結剤として、珪酸塩水溶液又はコロイダルシリカのS
iO2/Na2Oのモル比を変えて含浸することで、焼成
後直ちに高温の溶融金属を鋳込む際の高温強度や、鋳込
み後、鋳物と分離する場合の崩壊性も調整され、また無
機系粘結剤を用いているので管理が比較的容易である。
As described above in detail, the mold of the present invention has a binder containing a metal of Group 1 of the periodic table in a binder, and an aqueous solution of silicate or S of colloidal silica as an inorganic binder.
By changing the molar ratio of iO 2 / Na 2 O and impregnating, the high-temperature strength at the time of casting a high-temperature molten metal immediately after firing and the disintegration when separating from a casting after casting are adjusted. Since a binder is used, management is relatively easy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施の形態に係る鋳型の要部断面図である。FIG. 1 is a sectional view of a main part of a mold according to an embodiment.

【図2】無機系粘結剤を含浸する装置の概略断面図であ
る。
FIG. 2 is a schematic sectional view of an apparatus for impregnating an inorganic binder.

【符号の説明】[Explanation of symbols]

1:鋳型 2:主型 2a:下型 2b:上型 3:中子 4:キャビティ 5:湯口 6:湯道 21:減圧室 22:無機粘結剤 23:真空ポンプ 1: Mold 2: Main mold 2a: Lower mold 2b: Upper mold 3: Core 4: Cavity 5: Gate 6: Runner 21: Decompression chamber 22: Inorganic binder 23: Vacuum pump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中野 英治 福岡県京都郡苅田町長浜町35番地 日立金 属株式会社九州工場内 (72)発明者 早田 智臣 福岡県京都郡苅田町長浜町35番地 日立金 属株式会社九州工場内 Fターム(参考) 4E092 AA02 AA09 AA18 AA19 BA02 BA11 CA03  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Eiji Nakano, Inventor 35, Nagahama-cho, Kanda-cho, Kyoto-gun, Fukuoka Prefecture Inside the Kyushu Plant of Hitachi Metals Co., Ltd. F-term in Kyushu Plant (reference) 4E092 AA02 AA09 AA18 AA19 BA02 BA11 CA03

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 鋳物砂に周期律表1族の金属を有したバ
インダを粘結させて所望形状に造型された後、SiO2
/Na2Oのモル比が3以上の無機系粘結剤が含浸さ
れ、昇温され溶融金属が鋳込まれることを特徴とする鋳
造用鋳型の製造方法。
After a molding sand is formed into a desired shape by adhering a binder containing a metal of Group 1 of the periodic table to a molding sand, SiO 2 is formed.
A method for producing a casting mold, characterized by impregnating an inorganic binder having a molar ratio of / Na 2 O of 3 or more, raising the temperature, and casting a molten metal.
【請求項2】 前記バインダが周期律表1族の金属を質
量%で4〜25%含むことを特徴とする請求項1に記載
の鋳造用鋳型の製造方法。
2. The method for producing a casting mold according to claim 1, wherein the binder contains 4 to 25% by mass of a metal belonging to Group 1 of the periodic table.
【請求項3】 前記無機系粘結剤が珪酸塩水溶液である
ことを特徴とする請求項1又は請求項2に記載の鋳造用
鋳型の製造方法。
3. The method according to claim 1, wherein the inorganic binder is an aqueous silicate solution.
【請求項4】 前記無機系粘結剤がコロイダルシルカで
あることを特徴とする請求項1又は請求項2に記載の鋳
造用鋳型の製造方法。
4. The method according to claim 1, wherein the inorganic binder is colloidal silker.
JP2001058878A 2001-03-02 2001-03-02 Mold manufacturing method for casting Pending JP2002254135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001058878A JP2002254135A (en) 2001-03-02 2001-03-02 Mold manufacturing method for casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001058878A JP2002254135A (en) 2001-03-02 2001-03-02 Mold manufacturing method for casting

Publications (1)

Publication Number Publication Date
JP2002254135A true JP2002254135A (en) 2002-09-10

Family

ID=18918530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001058878A Pending JP2002254135A (en) 2001-03-02 2001-03-02 Mold manufacturing method for casting

Country Status (1)

Country Link
JP (1) JP2002254135A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100462161C (en) * 2007-09-06 2009-02-18 甘肃省永靖昌盛铸钢有限责任公司 Composite sand mould material for producing stainless steel casting and method for casting stainless steel casting
CN102773401A (en) * 2012-08-27 2012-11-14 重庆长江造型材料(集团)有限公司 Method for preparing precoated sand by using silicate inorganic binder
CN102921903A (en) * 2012-11-16 2013-02-13 鞍钢集团矿业公司 Measurement, control and storage system for molding sand curing agent
CN106984771A (en) * 2017-05-09 2017-07-28 大连理工大学 A kind of method for the elevated temperature strength for improving 3D printing sand mold/core

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100462161C (en) * 2007-09-06 2009-02-18 甘肃省永靖昌盛铸钢有限责任公司 Composite sand mould material for producing stainless steel casting and method for casting stainless steel casting
CN102773401A (en) * 2012-08-27 2012-11-14 重庆长江造型材料(集团)有限公司 Method for preparing precoated sand by using silicate inorganic binder
CN102921903A (en) * 2012-11-16 2013-02-13 鞍钢集团矿业公司 Measurement, control and storage system for molding sand curing agent
CN106984771A (en) * 2017-05-09 2017-07-28 大连理工大学 A kind of method for the elevated temperature strength for improving 3D printing sand mold/core

Similar Documents

Publication Publication Date Title
CA2139016C (en) Process for preparing refractory molded articles and binders therefor
AU2020202A (en) Investment casting mold and method of manufacture
US20060211567A1 (en) Method and slip for production of a moulded body from ceramic material ceramic moulded body and use of such a moulded body
JP2002254135A (en) Mold manufacturing method for casting
JP4153689B2 (en) Manufacturing method of casting mold
JPH0824996B2 (en) Water-soluble core and method for producing the same
JP3094148B2 (en) Manufacturing method of lightweight refractory
KR102131564B1 (en) sleeve and method of manufacturing the same
JP2002307131A (en) Mold for casting
JPH08332547A (en) Casting method and mold and its production
JPH0663684A (en) Production of ceramic core for casting
JP2579825B2 (en) Mold making method
JPS6167540A (en) Casting mold
Pivinskii et al. Research in the area of preparing materials based on fuzed quartz HCBS. Part 11. Tests for implementing new unfired quartz refractory technology
JP2013087307A (en) Manufacturing method of metal-ceramic composite material and metal-ceramic composite material
JP3761414B2 (en) Casting mold and manufacturing method thereof
JPH0372372B2 (en)
JPH066221B2 (en) Ceramic mold manufacturing method
JPH10211541A (en) Durable mold
JPH0459148A (en) Molding method for mold
KR20220112128A (en) MID-MIDDLEiCORE PRINT DESIGN FOR CASTING
JPS5818987Y2 (en) Precision casting mold that can be easily disassembled
JPH06340467A (en) Production of ceramic molded body
JPH0229003B2 (en)
CN112264575A (en) Hollow ceramic core adopting die swinging method and preparation method thereof