JPH03248611A - Temperature compensation gain setting controller - Google Patents

Temperature compensation gain setting controller

Info

Publication number
JPH03248611A
JPH03248611A JP4654690A JP4654690A JPH03248611A JP H03248611 A JPH03248611 A JP H03248611A JP 4654690 A JP4654690 A JP 4654690A JP 4654690 A JP4654690 A JP 4654690A JP H03248611 A JPH03248611 A JP H03248611A
Authority
JP
Japan
Prior art keywords
converter
output
gain
rom
telecommand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4654690A
Other languages
Japanese (ja)
Inventor
So Shiino
創 椎野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4654690A priority Critical patent/JPH03248611A/en
Publication of JPH03248611A publication Critical patent/JPH03248611A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Amplification And Gain Control (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

PURPOSE:To realize a controller with low power consumption and high reliability without malfunction by operating a ROM by sampling and holding a bias of a variable attenuator. CONSTITUTION:When a telecommand signal is fed to an input terminal 1, a content of a gain status decoder 2 is and an output is given as an address of a ROM 3. The decoder 2 is reset by a pulse generated by a power-on reset circuit 4 at application of power and receives a telecommand signal 5 of gain increase and a telecommand signal 6 of gain decrease to decode a setting gain. An output of an A/D converter 7 independently of an output of the decoder 2 at all is applied to the ROM 3. When the resistance of a thermister 9 changes due to temperature fluctuation and the fluctuation of a level at a connecting point exceeds a threshold level of the converter 7, the output of the converter 7 is changed. A latch 10 fetches an LSB of the converter 7 for each clock period generated at an oscillator 13, the temperature state is sampled and when a change in the LSB is found out, a status of temperature change is outputted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、マイクロ波回路から構成される衛星搭載用
中継器(以下中継器)の持つ利得を外部コマンドにより
一定ステップで可変させ、かつ温度変動による利得変位
を補償した利得割前装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention allows the gain of a satellite-mounted repeater (hereinafter referred to as a repeater) consisting of a microwave circuit to be varied in fixed steps by an external command, and The present invention relates to a gain dividing device that compensates for gain displacement due to fluctuations.

〔従来の技術〕[Conventional technology]

従来、この種の装置として第2図に示されるものがあっ
た。(1)はテレコマンド入力端子、(2)はゲインス
テータスデコーダ、 (31はROM、(41は〕fワ
ーオンリセット回路、(5)は利得増加を指示する第1
のテレコマンド信号、(6)は利得減少を指示する第2
のテレコマンド1=号、(7)はA/Dコンノ(−夕。
Conventionally, there has been a device of this type as shown in FIG. (1) is a telecommand input terminal, (2) is a gain status decoder, (31 is a ROM, (41 is a) f-war-on reset circuit, (5) is a first input terminal that instructs a gain increase.
(6) is the second telecommand signal commanding gain reduction.
Telecommand number 1, (7) is the A/D controller (-evening).

(8)は抵抗器、(9)はサーミスタ、α0)は第1の
ラッチ。
(8) is a resistor, (9) is a thermistor, and α0) is the first latch.

(lυは第1のANDゲート、面はNORゲーグーfl
りは発振器、 (141は第1のORゲグー−、Q51
は第2のORゲート、061は第3のORゲート、(1
71はスイッチングトランジスタ、[Bは第2のラッチ
、 (191は第2のANDゲーグー(2fi)はD/
Aコンバータ、(211は可変アッテネータバイアス端
子である。第3図は中継語における利得制御装置の位置
付けを示す。(至)は温度補償利得設定制御装置、閣は
第1のRF帯増輻器、 (so)は第2のRF帯増幅蕾
、 (60)は可変アッテネータを示す。
(lυ is the first AND gate, face is NOR game fl
ri is an oscillator, (141 is the first OR game, Q51
is the second OR gate, 061 is the third OR gate, (1
71 is a switching transistor, [B is a second latch, (191 is a second AND gate (2fi) is a D/
A converter, (211 is a variable attenuator bias terminal. Figure 3 shows the positioning of the gain control device in the relay word. (To) is the temperature compensation gain setting control device, and 211 is the first RF band amplifier, (so) indicates the second RF band amplification bud, and (60) indicates a variable attenuator.

次に動作について説明する。外部より送信されろテレコ
マンド信号が入力端子(1)に印加されると。
Next, the operation will be explained. When a telecommand signal transmitted from the outside is applied to the input terminal (1).

ゲインステータスデコーダ(2)の内容が更新され。The contents of the gain status decoder (2) are updated.

その出力がROM (3’lのアドレスとして出力され
る。
The output is output as the address of ROM (3'l).

ゲインステータスデコーダ(2)は電源投入時にパワー
オンリセット回路(4)によって発生するパルスにより
−Hリセットされた後、利得増加のテレコマンド信号(
5)、利#!減少のテレコマンド(6)を受は設定利得
を解読する。ROM [31にはゲインステータスデコ
ーダ(2)の出力とは全く独立な A/Dコンバータ(
7)の出力が印加されろ。A/Dコンバータ(7)の入
力は抵抗器(8)とサーミスタ(9)の接続点の電位で
ある。温度変動に伴いサーミスタ(9)の抵抗値が変り
、接続点電位の変動量がA/Dコンバータ(7)の持つ
しきい値を越えると、A/Dコンバータ(7)の出力も
変化する。A/Dコンバータの出力はROMアドレスの
他にラッチ(101,ANDゲーグーDとNORゲート
叩にもそのLSBだけ印加される。ラッチα0)では発
振器03)の発生するクロック周期毎に。
After the gain status decoder (2) is reset to -H by a pulse generated by the power-on reset circuit (4) when the power is turned on, the gain increase telecommand signal (
5), profit #! The receiver of the decrease telecommand (6) decodes the set gain. ROM [31 has an A/D converter (
7) is applied. The input of the A/D converter (7) is the potential at the connection point between the resistor (8) and thermistor (9). When the resistance value of the thermistor (9) changes with temperature fluctuation and the amount of change in the connection point potential exceeds the threshold value of the A/D converter (7), the output of the A/D converter (7) also changes. The output of the A/D converter is applied not only to the ROM address but also to the latch (101, AND game D and NOR gate).In the latch α0), every clock cycle generated by the oscillator 03).

A/Dコンバータ(7)のLSBを取込み、ANDゲー
ト(社)、NORゲート叩へ出力する。ANDゲート0
1)及びNORゲート叩ではクロックにて温度状況をサ
ンプリングし、1サンプリング周期の間でLSBの変化
が認められた時、ORゲグー圓を通じて温度変化のステ
ータスを出す。一方、パルスコマンド信号においても2
ケある内の一方のコマンドが送られてきtこ時、ORゲ
グー■を通じて利得変化のステータスを知らせる。加え
て電源投入時発生するパワーオンリセットパルスとの論
理和がイネーブルになった時のみ1周囲温度状況下の設
定利得を可変アッテネータのバイアス値が書き込まれた
R OM [31に電圧が印加する様、ORゲグー圓の
出力をスイッチングトランジスタ面のベースへ接続しト
ランジスタ面を導通状態としてROM(3)へ電流を流
す。なお、この状態は1クロック周期のみ持続するため
ROM +31の出力が消滅しない様ラッチ(至)にて
次の利得変更時まで保持される。
It takes in the LSB of the A/D converter (7) and outputs it to the AND gate (Inc.) and NOR gate. AND gate 0
1) In the case of hitting the NOR gate, the temperature situation is sampled by the clock, and when a change in LSB is recognized within one sampling period, the status of the temperature change is output through the OR gate. On the other hand, the pulse command signal also has 2
When one of the commands is sent, the status of the gain change is notified through ORG. In addition, only when the logical sum with the power-on reset pulse generated when the power is turned on is enabled, the voltage is applied to the ROM [31] in which the bias value of the variable attenuator is written to set the gain under the ambient temperature condition. , the output of the OR gate is connected to the base of the switching transistor surface, the transistor surface is made conductive, and a current flows to the ROM (3). Note that this state lasts for only one clock period, so it is held by a latch until the next gain change so that the output of ROM +31 does not disappear.

次の利得変更時はANDゲート(2)より得られるパル
スでROM (31の出力を再び取込む。ラッチ(至)
で保持される設定利得データは、D/Aコンバータ(至
)によりアナログ電圧へ変換され、可変アッテネータバ
イアスとして可変アッテネータパスアス端子四より出力
される。
At the next gain change, the output of ROM (31) is taken in again using the pulse obtained from the AND gate (2). Latch (to)
The setting gain data held in is converted into an analog voltage by the D/A converter (to), and outputted from the variable attenuator pass terminal 4 as a variable attenuator bias.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の温度補償利得設定制御装置は以上のように構成さ
れているので2本装置中のROMの出力をラッチするフ
リップフロップが放射線の影響によレビット反転を起こ
し、誤動作を起こすという課題があった。
Since the conventional temperature compensation gain setting control device is configured as described above, there was a problem in that the flip-flops that latched the output of the ROM in the two devices caused Levitt inversion due to the influence of radiation, causing malfunction. .

この発明は上記のような課題を解消するためになされた
もので、放射線の影響を受けない信頼性の高い温度補償
利得設定制御装置を得ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to obtain a highly reliable temperature compensation gain setting control device that is not affected by radiation.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る温度補償利得設定制御装置は。 A temperature compensation gain setting control device according to the present invention.

ROMの出力をラッチせず、D/A変換後のアナログ値
をホールドするため、ROMへの通電時間を電源投入時
、パルスコマンド受信時及び温度状況変更時に限定した
まま放射線の影響を無視てきる様サンプルホールド回路
を用いたものである。
Since the ROM output is not latched and the analog value after D/A conversion is held, the influence of radiation can be ignored while energizing the ROM is limited to when the power is turned on, when receiving pulse commands, and when changing temperature conditions. It uses a similar sample-and-hold circuit.

〔作 用〕[For production]

この発明は、サンプリングにてROMを動作させ、 D
 /Aコンバータの出力をホールドすることによりディ
ジタルのラッチ回路を削減し、低消費電力でより小型な
回路規模の信頼性の高い装置が実現できる。
This invention operates the ROM by sampling, and D
By holding the output of the /A converter, the number of digital latch circuits can be reduced, and a highly reliable device with low power consumption and smaller circuit scale can be realized.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図において、 +11 、[2) 、(31、(4] 
、(51、(61、(71、(8) 。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, +11, [2), (31, (4]
, (51, (61, (71, (8)).

(91、(101、(Ill 、 (12) 、 (1
31、(141、Q51 、 [61、(I71. (
2m 、 (211ハ従来装置と全く同一のものである
。―ばFET、G!31はオペアンプ、 G!41はコ
ンデンサを示す。
(91, (101, (Ill), (12), (1
31, (141, Q51, [61, (I71.
2m, (211C is exactly the same as the conventional device. - is a FET, G!31 is an operational amplifier, and G!41 is a capacitor.

次に動作について説明する。外部より送信されろテレコ
マンド信号が入力端子(1)に印加されるとゲインステ
ータスデコーダ(2)の内容が更新され。
Next, the operation will be explained. When a telecommand signal transmitted from the outside is applied to the input terminal (1), the contents of the gain status decoder (2) are updated.

その出力がROM +31のアドレスとして出力される
The output is output as the address of ROM +31.

ゲインステータスデコーダ(2)は電源投入時にパワー
オンリセット回路(4)によって発生するパルスにより
一旦リセットされた後、利得増加のテレコマンド信号(
5)、利得減少のテレコマンド信号(6)を受け、設定
利得を解読する。ROM +31にはゲインステータス
デコーダ(2)の出力とは全く独立な A/Dコンバー
タ(7)の出力が印加されろ。A/Dコンバータ(7)
の入力は抵抗器(8)とサーミスタ(9)の接続点の電
位である。温度変動に伴いサーミスタ(9)の抵抗値が
変り、接続点電位の変動量がA/Dコンバータ(7)の
持つしきい値を超えると、A/Dコンバータ(7)の出
力も変化する。A/Dコンバータ(7)の出力はROM
アドレスの他にラッチQQ)、ANDゲート(Illと
NORゲート口にもそのLSBだけ印加される。ラッチ
α0)では発振器α3)が発生するクロック周期毎に、
A/Dコンバータ(7)のLSBを取込み、ANDゲー
グーl、NORゲート口へ出力する。ANDゲーグーD
及びNORゲート口てはクロックにて温度状況をサンプ
リングし、1サンプリング周期の間でLSBの変化が認
められた時、ORゲグーQ4]を通して温度変化のステ
ータスを出す。一方。
The gain status decoder (2) is reset by a pulse generated by the power-on reset circuit (4) when the power is turned on, and then receives a gain increase telecommand signal (
5) Receive the gain reduction telecommand signal (6) and decipher the set gain. The output of the A/D converter (7), which is completely independent of the output of the gain status decoder (2), is applied to ROM +31. A/D converter (7)
The input is the potential at the connection point between the resistor (8) and thermistor (9). When the resistance value of the thermistor (9) changes with temperature fluctuation and the amount of change in the connection point potential exceeds the threshold value of the A/D converter (7), the output of the A/D converter (7) also changes. The output of A/D converter (7) is ROM
In addition to the address, only the LSB is applied to the latch QQ), the AND gate (Ill, and the NOR gate port.In the latch α0), every clock period generated by the oscillator α3),
It takes in the LSB of the A/D converter (7) and outputs it to the AND gate and NOR gate. AND game goo D
The temperature status is sampled by the clock at the NOR gate, and when a change in LSB is recognized within one sampling period, the status of the temperature change is output through the OR gate Q4. on the other hand.

パルスコマンド信号においても2ケある内の一方のコマ
ンドが送られてきた時、ORゲグー印を通じて利得変化
のステータスを知らせる。加えて電源投入時発生するパ
ワーオンリセットパルスの論理和がイネーブルになった
時のみ2周囲温度状況下の設定利得を可変アッテネータ
のバイアス値が書き込まれたR OM (3)に電圧が
印加する様、ORゲグー圓の出力をスイッチングトラン
ジスターのベースへ接続し、トランジスタU)を導通状
態としてROM (31へ電流を流す。ROM (31
より出力される可変アッテネータバイアスは、 D /
Aコンバータ(至)にてアナログ量へ変換される。D/
AコンバータG!mにより変換された可変アッテネータ
バイアスはFET(221のドレインに印加され、その
ゲートへ接続されているORゲグー印がイネーブルにな
った時ソースへその値をホールドする。ホールド時間は
オペアンプ囚の入力インピーダンス及びコンデンサ(2
匂の容量により決まる。
Also in the pulse command signal, when one of the two commands is sent, the status of the gain change is notified through the OR signal. In addition, only when the logical sum of the power-on reset pulses that occur when the power is turned on is enabled, a voltage is applied to the ROM (3) in which the bias value of the variable attenuator is written, and the gain is variable under two ambient temperature conditions. , connect the output of the OR gate to the base of the switching transistor, turn on the transistor U), and flow current to ROM (31).ROM (31
The variable attenuator bias output from D/
It is converted into an analog quantity by the A converter (to). D/
A converter G! The variable attenuator bias converted by m is applied to the drain of the FET (221) and holds its value to the source when the OR gate connected to its gate is enabled.The hold time is determined by the input impedance of the op amp. and capacitor (2
Determined by scent capacity.

今、可変アッテネータの設定精度をnzとすると。Now, let nz be the setting accuracy of the variable attenuator.

100− n = e −”’ となり。100-n=e-”’ Next door.

で、オペアンプの入力インピーダンスをRMΩ。So, the input impedance of the operational amplifier is RMΩ.

コンデンサの容量をCuFとした時。When the capacitor capacity is CuF.

となる。この場合2発振器のクロック周期は。becomes. In this case, the clock period of the two oscillators is.

以下とすればよい。オペアンプの出力はトランジスタ固
を介して可変アッテネータバイアス端子(211へ供給
される。
The following may be used. The output of the operational amplifier is supplied to a variable attenuator bias terminal (211) via a transistor.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、サンプリングにてRO
Mを動作させ、可変アッテネータバイアス値をホールド
しているので、低消費電力でfi射線による誤動作のな
い信頼性の高い温度補償利得設定制御装置が得られる効
果がある。
As described above, according to the present invention, RO
Since M is operated and the variable attenuator bias value is held, a highly reliable temperature compensation gain setting control device with low power consumption and no malfunction due to fi rays can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による温度補償利得設定制
御装置を示すブロック図、第2図は従来の温度補償利得
設定制御装置を示す図、第3図は中継器の一実施例を示
す図である。(1)はテレコマンド入力端子、(2)は
ゲインステータスデコーダ。 (3)はROM、[41はパワーオンリセット、(5)
は利得増加のテレコマンド信号、(6)は利得減少のテ
レコマンド信号、(7)はA/Dコンバータ、(8)は
抵抗器。 (9)はサーミスタ、aωはラッチ、fil)はAND
ゲート。 回はNORゲート、03)は発振器、圓は第1のORゲ
ート、Q51は第2のORゲート、(ト)は第3のOR
ゲート、(171はスイッチングトランジスタ、(2)
はD/Aコンバータ、+211は可変アッテネータバイ
アス端子。 (至)はFET、(!+1はオペアンプ、 (241は
コンデンサ。 固はトランジスタを示す。 なお2図中、同一符号は同一または相当部分を示す。
FIG. 1 is a block diagram showing a temperature compensation gain setting control device according to an embodiment of the present invention, FIG. 2 is a diagram showing a conventional temperature compensation gain setting control device, and FIG. 3 is a block diagram showing an embodiment of a repeater. It is a diagram. (1) is a telecommand input terminal, and (2) is a gain status decoder. (3) is ROM, [41 is power-on reset, (5)
is a telecommand signal with increased gain, (6) is a telecommand signal with decreased gain, (7) is an A/D converter, and (8) is a resistor. (9) is a thermistor, aω is a latch, fil) is AND
Gate. times is a NOR gate, 03) is an oscillator, 圓 is the first OR gate, Q51 is the second OR gate, (g) is the third OR gate
Gate, (171 is a switching transistor, (2)
is a D/A converter, and +211 is a variable attenuator bias terminal. (to) is a FET, (!+1 is an operational amplifier, (241 is a capacitor, and solid is a transistor. In Figure 2, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] テレコマンドパルスが入力される入力端子を有し、入力
コマンド信号から設定利得状態を解読するゲインステー
タスデコーダと、電源とアース間に直列に接続された抵
抗器とサーミスタと、上記抵抗器とサーミスタとの接続
点の電位を取込むA/Dコンバータと2パワーオンリセ
ット回路の出力、2ケのテレコマンドパルスの論理和ま
たは上記A/Dコンバータの最下位ビットと、上記最下
位ビットをラッチ回路に介した出力の論理演算結果との
論理和が、ベースへ接続されているトランジスタを介し
て電圧が印加され、上記ゲインステータスデコーダ、A
/Dコンバータの並列出力信号をアドレスとし、周囲温
度状況下に適合した利得設定値に対応した減衰量を得る
ために必要な電圧値を読み出すROMと、このROM出
力をアナログ量へ変換するD/Aコンバータと、このD
/Aコンバータ出力をドレインに取込み、クロック及び
上記パワーオンリセットと、テレコマンドパルスと、上
記A/Dコンバータ最下位ビットのラッチ前後の論理演
算結果との論理和がゲートに印加されることによりD/
Aコンバータの出力値をソースにホールドするFETと
、このFETのソースとアース間に直列に接続されたコ
ンデンサと、上記FETのソースに非反転入力端子が接
続されたオペアンプ及びこのオペアンプ出力に直列に接
続されたトランジスタ、このトランジスタのエミッタよ
り可変アッテネータへそのバイアスを供給する出力端子
とを備えたことを特徴とする温度補償利得設定制御装置
a gain status decoder having an input terminal into which a telecommand pulse is input and decoding a set gain state from the input command signal; a resistor and thermistor connected in series between a power supply and ground; and the resistor and thermistor. The output of the A/D converter and the two power-on reset circuits that take the potential at the connection point, the OR of the two telecommand pulses, or the least significant bit of the A/D converter and the least significant bit of the above to the latch circuit. A voltage is applied through the transistor connected to the base of the gain status decoder, A.
A ROM that uses the parallel output signal of the /D converter as an address and reads out the voltage value necessary to obtain the attenuation amount corresponding to the gain setting value suitable for the ambient temperature condition, and a D/D converter that converts this ROM output into an analog value. A converter and this D
/A converter output is taken into the drain, and the logical sum of the clock, the power-on reset, the telecommand pulse, and the logical operation results before and after the latch of the lowest bit of the A/D converter is applied to the gate. /
A FET that holds the output value of the A converter in its source, a capacitor connected in series between the source of this FET and the ground, an operational amplifier whose non-inverting input terminal is connected to the source of the FET, and an operational amplifier connected in series to the output of this operational amplifier. A temperature compensated gain setting control device comprising a transistor connected to the transistor and an output terminal for supplying a bias from the emitter of the transistor to a variable attenuator.
JP4654690A 1990-02-27 1990-02-27 Temperature compensation gain setting controller Pending JPH03248611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4654690A JPH03248611A (en) 1990-02-27 1990-02-27 Temperature compensation gain setting controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4654690A JPH03248611A (en) 1990-02-27 1990-02-27 Temperature compensation gain setting controller

Publications (1)

Publication Number Publication Date
JPH03248611A true JPH03248611A (en) 1991-11-06

Family

ID=12750310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4654690A Pending JPH03248611A (en) 1990-02-27 1990-02-27 Temperature compensation gain setting controller

Country Status (1)

Country Link
JP (1) JPH03248611A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011513706A (en) * 2008-02-26 2011-04-28 アレグロ・マイクロシステムズ・インコーポレーテッド Magnetic field sensor with automatic sensitivity adjustment
US8680846B2 (en) 2011-04-27 2014-03-25 Allegro Microsystems, Llc Circuits and methods for self-calibrating or self-testing a magnetic field sensor
US8692546B2 (en) 2009-07-22 2014-04-08 Allegro Microsystems, Llc Circuits and methods for generating a diagnostic mode of operation in a magnetic field sensor
US8818749B2 (en) 2009-02-17 2014-08-26 Allegro Microsystems, Llc Circuits and methods for generating a self-test of a magnetic field sensor
US9201122B2 (en) 2012-02-16 2015-12-01 Allegro Microsystems, Llc Circuits and methods using adjustable feedback for self-calibrating or self-testing a magnetic field sensor with an adjustable time constant
JP2015215177A (en) * 2014-05-08 2015-12-03 セイコーエプソン株式会社 Circuit device, temperature detector, electronic apparatus and temperature detection method
US9638764B2 (en) 2015-04-08 2017-05-02 Allegro Microsystems, Llc Electronic circuit for driving a hall effect element with a current compensated for substrate stress
US9645220B2 (en) 2014-04-17 2017-05-09 Allegro Microsystems, Llc Circuits and methods for self-calibrating or self-testing a magnetic field sensor using phase discrimination
US9735773B2 (en) 2014-04-29 2017-08-15 Allegro Microsystems, Llc Systems and methods for sensing current through a low-side field effect transistor
US9804249B2 (en) 2014-11-14 2017-10-31 Allegro Microsystems, Llc Dual-path analog to digital converter
US9841485B2 (en) 2014-11-14 2017-12-12 Allegro Microsystems, Llc Magnetic field sensor having calibration circuitry and techniques
US9851417B2 (en) 2015-07-28 2017-12-26 Allegro Microsystems, Llc Structure and system for simultaneous sensing a magnetic field and mechanical stress
US10107873B2 (en) 2016-03-10 2018-10-23 Allegro Microsystems, Llc Electronic circuit for compensating a sensitivity drift of a hall effect element due to stress
US10132879B2 (en) 2016-05-23 2018-11-20 Allegro Microsystems, Llc Gain equalization for multiple axis magnetic field sensing
US10162017B2 (en) 2016-07-12 2018-12-25 Allegro Microsystems, Llc Systems and methods for reducing high order hall plate sensitivity temperature coefficients
US10466298B2 (en) 2014-11-14 2019-11-05 Allegro Microsystems, Llc Magnetic field sensor with shared path amplifier and analog-to-digital-converter
US10520559B2 (en) 2017-08-14 2019-12-31 Allegro Microsystems, Llc Arrangements for Hall effect elements and vertical epi resistors upon a substrate
US11169223B2 (en) 2020-03-23 2021-11-09 Allegro Microsystems, Llc Hall element signal calibrating in angle sensor
US11630130B2 (en) 2021-03-31 2023-04-18 Allegro Microsystems, Llc Channel sensitivity matching
US11994541B2 (en) 2022-04-15 2024-05-28 Allegro Microsystems, Llc Current sensor assemblies for low currents

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013224958A (en) * 2008-02-26 2013-10-31 Allegro Microsystems Llc Magnetic field sensor with automatic sensitivity adjustment
JP2011513706A (en) * 2008-02-26 2011-04-28 アレグロ・マイクロシステムズ・インコーポレーテッド Magnetic field sensor with automatic sensitivity adjustment
US8818749B2 (en) 2009-02-17 2014-08-26 Allegro Microsystems, Llc Circuits and methods for generating a self-test of a magnetic field sensor
US9151807B2 (en) 2009-02-17 2015-10-06 Allegro Microsystems, Llc Circuits and methods for generating a self-test of a magnetic field sensor
US8692546B2 (en) 2009-07-22 2014-04-08 Allegro Microsystems, Llc Circuits and methods for generating a diagnostic mode of operation in a magnetic field sensor
US8680846B2 (en) 2011-04-27 2014-03-25 Allegro Microsystems, Llc Circuits and methods for self-calibrating or self-testing a magnetic field sensor
US9201122B2 (en) 2012-02-16 2015-12-01 Allegro Microsystems, Llc Circuits and methods using adjustable feedback for self-calibrating or self-testing a magnetic field sensor with an adjustable time constant
US9645220B2 (en) 2014-04-17 2017-05-09 Allegro Microsystems, Llc Circuits and methods for self-calibrating or self-testing a magnetic field sensor using phase discrimination
US9735773B2 (en) 2014-04-29 2017-08-15 Allegro Microsystems, Llc Systems and methods for sensing current through a low-side field effect transistor
JP2015215177A (en) * 2014-05-08 2015-12-03 セイコーエプソン株式会社 Circuit device, temperature detector, electronic apparatus and temperature detection method
US9841485B2 (en) 2014-11-14 2017-12-12 Allegro Microsystems, Llc Magnetic field sensor having calibration circuitry and techniques
US10466298B2 (en) 2014-11-14 2019-11-05 Allegro Microsystems, Llc Magnetic field sensor with shared path amplifier and analog-to-digital-converter
US9804249B2 (en) 2014-11-14 2017-10-31 Allegro Microsystems, Llc Dual-path analog to digital converter
US9638764B2 (en) 2015-04-08 2017-05-02 Allegro Microsystems, Llc Electronic circuit for driving a hall effect element with a current compensated for substrate stress
US9851417B2 (en) 2015-07-28 2017-12-26 Allegro Microsystems, Llc Structure and system for simultaneous sensing a magnetic field and mechanical stress
US10746817B2 (en) 2015-07-28 2020-08-18 Allegro Microsystems, Llc Structure and system for simultaneous sensing a magnetic field and mechanical stress
US10107873B2 (en) 2016-03-10 2018-10-23 Allegro Microsystems, Llc Electronic circuit for compensating a sensitivity drift of a hall effect element due to stress
US10254354B2 (en) 2016-03-10 2019-04-09 Allegro Microsystems, Llc Electronic circuit for compensating a sensitivity drift of a hall effect element due to stress
US10132879B2 (en) 2016-05-23 2018-11-20 Allegro Microsystems, Llc Gain equalization for multiple axis magnetic field sensing
US10908232B2 (en) 2016-05-23 2021-02-02 Allegro Microsystems, Llc Gain equalization for multiple axis magnetic field sensing
US10162017B2 (en) 2016-07-12 2018-12-25 Allegro Microsystems, Llc Systems and methods for reducing high order hall plate sensitivity temperature coefficients
US10746818B2 (en) 2016-07-12 2020-08-18 Allegro Microsystems, Llc Systems and methods for reducing high order hall plate sensitivity temperature coefficients
US10520559B2 (en) 2017-08-14 2019-12-31 Allegro Microsystems, Llc Arrangements for Hall effect elements and vertical epi resistors upon a substrate
US11169223B2 (en) 2020-03-23 2021-11-09 Allegro Microsystems, Llc Hall element signal calibrating in angle sensor
US11630130B2 (en) 2021-03-31 2023-04-18 Allegro Microsystems, Llc Channel sensitivity matching
US11994541B2 (en) 2022-04-15 2024-05-28 Allegro Microsystems, Llc Current sensor assemblies for low currents

Similar Documents

Publication Publication Date Title
JPH03248611A (en) Temperature compensation gain setting controller
CA1213948A (en) Gain amplifier
US7567103B2 (en) Apparatus for detecting and preventing a lock failure in a delay-locked loop
EP1794882A2 (en) Programmable low noise amplifier and method
US7679417B2 (en) Attenuator with bias control circuit
US9087567B2 (en) Method and apparatus for amplifier offset calibration
CN106877943B (en) Communication transceiver using loopback calibration and calibration method of transmitting power thereof
JP2003142991A (en) Comparing circuit, comparator, level judging circuit and method for setting threshold voltage in level judging circuit
US10914805B2 (en) Signal error calibrating method
CN109067371B (en) Resistance-network-free programmable gain amplifier circuit
US8294487B2 (en) Configuration setting device of integrated circuit and the configuration setting method thereof
JPH03179906A (en) Temperature compensation type gain setting controller
US4992756A (en) Low offset transconductance amplifier in an analog electronic cochlea
CN114204939A (en) Offset voltage correction circuit and offset voltage correction method
JPH0423606A (en) Temperature compensation gain setting controller
US20150244391A1 (en) Ramp signal generator using programmable gain amplifier
JPH05342380A (en) Operation mode control circuit for microcomputer
JPH10256488A (en) Operation mode setting circuit
JP2013025772A (en) Two-wire transmitter
KR890002314B1 (en) Analog-digital converting circuit
US7936620B2 (en) Receiver of semiconductor memory apparatus
JPH04351071A (en) Gamma correction circuit for liquid crystal display device
JPS61252707A (en) Latch circuit
KR200187772Y1 (en) Control apparatus for delay time
JPS54122946A (en) Self diagnosis unit