JPH03248002A - Apparatus for inspecting dimensions of minute material - Google Patents

Apparatus for inspecting dimensions of minute material

Info

Publication number
JPH03248002A
JPH03248002A JP4661990A JP4661990A JPH03248002A JP H03248002 A JPH03248002 A JP H03248002A JP 4661990 A JP4661990 A JP 4661990A JP 4661990 A JP4661990 A JP 4661990A JP H03248002 A JPH03248002 A JP H03248002A
Authority
JP
Japan
Prior art keywords
workpiece
image
work
image processing
inspecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4661990A
Other languages
Japanese (ja)
Inventor
Toru Fukuda
徹 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP4661990A priority Critical patent/JPH03248002A/en
Publication of JPH03248002A publication Critical patent/JPH03248002A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve productivity and to prevent errors in reading by constituting this apparatus of a device comprising a means for supplying a work, an inspecting means and a means for sorting good products and defective products in the vicinity of an index table, a TV camera, and a control device. CONSTITUTION:In a device 34, a work supplying means, an inspecting means, and a means for sorting good products and defective products are provided in the vicinity of an index table. A work 1 is mounted on the device 34. The image of the work 1 is picked up with a TV camera 25. The good products and the defective products are classified with a control part 35 including an image processing device. Namely, an image signal 2 which is received from the camera 25 is outputted into an image processing device 6. In the image processing device, the image signal is binarized based on the preset binarization level. Outer-edge position data 7 are outputted into a computer 8. In the computer, the outer-edge position data which are stored beforehand are compared with the outer-edge position data of the binarized image after the correction of the inclination and the like. The difference is compared with a tolerance value. Thus, the pass/fail judging data are outputted into a classifying part 10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は外縁が複雑な形状をしており、高い寸法検査精
度を必要とするワークの寸法を検査する装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an apparatus for inspecting the dimensions of a workpiece whose outer edge has a complicated shape and requires high dimensional inspection accuracy.

〔従来の技術〕[Conventional technology]

第9図に示すように細長く、外縁が複雑な形状をした微
細物であるワーク1について、その外縁の寸法とか反り
δ1やパリ2等を高い精度で検査するには、 (従来例1) 投影機にてワーク1の投影像を写し、投
影像にワーク1の正確な外形を描いた透明なフィルムを
重ね合せ、両者の外縁の違いからその寸法差を検出する
方法と、 (従来例2) 顕微鏡像をテレビカメラで写し、画像処
理装置で2値化後、予め装置記憶装置に記憶しである外
縁の位置データと、2値化像の外縁の位置データを、傾
き、位置を補正した上で比較し、両者の差を検出すると
いう2つの方法がある。
As shown in Fig. 9, in order to inspect with high accuracy the dimensions of the outer edge, warpage δ1, Paris 2, etc. of the workpiece 1, which is a fine object with a long and narrow outer edge having a complicated shape, (Conventional Example 1) Projection (Conventional example 2) A microscopic image is taken with a television camera, and after being binarized by an image processing device, the position data of the outer edge stored in the device storage device in advance and the position data of the outer edge of the binarized image are corrected for tilt and position. There are two methods to compare the two and detect the difference between the two.

ここでワーク1の縦横比4:3以上、ワーク1の長手方
向の寸法L1はテレビカメラ撮像視野(通常8.8 m
mX 6.6 mm)の2倍程度のワークを検出する分
解能が、撮像管のセルサイズ(固体撮像素子の場合、通
常11μ鎖位)並で、X1顕微鏡対物レンズの解像力(
通常11μm位)並を必要とするような検査を例に、(
従来例2)に示した画像処理方式で検査するには、Xi
対物レンズを使い、2回以上に分は画像を取り込むのが
一般的である。
Here, the aspect ratio of the work 1 is 4:3 or more, and the longitudinal dimension L1 of the work 1 is the TV camera imaging field of view (usually 8.8 m
The resolution for detecting a workpiece twice as large as the X1 microscope objective (mX 6.6 mm) is equivalent to the cell size of the image pickup tube (usually 11μ chains for solid-state imaging devices), and the resolution of the X1 microscope objective lens (
As an example of an inspection that requires a diameter of about 11 μm (usually around 11 μm),
In order to perform inspection using the image processing method shown in conventional example 2), Xi
It is common to use an objective lens to capture images two or more times.

また検査方法としては、第10図に示すように、ワーク
1をXY力方向自動位置決めできるモータの付いたステ
ージ3に載直し、X1対物レンズ4、テレビカメラ5の
付いた顕微鏡6で検査する。このことは総合技術センタ
刊、精密計測技術に記載されている。(以下“XYステ
ージ方式”と称す)そして他には、第11図に示すX1
顕微鏡対物レンズ7、反射ミラー8、テレビカメラ9で
ワーク1の図中で左側を写し、ワーク1の図中右側につ
いては、対物レンズ10、反射ミラー11、テレビカメ
ラ12で写す。左右がL2間隔をもった両画像を画像処
理装置にて合成し、ワーク1を固定したまま検査できる
様にした2視野鏡筒による方法である。(以下“反射鏡
方式”と称す)更には、第12図に示すハーフミラ−1
3、X1顕微鏡付テレビカメラ14でワーク1の図中で
は左側を、ハーフミラ−15、顕微鏡付テレビカメラ1
6で右側を写す。
In addition, as an inspection method, as shown in FIG. 10, the workpiece 1 is placed on a stage 3 equipped with a motor that can automatically position the workpiece 1 in the XY force directions, and inspected with a microscope 6 equipped with an X1 objective lens 4 and a television camera 5. This is described in Precision Measurement Technology published by Sogo Technological Center. (hereinafter referred to as the "XY stage method") and the X1 stage shown in FIG.
A microscope objective lens 7, a reflection mirror 8, and a television camera 9 are used to photograph the left side of the workpiece 1 in the figure, and an objective lens 10, a reflection mirror 11, and a television camera 12 are used to photograph the right side of the workpiece 1 in the figure. This is a method using a two-field lens barrel, in which both images, with the left and right sides having an interval of L2, are combined by an image processing device, and the workpiece 1 can be inspected while being fixed. (hereinafter referred to as "reflector method") Furthermore, the half mirror 1 shown in FIG.
3. X1 TV camera with microscope 14 on the left side in the diagram of workpiece 1, half mirror 15, TV camera with microscope 1
Take a picture of the right side with 6.

上記反射鏡方式と同様な方法(以下“°ハーフミラ一方
式゛′と称す)がある。
There is a method similar to the above-mentioned reflecting mirror method (hereinafter referred to as "half-mirror one-way method").

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

(1)投影機による方法は以下に示す問題点がある。 (1) The method using a projector has the following problems.

Φ 人による作業である為、生産性が悪く、読み取り誤
差を生じやすい。
Φ Since the work is done by humans, productivity is low and reading errors are likely to occur.

O透明なフィルムにワーク1の正確な外縁を描(必要が
あるが、外縁を描いた線巾が0.5mm程度であっても
、投影倍率XIOで、 投影倍率  10 投影倍率X25で同様に0.02mmの測定誤差を生じ
、線巾が測定の分解能となってしまう。
O Draw an accurate outer edge of workpiece 1 on a transparent film (it is necessary, but even if the line width of the outer edge is about 0.5 mm, the projection magnification is XIO and the projection magnification is 10. The projection magnification is X25 and the same is 0. This results in a measurement error of .02 mm, and the line width becomes the measurement resolution.

O上記線中による誤差は倍率X50で0.01■となる
が、4300mmの投影像径を持つ大形投影機を用いて
も視野は、 程度であって、テレビカメラ撮像視野の2倍程度のワー
ク1を検査するには、 即ち、3回以上もワーク1を動ごかして検査する必要が
ある。動作させる時間が入用で低効率なのである。
The error due to the above line is 0.01■ at a magnification of X50, but even if a large projector with a projection image diameter of 4300 mm is used, the field of view is approximately In order to inspect the workpiece 1, it is necessary to move and inspect the workpiece 1 three or more times. It requires a lot of time to operate and is low in efficiency.

(2)  “反射鏡方式°“の場合、顕微鏡対物レンズ
の視野はXルンズを使用する為に、第13図に示す通り
対物レンズ7の直径φがワーク1の像1′と同一以上で
ある時に最大の視野を持つ。よって第11図に示す対物
レンズ7と10の間隔L2を最小限まで縮めても、第1
4図に示すごとく顕微鏡視野17の中に入れた2つのテ
レビカメラ撮像視野18の間にはL3のすきまを生じて
、ワーク1の中央付近は測定できなくなる。
(2) In the case of the "reflector method °", the field of view of the microscope objective lens uses an X lens, so the diameter φ of the objective lens 7 is equal to or larger than the image 1' of the workpiece 1, as shown in Fig. 13. sometimes has the greatest field of vision. Therefore, even if the distance L2 between the objective lenses 7 and 10 shown in FIG. 11 is reduced to the minimum, the first
As shown in FIG. 4, a gap L3 is created between the two television camera imaging fields 18 placed in the microscope field 17, and the vicinity of the center of the workpiece 1 cannot be measured.

(3)  “ハーフミラ一方式゛には上記ワーク1の中
央付近が測定できな(なる欠点はない。しかし第12図
に示すハーフミラ−13,15の調整が困難で、特にθ
1.θ2の傾きによって顕微鏡付テレビカメラ14.1
6に写る像が重さなったり、ずれたりする。θ1の傾き
が像に与える影響の例を第15図に示すが、撮像視野が
入るレンズ直径φのレンズ14′を用い、 11) =  8.8”+6.6”= 11 mm対物
レンズ倍率はXl、対物レンズ解像力は11μm、使用
波長は0.55μmとすると、総合技術センター刊、精
密計測技術から 開口角= 5in−’ (開口数) −5in−’0.
03 =1.75°となりレンズ14′の中心からワー
クlまでの距離、 撮像素子14″ までの距離lは、 となる為、分解能11μm相当を調整するハーフミラ−
13の傾き量θ1は、レンズ14′とワーク1の中間に
ハーフミラ−13を設けた場合、=0.0018″=6
1となる。
(3) “The half-mirror one type” does not have the disadvantage that it cannot measure near the center of the workpiece 1. However, it is difficult to adjust the half-mirrors 13 and 15 shown in Fig. 12, especially when θ
1. TV camera with microscope 14.1 depending on the inclination of θ2
The image reflected in 6 becomes heavy or shifted. An example of the influence of the inclination of θ1 on the image is shown in Figure 15. Using a lens 14' with a diameter of φ that includes the imaging field of view, the objective lens magnification is 11) = 8.8" + 6.6" = 11 mm. Xl, the objective lens resolution is 11 μm, and the wavelength used is 0.55 μm. From the Precision Measurement Technology published by Sogo Technological Center, the aperture angle = 5in-' (numerical aperture) -5in-'0.
03 = 1.75°, and the distance from the center of the lens 14' to the work l, and the distance l to the image sensor 14'' are as follows, so the half mirror that adjusts the resolution equivalent to 11 μm
When the half mirror 13 is provided between the lens 14' and the workpiece 1, the amount of inclination θ1 of the lens 13 is =0.0018''=6
It becomes 1.

ハーフミラ−角度を6“調整するのは困難であるし、6
“程度は顕微鏡外筒の熱変形等で容易に傾き大きな測定
誤差を生ずる。
It is difficult to adjust the half mirror angle by 6".
``The extent is that the microscope outer cylinder is easily tilted due to thermal deformation, etc., resulting in large measurement errors.

なお第11図に示す°“反射鏡方式”でもミラー8.1
1による測定誤差、調整の困難さは同様である。
Note that even in the “reflector method” shown in Fig. 11, the mirror 8.1
The measurement error and difficulty of adjustment due to No. 1 are the same.

(4)  “XYステージ方弐゛の場合、反射鏡、ハー
フミラ−を使用しない為、前述した(2)(3)項に示
す欠点はない。しかしワーク着脱時、検査装置を働らか
せることかできず、生産性が悪くなる。例えば外縁の形
状を画像処理装置で2値化後、コンピュータにデータを
送り出し、記憶装置に記憶しである外縁の位置データと
、2値化像の外縁の位置データを、傾き、位置を補正し
た上で比較し、両者の差を検出、差を許容値と比較し良
否判別をする。又ステージ3を一度動ごかし2画面を取
り入れ検査する。これら一連の動作を2sec程度で終
わらせても、第1011aに示すステージ3からワーク
1を取りはずす時間が最少でも2sec、次のワークを
取り付ける時間が同じ<2sec程度かかり、全体の2
73の時間は検査装置を働らかせることができない。!
1ワーク1を設置する治具を2つ設け、シャトルさせて
もよいが、ワーク画像取り込み時のステージ移動と同時
に脱着ステーションも動くため、ハンドリング機構がこ
れに追従しなければならない。さらにこのハンドリング
装置が検査部の両側に必要となるという欠点がある。
(4) In the case of "XY stage 2", there are no reflecting mirrors or half mirrors, so there are no drawbacks mentioned in (2) and (3) above. However, when loading and unloading the workpiece, the inspection device must be activated. For example, after the shape of the outer edge is binarized by an image processing device, the data is sent to a computer and stored in a storage device, which records the outer edge position data and the outer edge position of the binarized image. Compare the data after correcting the tilt and position, detect the difference between the two, and compare the difference with the tolerance value to determine pass/fail.Also, stage 3 is moved once and two screens are taken in and inspected.This series of steps Even if the operation is completed in about 2 seconds, it takes at least 2 seconds to remove workpiece 1 from stage 3 shown in No. 1011a, and the same <2 seconds to attach the next workpiece, resulting in a total of 2 seconds.
The inspection equipment cannot be operated for 73 hours. !
Two jigs for installing one workpiece 1 may be provided and shuttled, but since the loading/unloading station also moves at the same time as the stage moves when capturing the workpiece image, the handling mechanism must follow this. A further disadvantage is that this handling device is required on both sides of the inspection section.

〔問題点を解決するための手段〕[Means for solving problems]

微細物であるワークを画像処理によって寸法検査する装
置は、インデックステーブルの近傍にワークを供給する
手段、検査する手段、良品と不良品を仕分けする手段と
から成る装置と、ワークに対するX方向とZ方向に移動
が可能でインデックステーブル上のワークを映像信号と
して出力する顕微鏡付きのテレビカメラと、この映像信
号を画像処理装置にて2値化像としワークの縁線の2点
間座標と傾きから真の寸法を求め予め記憶しているワー
クのデータとを比較し両者の差を検出し仕分は手段へ出
力することのできる制御装置から成ることを特徴とする
微細物の寸法検査装置である。
A device for inspecting the dimensions of minute workpieces by image processing includes a means for supplying the workpiece near an index table, a means for inspecting it, a means for sorting good and defective products, and a device that inspects the size of the workpiece in the X direction and Z direction with respect to the workpiece. A television camera with a microscope that can be moved in the direction and outputs the workpiece on the index table as a video signal, and this video signal is converted into a binary image by an image processing device based on the coordinates and inclination between two points of the edge line of the workpiece. This apparatus is characterized in that it comprises a control device capable of determining true dimensions, comparing them with pre-stored workpiece data, detecting the difference between the two, and outputting the output to means for sorting.

〔実施例〕〔Example〕

以下本発明の実施例を示す。 Examples of the present invention will be shown below.

第1図に装置ブロック図を示す。装置34はインデック
ステーブル21近傍の第1ステーシヨン101はワーク
供給手段であって、第2ステーシヨン101は検査手段
、第3ステーシヨン103は良品と不良品を仕分けする
手段を設ける。
FIG. 1 shows a block diagram of the device. In the apparatus 34, a first station 101 near the index table 21 is provided with a work supply means, a second station 101 is provided with an inspection means, and a third station 103 is provided with a means for sorting good products and defective products.

第2図に第1ステーシヨン101でのワーク供給手段を
示す。パーツフイダ19で予めワーク1の裏表、前後方
向の判別を行こない整列する。次にワーク1を真空吸着
する吸着バット付のXY移載装置20で、インデックス
テーブル21上に固定した透明ガラス板22上に移載す
る。テーブル21上にはテーブル回転時のみワーク1を
上から押え、ワーク1が遠心力でずれるのを防止するク
ランプ23を設ける。
FIG. 2 shows the work supply means at the first station 101. The parts feeder 19 arranges the workpieces 1 without previously identifying the front and back sides and the front and rear directions. Next, the workpiece 1 is transferred onto a transparent glass plate 22 fixed on an index table 21 using an XY transfer device 20 equipped with a suction batt for vacuum suction. A clamp 23 is provided on the table 21 to hold the work 1 from above only when the table is rotated and to prevent the work 1 from shifting due to centrifugal force.

第3図に第2ステーシヨン102の検査手段を示す。ワ
ーク1の照明は透過体である例えば透明ガラス板22の
下に設けたライトガイド24からの透過照明である。映
像信号を出力し、ワーク1を検査するためにはXI顕微
鏡付のテレビカメラ25で、Z方向への焦点調整、X方
向へカメラ25の位置を調整する為のXZ調整ステージ
26にて支える。ステージ26の下にはデジタル制御を
行こない微細位置決めを行こなうACサーボモータとボ
ールネジにて駆動する精密テーブル27をインデックス
テーブル21の接線と平行に設ける。
FIG. 3 shows the inspection means of the second station 102. Illumination of the workpiece 1 is transmitted illumination from a light guide 24 provided under a transparent glass plate 22, which is a transparent body, for example. In order to output a video signal and inspect the workpiece 1, a television camera 25 equipped with an XI microscope is supported by an XZ adjustment stage 26 for adjusting the focus in the Z direction and the position of the camera 25 in the X direction. Below the stage 26, a precision table 27 is provided parallel to the tangent to the index table 21, which is driven by an AC servo motor and a ball screw that performs fine positioning without digital control.

精密テーブル27は顕微鏡付テレビカメラ25の視野を
第4図に示す28域から28′域に切り換える際に用い
る。
The precision table 27 is used to switch the field of view of the television camera 25 with a microscope from the 28 area to the 28' area shown in FIG.

第5図に第3ステーシヨン103での良品と不良品を仕
分けする手段を示す。ワーク1を真空吸着する吸着バッ
ト付のアーム29とACサーボモータ30と、ACサー
ボモータ30を上下に駆動するZスライド31にて、ワ
ーク1をインデックステーブル21から艮品箱32又は
、不良品箱33へ移載し、所定個所へ位置決めし仕分け
をするのである。
FIG. 5 shows a means for sorting good products and defective products at the third station 103. An arm 29 with a suction bat that vacuum-chucks the workpiece 1, an AC servo motor 30, and a Z slide 31 that drives the AC servo motor 30 up and down, move the workpiece 1 from the index table 21 to the waste product box 32 or defective product box. 33, position it at a predetermined location, and sort it.

第6図に画像処理の制御と判別に関して、制御装置35
のブロック図を示す。テレビカメラから取り入れた映像
信号は画像処理装置へ出力する。
FIG. 6 shows the control device 35 regarding image processing control and discrimination.
The block diagram is shown below. The video signal taken in from the television camera is output to an image processing device.

画像処理装置では予め設定した2値化のレベルに基すき
画像信号を2値化し、外縁の位置データとしてコンピュ
ータへ出力する。コンピュータでは予め記憶しである外
縁の位置データと2値化像の外縁の位置データを、傾き
、位置を補正した上で比較し、両者の差を検出しその差
を許容値と比較し、良否判別のデータとして仕分は部へ
出力する。
The image processing device binarizes the pixel image signal based on a preset binarization level and outputs it to the computer as outer edge position data. The computer compares the pre-stored outer edge position data and the outer edge position data of the binarized image after correcting the tilt and position, detects the difference between the two, compares the difference with a tolerance value, and determines whether it is good or bad. The sorting data is output to the department as data for discrimination.

以下第7図(1)に示す斜線部の縁線ALとARを傾き
の基準としたワークlの巾Wウィンドwl。
Hereinafter, the width W window wl of the workpiece 1 is determined using the edge lines AL and AR of the hatched part shown in FIG. 7(1) as a reference for inclination.

w2.w3を使って求めた例を示す。ワークlは第2図
で示すパーツフイダ19で前後、左右方向を規制され、
インデックステーブル21の回転時もクランプ23で押
し付けているが検出分解能11μm並のずれは発生する
w2. An example obtained using w3 is shown below. The work l is regulated in the front and rear and left and right directions by the parts feeder 19 shown in FIG.
Even when the index table 21 is rotated, it is pressed by the clamp 23, but a deviation equivalent to the detection resolution of 11 μm occurs.

このずれは避けられず、そのためにはまず第7図(2)
に示すように、画面左端からXlの距離に設けたウィン
ドw1で外縁のy座標y1を求める。
This discrepancy is unavoidable, so first of all, see Figure 7 (2).
As shown in , the y-coordinate y1 of the outer edge of the window w1 provided at a distance of Xl from the left edge of the screen is determined.

同様にウィンドw2でy2を求め、下式からワーク1の
傾き量αを求める。
Similarly, y2 is determined using the window w2, and the tilt amount α of the workpiece 1 is determined from the following formula.

2−xl 次に第7図(3)に示す画面上端からy3の距離に設け
たウィンドw3でx3.x4を求め巾Wχを求める。
2-xl Next, use the window w3 provided at a distance of y3 from the top edge of the screen shown in FIG. Find x4 and find the width Wχ.

W x = x 4− x 3 W x 、  αからワーク1の真の値Wを求めるのは
第7図(4)に示すようにWxと傾き量αから W=W
xXcosα にて求めるのである。
W x = x 4- x 3 W x, The true value W of workpiece 1 can be found from α using Wx and the amount of inclination α as shown in Figure 7 (4): W = W
It is found by xXcosα.

第8図に本装置の全体構造を示す。第1図に示した装置
34にワーク1を載置、第3図に示したテレビカメラ2
5でワーク1の像を取り込み、第6図に示した画像処理
装置を含む制御部35で、良品、不良品の仕分けを行こ
なうのである。
FIG. 8 shows the overall structure of this device. The work 1 is placed on the device 34 shown in FIG. 1, and the television camera 2 shown in FIG.
5, an image of the workpiece 1 is taken in, and a control section 35 including an image processing device shown in FIG. 6 sorts the workpieces into good and defective products.

(発明の効果〕 本発明によれば (1)投影機等の人手による作業でない為、生産性が向
上し、読み取り誤差も生じない。
(Effects of the Invention) According to the present invention (1) Since the work is not performed manually using a projector or the like, productivity is improved and reading errors do not occur.

(2)  ワークの外縁の座標は全て簡単な三角関数に
て得られ、投影機作業のように透明フィルムにワーク外
縁形状を描く必要がない為、外縁形状誤差とか縁由が測
定誤差、分解能になることがない。
(2) All the coordinates of the outer edge of the workpiece can be obtained using simple trigonometric functions, and there is no need to draw the outer edge shape of the workpiece on a transparent film as in the case of projector work, so errors in the outer edge shape and edge causes will affect the measurement error and resolution. It never becomes.

(3)投影機対物レンズ倍率X50に相当する分解能が
X1顕微鏡対物レンズで得られる。
(3) A resolution corresponding to the projector objective lens magnification X50 can be obtained with the X1 microscope objective lens.

(4)細長体の外縁において、ワーク中央付近も測定で
きる。
(4) Measurements can also be made near the center of the workpiece at the outer edge of the elongated body.

(5)  ワーク移動、測定調整、熱変化に耐え、高精
度を維持する。
(5) Withstands workpiece movement, measurement adjustments, and thermal changes, and maintains high accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第8図は本発明の参考図であって、第1図は
装置ブロック図、第2図はワークの供給手段を示す図、
第3図は検査手段を示す図、第4図は画面切り換えの説
明図、第5図は良品と不良品を仕分けする手段を示す図
、第6図は制御装置のブロック図、第7図はワーク測定
例を示した説明図、第8図は本発明の全体構成を示した
説明図、第9図はワーク外縁形状図、第10図は従来の
“XYステージ方式”側面図、第11図は従来の“反射
ミラ一方式′°の説明図、第12図は従来のハーフミラ
一方式”の説明図、第13図は対物レンズ視野を示した
説明図、第14図は従来の“ミラ一方式°゛視野を示し
た図、第15図は従来のハーフミラ−傾きが測定に影響
を与える説明図。 1:ワーク、21:インデックステーブル、25:カメ
ラ、34:装置、35:制御、101:供給手段、 102 :検査手段、 3 :仕分は手 段。 第 図 01 第 図 第3 図 第 4 図 第 図 第 図 第 図 第 8 因 第 図 第10囚 第11 図 2 第12 図 第13図 7 7 第14図
1 to 8 are reference diagrams of the present invention, in which FIG. 1 is a device block diagram, FIG. 2 is a diagram showing a work supply means,
Fig. 3 is a diagram showing the inspection means, Fig. 4 is an explanatory diagram of screen switching, Fig. 5 is a diagram showing the means for sorting good products and defective products, Fig. 6 is a block diagram of the control device, and Fig. 7 is a diagram showing the means for sorting between good and defective products. An explanatory diagram showing an example of workpiece measurement, Fig. 8 is an explanatory diagram showing the overall configuration of the present invention, Fig. 9 is a diagram of the outer edge shape of the workpiece, Fig. 10 is a side view of the conventional "XY stage method", Fig. 11 12 is an explanatory diagram of the conventional "one-side reflective mirror type", FIG. 13 is an explanatory diagram showing the field of view of the objective lens, and FIG. 14 is an explanatory diagram of the conventional one-mirror type. Figure 15 is a diagram showing the field of view of the method, and is an explanatory diagram of how the tilt of a conventional half mirror affects measurement. 1: Workpiece, 21: Index table, 25: Camera, 34: Device, 35: Control, 101: Supply means, 102: Inspection means, 3: Sorting means. 7 Figure 14

Claims (1)

【特許請求の範囲】[Claims] 1)微細物であるワークを画像処理によって寸法検査す
る装置において、インデックステーブルの近傍にワーク
を供給する手段、検査する手段、良品と不良品を仕分け
する手段とから成る装置と、ワークに対するX方向とZ
方向に移動が可能でインデックステーブル上のワークを
映像信号として出力する顕微鏡付きのテレビカメラと、
この映像信号を画像処理装置にて2値化像としワークの
縁線の2点間座標と傾きから真の寸法を求め予め記憶し
ているワークのデータとを比較し両者の差を検出し仕分
け手段へ出力することのできる制御装置から成ることを
特徴とする微細物の寸法検査装置。
1) A device for inspecting the dimensions of minute workpieces by image processing, which includes a means for supplying the workpiece near an index table, a means for inspecting it, a means for sorting good and defective products, and an X direction with respect to the workpiece. and Z
A television camera with a microscope that can move in different directions and outputs the workpiece on the index table as a video signal,
This video signal is converted into a binary image by an image processing device, and the true dimensions are determined from the coordinates and inclination between two points on the edge line of the workpiece, and compared with pre-stored workpiece data, the difference between the two is detected and sorted. A device for inspecting dimensions of minute objects, characterized by comprising a control device capable of outputting data to a means.
JP4661990A 1990-02-27 1990-02-27 Apparatus for inspecting dimensions of minute material Pending JPH03248002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4661990A JPH03248002A (en) 1990-02-27 1990-02-27 Apparatus for inspecting dimensions of minute material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4661990A JPH03248002A (en) 1990-02-27 1990-02-27 Apparatus for inspecting dimensions of minute material

Publications (1)

Publication Number Publication Date
JPH03248002A true JPH03248002A (en) 1991-11-06

Family

ID=12752314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4661990A Pending JPH03248002A (en) 1990-02-27 1990-02-27 Apparatus for inspecting dimensions of minute material

Country Status (1)

Country Link
JP (1) JPH03248002A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017800A (en) * 2014-07-07 2016-02-01 オリンパス株式会社 Measuring microscope and method for supporting correction of tilt of sample

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017800A (en) * 2014-07-07 2016-02-01 オリンパス株式会社 Measuring microscope and method for supporting correction of tilt of sample

Similar Documents

Publication Publication Date Title
US6222624B1 (en) Defect inspecting apparatus and method
US8093557B2 (en) Method and apparatus for reviewing defects
US5625193A (en) Optical inspection system and method for detecting flaws on a diffractive surface
KR101638883B1 (en) System and method for inspecting a wafer
WO2010090605A1 (en) Methods for examining a bonding structure of a substrate and bonding structure inspection devices
WO2010082901A2 (en) System and method for inspecting a wafer
JP2991593B2 (en) Semiconductor wafer shape recognition device for dicing machine
US7280197B1 (en) Wafer edge inspection apparatus
JP2017162133A (en) Imaging system, measurement system, production system, imaging method, program, recording media, and measurement method
JP4385419B2 (en) Appearance inspection method and appearance inspection apparatus
JPH05160233A (en) Inspecting method for bonding wire
JPH05160231A (en) Bonding wire inspecting apparatus
US20090207245A1 (en) Disk inspection apparatus and method
US7289655B2 (en) Device for inspecting illumination optical device and method for inspecting illumination optical device
US20040150814A1 (en) Inspecting device for semiconductor wafer
JP4375596B2 (en) Surface inspection apparatus and method
JP2021032598A (en) Wafer appearance inspection device and method
JPH03248002A (en) Apparatus for inspecting dimensions of minute material
KR101198406B1 (en) Pattern inspection device
TW202020418A (en) An automatic optical inspection system
TWM494301U (en) Inspection device for exterior surface of workpiece
JP2018179789A (en) Inspection device, inspection method, and item manufacturing method
JP3078784B2 (en) Defect inspection equipment
CN214953101U (en) Detection system
WO2022131279A1 (en) Appearance inspection device and appearance inspection method