JPH03247742A - Rotor material for eddy current type reduction gear and its manufacture - Google Patents

Rotor material for eddy current type reduction gear and its manufacture

Info

Publication number
JPH03247742A
JPH03247742A JP4116590A JP4116590A JPH03247742A JP H03247742 A JPH03247742 A JP H03247742A JP 4116590 A JP4116590 A JP 4116590A JP 4116590 A JP4116590 A JP 4116590A JP H03247742 A JPH03247742 A JP H03247742A
Authority
JP
Japan
Prior art keywords
eddy current
steel
reduction gear
rotor material
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4116590A
Other languages
Japanese (ja)
Inventor
Mitsuo Miyahara
光雄 宮原
Kazuo Toyama
外山 和男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4116590A priority Critical patent/JPH03247742A/en
Publication of JPH03247742A publication Critical patent/JPH03247742A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

PURPOSE:To manufacture a rotor material for an eddy current type reduction gear excellent in durability by subjecting a steel having a specified compsn. constituted of C, Si, Mn, P, Ni, Nb, V, N and Fe to hot forging and thereafter executing specified hardening and tempering. CONSTITUTION:A steel contg., by weight, 0.05 to 0.15% C, 0.13 to 3.0% Si, 1.0 to 6.0% Mn, <=0.3% P, 0.5 to 5.0% Ni, 0.005 to 0.020% Nb, 0.03 to 0.07% V and <=0.01% N, furthermore contg., at need, <=1.0% Mo and the balance substantial Fe is hot-forged. After that, this forged part is hardened at 850 to 900 deg.C and is then tempered at 600 to 700 deg.C. In this way, a rotor material for an eddy current type reduction gear excellent in strength and toughness as well as electromagnetic characteristics and in which the remarkable improvement of durability is realizable without deteriorating its damping capacity can be obtd.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、ハスやトラック等の如き大型自動車の渦電
流式減速装置用として好適なローり一材に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a row member suitable for use in eddy current speed reducers for large vehicles such as lotuses and trucks.

〈従来技術とその課題〉 ハスやトラック等のような大型自動車の制動装置として
は、主ブレーキであるフートブレーキ及び補助ブレーキ
である排気ブレーキが欠かせないが、その他に、長い坂
道の降板時等において安定した減速を行い、かつフート
ブレーキの焼損を防止するための渦電流式減速装置も重
要な補助装置の1つとなっている。
<Prior art and its problems> The main brake, which is the foot brake, and the auxiliary brake, which is the exhaust brake, are indispensable as braking devices for large vehicles such as lotus cars and trucks. An eddy current speed reduction device is also an important auxiliary device in order to provide stable deceleration and prevent burnout of the foot brake.

この渦電流式減速装置は、例えば特開昭5061574
号公報にも示されている如く、鉄心に電磁コイルを巻着
した電磁石を磁極とし、その磁極の多数をディスクの両
面に対向配置して構成されており、バッテリ電源からの
通電によって磁界を発生させた際に生じる渦電流現象に
より“ディスクを減速させる方向”にl・ルクを発生さ
せるように機能するものであって、これにより所望の制
動力を得ることができる。
This eddy current type speed reduction device is disclosed in Japanese Patent Application Laid-Open No. 5061574, for example.
As shown in the publication, the magnetic pole is an electromagnet with an electromagnetic coil wound around an iron core, and a large number of the magnetic poles are arranged facing each other on both sides of the disk, and a magnetic field is generated when energized from the battery power source. The eddy current phenomenon that occurs when the brake is applied functions to generate 1.rook in the direction of decelerating the disk, thereby making it possible to obtain the desired braking force.

しかし、この渦電流式減速装置は、鉄心に電磁コイルを
巻着した電磁石を磁極として使用するものであるため重
量や外形寸法が大きく、空間や総重量が限定された車両
への搭載設備としては不利なものと言わざるを得なかっ
た。しかも、制動時には該減速装置に常時通電を続ける
ことが必要であり、このためバッテリの電力消耗が激し
いことからバッテリ容量及び発電機能力を増大しておく
ことも必要となる。
However, since this eddy current reduction gear uses an electromagnet with an electromagnetic coil wrapped around an iron core as the magnetic pole, it is heavy and large in external dimensions, making it difficult to install it on vehicles with limited space and total weight. I had to say it was a disadvantage. Moreover, during braking, it is necessary to keep the deceleration device energized at all times, and this consumes a lot of battery power, so it is also necessary to increase the battery capacity and power generation function.

そこで、上記問題を解決すべく本出願人等は、先に、磁
極として電磁石に代えて永久磁石を使用すると共に、例
えば第1図に断面を示した如く、この永久磁石(1)を
支持リング(2)に“隣接するものの極性が互いに逆向
き”となるようにして複数個並べて設置し、これを端部
にローター(3)が嵌着された回転軸(4)に軸支し、
永久磁石(1)の極面を所要空隙でローター(3)の円
筒部に対向させ、永久磁石の磁気回路によりローり−に
発生ずる渦電流をオン・オフ操作するように構成したと
ころの、制動時の通電が短時間で済む渦電流式減速装置
を提案した(特願昭63−61631号、特願昭63−
61.633号、特願昭63−127696号)。なお
、第1図において、符号5は支持部+4,6はポールピ
ース、7ば冷却フィン、8は軸受箱筒、9番才取付は金
具をそれぞれ示している。
Therefore, in order to solve the above problem, the present applicant and others first used a permanent magnet instead of an electromagnet as the magnetic pole, and attached the permanent magnet (1) to a support ring, as shown in cross section in Fig. 1, for example. In (2), a plurality of them are installed side by side so that the polarities of adjacent ones are opposite to each other, and these are supported on a rotating shaft (4) having a rotor (3) fitted to the end thereof,
The pole face of the permanent magnet (1) is opposed to the cylindrical part of the rotor (3) with a required gap, and the eddy current generated in the rotor is turned on and off by the magnetic circuit of the permanent magnet. We proposed an eddy current speed reduction device that requires only short energization during braking (Japanese Patent Application No. 61631/1983,
No. 61.633, Japanese Patent Application No. 127696/1983). In FIG. 1, reference numeral 5 indicates a support portion +4, 6 indicates a pole piece, 7 indicates a cooling fin, 8 indicates a bearing box cylinder, and 9 indicates a metal fitting.

ところで、何れの形式であるにせよ、これら渦電流式減
速装置のローター(ここでは、“ディスク”をも含んだ
回転子部材の総称とする)は制動時に渦電流現象により
制動トルクを発生すると同時にジュール熱により加熱さ
れ、また非制動時には空冷されるため、制動、非制動の
繰り返しによって著しい熱サイクルが負荷される。しか
も、近年、渦電流式減速装置に対する要求制動性能は益
々増加する傾向にあり、実際に渦電流式減速装置の使用
条件は一段と苛酷化してきてローターに加えられる熱負
荷もより増加する状況にある。
By the way, regardless of the type, the rotor of these eddy current reduction gears (herein, the general term for rotor members including "disc") generates braking torque due to eddy current phenomenon during braking, and at the same time Since it is heated by Joule heat and cooled by air when not braking, a significant thermal cycle is imposed by repeating braking and non-braking. Moreover, in recent years, the required braking performance for eddy current reduction gears has been increasing, and in fact, the operating conditions for eddy current reduction gears have become even more severe, and the thermal load applied to the rotor is also increasing. .

一方、このようなロークー用材料としては、第1表で示
した如き成分系の鋳鋼が従来から一般に適用されてきた
On the other hand, cast steel having the compositions shown in Table 1 has been generally used as a material for such low heating.

第   1   表 この材料は鋳鋼であるため安価であると言う利点を有し
てはいるものの、強度と靭性がそれほど高くはなく、苛
酷な条件下で長時間の使用がなされるとローター表面に
熱亀裂が発生し寿命が低下すると言う問題点があり、使
用条件の苛酷化が目立つ最近ではその性能向上の必要性
が強く認、識されるに至っている。
Table 1 Although this material has the advantage of being inexpensive because it is cast steel, it does not have very high strength and toughness, and if used for a long time under harsh conditions, it will generate heat on the rotor surface. There are problems in that cracks occur and the service life is shortened, and in recent years, as usage conditions have become more severe, the need for improved performance has been strongly recognized and recognized.

もっとも、このような事情を勘案して、C,Si。However, taking these circumstances into consideration, C, Si.

Mn、 Nを低減すると共にTi、  Bを添加した鋼
を制御圧延することから成る、引張強さが100kgf
/−以上で磁束密度の高い高張力熱延鋼板の製造手段も
提案されたが(特開昭63−166931号)、この熱
延鋼板は、常温での破断伸びが15%以下であることか
らも分かるように靭性が低く、そのため渦電流減速装置
のローター材のように大きな機械的荷重を担うと共に高
い安全性が要求される部材に使用するのは不適当と言わ
ざるを得なかった。
The tensile strength is 100 kgf, which is made by controlled rolling of steel with reduced Mn and N and added Ti and B.
A method for manufacturing high-tensile hot-rolled steel sheets with high magnetic flux density has also been proposed (Japanese Patent Application Laid-Open No. 166931/1983), but since this hot-rolled steel sheet has an elongation at break of 15% or less at room temperature, As can be seen, it has low toughness, which makes it unsuitable for use in parts that bear a large mechanical load and require high safety, such as the rotor material of an eddy current reduction device.

このようなことから、本発明の目的は、高い強度と靭性
を備えていて耐久性に優れ、従来指摘されていた前記問
題点を払拭し得る渦電流式減速装置のローター用材料を
捉供することに置かれた。
Therefore, an object of the present invention is to provide a material for a rotor of an eddy current speed reduction device that has high strength and toughness, is excellent in durability, and can eliminate the above-mentioned problems that have been pointed out in the past. was placed in

く課題を解決するための手段〉 そして、本発明者等は上記目的を達成すべく鋭意研究を
重ねた結果、次のような結論に到達した。
Means for Solving the Problems> The inventors of the present invention have conducted intensive research to achieve the above object, and as a result, have reached the following conclusion.

即ち、渦電流式減速装置のローター材に要求される性質
としては、前述したような高い強度・靭性の他に、所定
の電磁気特性を備えている必要がある。つまり、できる
だけ効率良く制動l・ルクを発生し、かつジュール熱を
低減するためには(al  電気抵抗ρが大きいこと (bl  保磁力Hcが小さいこと と言った電磁気特性が必要である。しかるに、前記第1
表に示される成分系の鋳鋼である従来のロタ−材は強度
を得るため約0,20%のCと0.3%のCrを含有し
ているが、CやCrは例えば第2図或いは第3図に示す
ように前記電磁気特性(保磁力)に悪影響を及ぼす元素
である。
That is, in addition to the above-mentioned high strength and toughness, the rotor material of the eddy current reduction gear must have predetermined electromagnetic properties. In other words, in order to generate braking l-lux as efficiently as possible and reduce Joule heat, electromagnetic characteristics such as (al) high electrical resistance ρ (bl) low coercive force Hc are required.However, Said first
Conventional rotor material, which is cast steel with the composition shown in the table, contains approximately 0.20% C and 0.3% Cr to obtain strength, but C and Cr are As shown in FIG. 3, it is an element that has an adverse effect on the electromagnetic properties (coercive force).

そこで、C含有量を低減すると共に、Crの添加を行わ
ず、かつ特にP 1Mn+ N+による固溶強化とVに
よる析出強化とによって強度調整を図るべく鋼材の成分
設計を実施すると、熱間鍛造後に焼入れ・焼戻しの熱処
理を行うだけで渦電流式減速装置のローター材に所望さ
れる十分な強度と靭性とを備え、しかも従来材に比べて
電磁気特性にも優れた鋼材を実現できる。
Therefore, if we design the composition of steel to reduce the C content, do not add Cr, and especially adjust the strength by solid solution strengthening with P 1Mn + N + and precipitation strengthening with V, after hot forging, By simply performing heat treatments such as quenching and tempering, it is possible to create a steel material that has sufficient strength and toughness required for the rotor material of an eddy current reduction gear, and also has superior electromagnetic properties compared to conventional materials.

本発明は、上記研究結果等を基にして成されたものであ
り、 「渦電流式減速装置用ローター材を、 c:0.os〜0.15%(以降、成分割合を表わす%
は重量%とする)。
The present invention has been made based on the above research results and the like.
(% by weight).

Si : 0.10〜3.0%、   Mn : 1.
0〜6.0%p:0.3%以下、    Ni : 0
.5〜5.0%Nb : 0.005〜0.020%、
  V : 0.03〜0.07%。
Si: 0.10-3.0%, Mn: 1.
0-6.0% p: 0.3% or less, Ni: 0
.. 5-5.0%Nb: 0.005-0.020%,
V: 0.03-0.07%.

N:O,O]%以下 を含有するか、或いは必要に応じて Mo : 1.0%以下 をも含み、残部が実質的にFeから成る成分組成に構成
した点」 に特徴を有し、更には、 「上記成分組成の鋼を熱間鍛造した後850〜900℃
にて焼入れし、次いで600〜700℃で焼戻すことに
より、強度、靭性、電磁気特性が共に優れた耐久性の高
い渦電流式減速装置用ロタ−材を工業的に安定して製造
し得るようにした点」 をも特徴とするものである。
N:O,O]% or less, or if necessary, Mo: 1.0% or less, with the remainder substantially consisting of Fe, Furthermore, ``After hot forging the steel with the above composition,
By quenching at 600 to 700°C and then tempering at 600 to 700°C, rotor material for eddy current reduction gears with high durability and excellent strength, toughness, and electromagnetic properties can be produced industrially and stably. It is also characterized by the fact that

次いで、本発明においてローター材の成分組成並びに熱
処理条件を前記の如くに数値限定した理由について、そ
の作用と共に詳述する。
Next, the reason why the component composition and heat treatment conditions of the rotor material are numerically limited as described above in the present invention will be explained in detail together with their effects.

く作用〉 A)成分含有割合 Cは強度を決める最も基本的な元素であるが、その含有
量が0.05%未満であるとローター材に必要な強度レ
ヘルを確保することができない。一方、保磁力(Hc)
ばC含有量の増加に従って上昇し、その含有量が0.1
5%を超えると渦電流式減速装置の制動性能に悪影響を
及ぼずようになる。そのため、C含有量は0.05〜0
.15%と定めたが、好ましくは0.09〜0.12%
に調整するのが良い。
Effects> A) Component content ratio C is the most basic element that determines strength, but if its content is less than 0.05%, the strength level required for the rotor material cannot be secured. On the other hand, coercive force (Hc)
It increases as the C content increases, and when the content is 0.1
If it exceeds 5%, the braking performance of the eddy current reduction device will not be adversely affected. Therefore, the C content is 0.05~0
.. It was set at 15%, but preferably 0.09 to 0.12%.
It is best to adjust it to

t Siは鋼の脱酸剤として作用すると共に焼入れ性を向上
させる作用をも有しているが、その含有量が0.10%
未満では前記作用による効果が十分に期待されず、一方
、Siは粒界及び母相の靭性と言う点からは多量に含有
されることは好ましくない。
tSi acts as a deoxidizing agent for steel and also has the effect of improving hardenability, but its content is 0.10%.
If the amount is less than that, the effect of the above action cannot be expected sufficiently, and on the other hand, it is not preferable to contain a large amount of Si from the viewpoint of grain boundary and matrix toughness.

従って、Si含有量は0.10〜3.0%と定めたが、
好ましくは0.2〜2.0%に調整するのが良い。
Therefore, the Si content was set at 0.10 to 3.0%, but
Preferably, it is adjusted to 0.2 to 2.0%.

勤 Mnは鋼の脱酸、脱硫剤として作用すると共に、焼入れ
性改善及び固溶強化による高強度化作用をも有している
が、その含有量が1.0%未満では前記作用による効果
が十分ではなく、一方、6.0%を超えて含有させると
非金属介在物が残留するおそれがあり、靭性も低下する
。従って、Mn含有量は1.0〜6.0%と定めたが、
好ましくは1.3〜4.0%に調整するのが良い。
In addition to acting as a deoxidizing and desulfurizing agent for steel, Mn also has the effect of improving hardenability and increasing strength through solid solution strengthening, but if its content is less than 1.0%, the above effects will not be achieved. On the other hand, if the content exceeds 6.0%, nonmetallic inclusions may remain and the toughness will also decrease. Therefore, the Mn content was set at 1.0-6.0%,
It is preferably adjusted to 1.3 to 4.0%.

なお、Mn含有量が電磁気特性に及ぼす影響は小さい。Note that the influence of Mn content on electromagnetic properties is small.

Pは固溶強化により綱の強度を上昇し、かつ電気抵抗〔
ρ〕の増加に有効な元素である。しかし、一方でPは熱
間鍛造性と言う観点からは多量に含有させることは好ま
しくなく、従ってP含有量の上限を0.30%と定めた
P increases the strength of the rope through solid solution strengthening, and also increases the electrical resistance [
It is an effective element for increasing ρ]. However, on the other hand, it is not preferable to contain a large amount of P from the viewpoint of hot forgeability, and therefore the upper limit of the P content is set at 0.30%.

Ni Niは焼入れ性と固溶強化による鋼の高強度化作用を有
しているが、その含有量が0.5%未満では前記作用に
よる効果が十分でなく、一方、経済性と効果のバランス
を考えた場合には5.0%を超えて含有させることは不
利となる。従って、Ni含有量は0.5〜5.0%と定
めたが、望ましくは0.8〜3.0%に調整するのが良
い。
Ni Ni has the effect of increasing the strength of steel through hardenability and solid solution strengthening, but if its content is less than 0.5%, the effects of the above effects are insufficient, and on the other hand, the balance between economic efficiency and effectiveness is Considering this, it is disadvantageous to contain more than 5.0%. Therefore, although the Ni content was determined to be 0.5 to 5.0%, it is preferably adjusted to 0.8 to 3.0%.

なお、Ni含有量も電磁気特性に及ぼす影響は小さい。Note that the Ni content also has a small effect on the electromagnetic properties.

Nb Nbは、鋼の結晶粒を微細化する作用に加えて粒界を強
化する作用をも有しているが、その含有量が0.005
%未満では前記作用による効果が十分でなく、一方、0
.020%を超えて含有させると靭性低下を招くことか
ら、Nb含有量は0.005〜0.020%と定めたが
、好ましくは0.010−0.015%に調整するのが
良い。
Nb Nb has the effect of strengthening the grain boundaries in addition to the effect of refining the crystal grains of steel, but when its content is 0.005
If it is less than 0%, the effect of the above action will not be sufficient;
.. If the Nb content exceeds 0.020%, the toughness decreases, so the Nb content is set at 0.005% to 0.020%, but it is preferably adjusted to 0.010% to 0.015%.

■ ■はバナジウム炭化物の析出強化により鋼の強度を向上
させる作用を有しているが、その含有量が0.03%未
満では前記作用による効果が十分ではなく、一方、0.
07%を超えて含有させると靭性低下を招(ばかりか、
電磁気特性をも劣化するため、■含有量は0.03〜0
.07%と定めたが、好ましくは0.04〜0.06%
に調整するのが良い。
■■ has the effect of improving the strength of steel by precipitation strengthening of vanadium carbides, but if its content is less than 0.03%, the effect of the above effect is not sufficient;
If the content exceeds 0.07%, it will not only lead to a decrease in toughness (but also
Because it also deteriorates electromagnetic properties, the content is 0.03 to 0.
.. It is set at 0.07%, but preferably 0.04 to 0.06%.
It is best to adjust it to

鋼材中のN含有量が多くなるとV、Nbの炭窒化物を生
成して電磁気特性に悪影響を及ぼす。従って、N含有量
の上限を0.01%と定めた。
When the N content in the steel material increases, carbonitrides of V and Nb are generated, which adversely affects electromagnetic properties. Therefore, the upper limit of the N content was set at 0.01%.

O Moには綱の靭性1強度を向上させる作用があるので必
要に応じて添加される元素であるが、1.0%を超えて
含有させても靭性1強度改善効果が飽和するばかりか、
経済的な不利を招くことから、Mo含有量は1.0%以
下と定めた。
O Mo has the effect of improving the toughness and strength of the steel, so it is an element that is added as necessary, but even if it is added in excess of 1.0%, not only will the effect of improving the toughness and strength be saturated.
Since this would cause an economic disadvantage, the Mo content was set at 1.0% or less.

なお、前記各成分の他、不純物として含有されるSにつ
いてはその含有量を0.四%以下に抑えることが望まし
い。
In addition to the above-mentioned components, the content of S contained as an impurity was set to 0. It is desirable to keep it below 4%.

1 B)熱処理条件 茨入並星度 焼入れ温度については、オーステナイト化変態温度(A
3変態点)を上回る必要があるため、その下限温度を8
50℃と定めた。一方、焼入れ温度が900℃を超える
と結晶粒の粗大化が著しいことから、その上限温度を9
00℃と定めた。
1 B) Heat treatment conditions Regarding the thorny degree quenching temperature, the austenitization transformation temperature (A
3 transformation point), the lower limit temperature is set at 8
The temperature was set at 50°C. On the other hand, if the quenching temperature exceeds 900°C, the crystal grains will become coarser, so the upper limit temperature should be set at 900°C.
The temperature was set at 00°C.

汰災ρ徹度 焼戻し温度が600℃未満の場合には、鋼材の強度は高
くなるが十分な靭性が得られない。一方、700℃を超
える温度で焼戻すと、靭性は良くなるが十分な強度を確
保することができない。従って、焼戻し温度は600〜
700℃と定めた。
If the tempering temperature is less than 600°C, the strength of the steel material will be high, but sufficient toughness will not be obtained. On the other hand, tempering at a temperature exceeding 700°C improves toughness but fails to ensure sufficient strength. Therefore, the tempering temperature is 600~
The temperature was set at 700°C.

続いて、本発明の効果を実施例によって更に具体的に説
明する。
Next, the effects of the present invention will be explained in more detail with reference to Examples.

〈実施例〉 まず、通常の方法で第2表に示す成分組成の鋼を溶製し
て供試材とした。
<Example> First, steel having the composition shown in Table 2 was melted using a normal method to prepare test materials.

なお、第2表における「従来鋼」は第1表に示したのと
同様組成の鋳鋼であり、本発明材1〜3、並ひに比較材
1〜6は熱間鍛造鋼である。
Note that "conventional steel" in Table 2 is cast steel having the same composition as shown in Table 1, and inventive materials 1 to 3 and comparative materials 1 to 6 are hot forged steels.

第4図に、900℃で焼入れ処理した従来材並びに本発
明材1〜3についての焼戻し温度と引張強さの調査結果
を対比して示す。
FIG. 4 compares and compares the results of an investigation of the tempering temperature and tensile strength of conventional materials and materials 1 to 3 of the present invention, which were hardened at 900°C.

この第4図に示される結果からも明らかなように、本発
明材の引張強さは従来材に比べて高く、焼戻し温度が6
50℃の場合には、従来材の引張強さが約50kgf/
mnlであるのに対して、本発明材は何れも70kgf
/mJ以上を示すことが確認できる。
As is clear from the results shown in Figure 4, the tensile strength of the material of the present invention is higher than that of the conventional material, and the tempering temperature is 6.
At 50℃, the tensile strength of conventional material is approximately 50kgf/
mnl, whereas all the materials of the present invention have a weight of 70 kgf.
/mJ or more.

また、第5図には、900℃で焼入れ処理した従来材並
びに本発明材1〜3についての焼戻し温度と破壊靭性値
の調査結果を対比して示した。この第5図に示される結
果からは、何れの焼戻し温度においても本発明材の破壊
靭性は従来材を大きく上回っていることを確認すること
ができる。
Furthermore, FIG. 5 shows a comparison of the results of an investigation of the tempering temperature and fracture toughness values for conventional materials and materials 1 to 3 of the present invention that were quenched at 900°C. From the results shown in FIG. 5, it can be confirmed that the fracture toughness of the material of the present invention greatly exceeds that of the conventional material at any tempering temperature.

一方、第3表には、焼入れ温度が900℃で、焼戻し温
度が650℃の場合の従来材1本発明材1〜3並びに比
較材1〜6について、機械的性質(降伏応力、引張強さ
、破断伸び)、破壊靭性、電気抵抗、保磁力を測定した
結果を示す。
On the other hand, Table 3 shows the mechanical properties (yield stress, tensile strength, , fracture elongation), fracture toughness, electrical resistance, and coercive force.

に の第3表に示される結果からは、まず本発明材は従来材
に比べて強度、靭性が改善されているだけでなく、電磁
気特性についても改善されていることを確認できる。
From the results shown in Table 3, it can be confirmed that the material of the present invention not only has improved strength and toughness compared to the conventional material, but also has improved electromagnetic properties.

また、比較材1〜3は何れもP、V又はMn含有量が高
いため、本発明材よりも更に高強度となってはいるが破
壊靭性値が著しく低下していることや、比較材4〜6は
V、Mn又はNi含有量が低いため十分な強度が得られ
ていないことも明らかである。
In addition, since Comparative Materials 1 to 3 all have high P, V, or Mn contents, they have even higher strength than the present invention materials, but their fracture toughness values are significantly lower, and Comparative Materials 4. It is also clear that samples 6 to 6 have low V, Mn, or Ni contents and therefore do not have sufficient strength.

次に、第2表に示した各供試材を用いて、第1図に示し
たタイプの渦電流式減速装置用ロータを作成し、これを
適用した渦電流式減速装置を大型トラックのプロペラシ
ャフトの途中に装備して“繰り返し制動試験”を行った
Next, a rotor for an eddy current reduction gear of the type shown in Figure 1 was created using each of the test materials shown in Table 2, and an eddy current reduction gear to which this rotor was applied was applied to the propeller of a large truck. A "repeated braking test" was carried out by installing it in the middle of the shaft.

試験に当っては、プロペラシャフト回転速度を3000
回転/回転一定とし、2分間制動、3分間非制動を繰り
返してロークー表面に熱亀裂が発生するまでの繰り返し
数を測定した。なお、この時のローター表面の最高到達
温度は約600℃であった。
During the test, the propeller shaft rotation speed was set to 3000
With the rotation/rotation constant, braking was repeated for 2 minutes and non-braking for 3 minutes, and the number of repetitions until thermal cracks were generated on the surface of the rotor was measured. Note that the maximum temperature reached on the rotor surface at this time was approximately 600°C.

この試験結果を第4表に示す。The test results are shown in Table 4.

第4表に示される結果からも、従来材及び比較材は繰り
返し数が3500〜7000回で熱亀裂が発生したのに
対して、本発明材は何れも繰り返し数が10000回に
達しても熱亀裂の発生が見られず、優れた耐久性を有し
ていることが確認できる。
From the results shown in Table 4, thermal cracks occurred in the conventional and comparative materials after 3,500 to 7,000 repetitions, whereas in the present invention, thermal cracks occurred even after 10,000 repetitions. No cracks were observed, confirming that it had excellent durability.

く効果の総括〉 以上に説明した如(、本発明によれば、強度靭性並びに
電磁気特性とも従来材に比して十分に優れた渦電流式減
速装置のローターを提供することができ、渦電流式減速
装置の制動性能を低下することなく著しい耐久性の向上
が実現できるなど、産業上極めて有用な効果がもたらさ
れる。
Summary of Effects> As explained above, according to the present invention, it is possible to provide a rotor for an eddy current speed reduction device that has sufficiently superior strength, toughness and electromagnetic properties compared to conventional materials, and Industrially, extremely useful effects are brought about, such as a significant improvement in durability without reducing the braking performance of the type reduction gear.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、先に提案した渦電流式減速装置の概要説明図
である。 第2図は、調料のCr含有量と保磁力との関係を示した
グラフである。 第3図は、鋼材のC含有量と保磁力との関係を示したグ
ラフである。 第4図は、本発明材と従来材との焼戻し温度による引張
強さを対比したグラフである。 第5図は、本発明材と従来材との焼戻し温度による破壊
靭性値を対比したグラフである。 図面において、 ■・・・永久磁石、     2・・・支持リング3・
・・ローター、     4・・・回転軸5・・・支持
部材、     6・・・ポールピース。 7・・・冷却ファン、    8・・・軸受箱筒。 9・・・取付は金具。
FIG. 1 is a schematic explanatory diagram of the eddy current speed reduction device proposed earlier. FIG. 2 is a graph showing the relationship between the Cr content of the preparation and the coercive force. FIG. 3 is a graph showing the relationship between C content and coercive force of steel materials. FIG. 4 is a graph comparing the tensile strength of the present invention material and the conventional material depending on the tempering temperature. FIG. 5 is a graph comparing the fracture toughness values of the present invention material and the conventional material depending on the tempering temperature. In the drawing, ■...Permanent magnet, 2...Support ring 3.
...Rotor, 4...Rotating shaft 5...Supporting member, 6...Pole piece. 7...Cooling fan, 8...Bearing box tube. 9...Mounting with metal fittings.

Claims (3)

【特許請求の範囲】[Claims] (1)重量割合にて C:0.05〜0.15%、Si:0.10〜3.0%
、Mn:1.0〜6.0%、P:0.3%以下、Ni:
0.5〜5.0%、Nb:0.005〜0.020%、
V:0.03〜0.07%、N:0.01%以下を含有
すると共に、残部が実質的にFeから成ることを特徴と
する、渦電流式減速装置用ローター材。
(1) C: 0.05-0.15%, Si: 0.10-3.0% by weight
, Mn: 1.0 to 6.0%, P: 0.3% or less, Ni:
0.5-5.0%, Nb: 0.005-0.020%,
A rotor material for an eddy current speed reduction device, characterized in that it contains V: 0.03 to 0.07%, N: 0.01% or less, and the remainder essentially consists of Fe.
(2)重量割合にて C:0.05〜0.15%、Si:0.10〜3.0%
、Mn:1.0〜6.0%、P:0.3%以下、Ni:
0.5〜5.0%、Nb:0.005〜0.020%、
V:0.03〜0.07%、N:0.01%以下、Mo
:1.0%以下 を含有すると共に、残部が実質的にFeから成ることを
特徴とする、渦電流式減速装置用ローター材。
(2) C: 0.05-0.15%, Si: 0.10-3.0% in weight percentage
, Mn: 1.0 to 6.0%, P: 0.3% or less, Ni:
0.5-5.0%, Nb: 0.005-0.020%,
V: 0.03 to 0.07%, N: 0.01% or less, Mo
: A rotor material for an eddy current reduction device, characterized in that it contains 1.0% or less, and the remainder consists essentially of Fe.
(3)請求項1又は2に記載の成分組成を有する鋼を熱
間鍛造した後、850〜900℃にて焼入れし、次いで
600〜700℃で焼戻すことを特徴とする、渦電流式
減速装置用ローター材の製造方法。
(3) An eddy current reduction method, characterized in that the steel having the composition according to claim 1 or 2 is hot forged, then quenched at 850 to 900°C, and then tempered at 600 to 700°C. Method for manufacturing rotor material for equipment.
JP4116590A 1990-02-23 1990-02-23 Rotor material for eddy current type reduction gear and its manufacture Pending JPH03247742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4116590A JPH03247742A (en) 1990-02-23 1990-02-23 Rotor material for eddy current type reduction gear and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4116590A JPH03247742A (en) 1990-02-23 1990-02-23 Rotor material for eddy current type reduction gear and its manufacture

Publications (1)

Publication Number Publication Date
JPH03247742A true JPH03247742A (en) 1991-11-05

Family

ID=12600813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4116590A Pending JPH03247742A (en) 1990-02-23 1990-02-23 Rotor material for eddy current type reduction gear and its manufacture

Country Status (1)

Country Link
JP (1) JPH03247742A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020218276A1 (en) * 2019-04-24 2020-10-29 日本製鉄株式会社 Rotor for eddy-current-type deceleration device
JP2020180324A (en) * 2019-04-24 2020-11-05 日本製鉄株式会社 Rotor for eddy current-type reduction gear

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020218276A1 (en) * 2019-04-24 2020-10-29 日本製鉄株式会社 Rotor for eddy-current-type deceleration device
JPWO2020218276A1 (en) * 2019-04-24 2020-10-29
JP2020180324A (en) * 2019-04-24 2020-11-05 日本製鉄株式会社 Rotor for eddy current-type reduction gear
EP3960893A4 (en) * 2019-04-24 2023-01-04 Nippon Steel Corporation Rotor for eddy-current-type deceleration device

Similar Documents

Publication Publication Date Title
CN100500910C (en) Seamless steel pipe and method for production thereof
JP3491030B2 (en) Stainless steel for disk shakers
JP5385656B2 (en) Case-hardened steel with excellent maximum grain reduction characteristics
WO2011049006A1 (en) Steel for induction hardening, induction-hardened steel parts, and process for production of same
JPWO2006104023A1 (en) Induction hardening hollow drive shaft
EP0649914B1 (en) An Fe-Mn vibration damping alloy steel and a method for making the same
JP4696750B2 (en) Method for producing non-oriented electrical steel sheet for aging heat treatment
WO2002059390A1 (en) Bearing material
US20040060621A1 (en) Ferritic heat-resistant steel and method for producing it
JP3565960B2 (en) Bearing steel, bearings and rolling bearings
JP3297793B2 (en) Railway axle and method of manufacturing the same
JPH03247742A (en) Rotor material for eddy current type reduction gear and its manufacture
JPS62256917A (en) High-tensile non-oriented electrical steel sheet for rotating machine and its production
JP4210495B2 (en) High-strength soft magnetic stainless steel and manufacturing method thereof
JP5418469B2 (en) Method for producing non-oriented electrical steel sheet for aging heat treatment
JP7260816B2 (en) Rotor for eddy current speed reducer
JP3036372B2 (en) Rotor material for eddy current type reduction gear and manufacturing method thereof
JP5103987B2 (en) Method for manufacturing rolling bearing component and rolling bearing
JPH04293752A (en) Rotor material for eddy current type reduction gear and production thereof
JP3591099B2 (en) Rotor for eddy current type reduction gear
JPH04297556A (en) Rotor material for eddy current type reduction gear and its production
JP2012229456A (en) Steel for cold forging and induction hardening
CN115896592A (en) Preparation method of 25MnCrNiMoA hot-rolled round steel for train hook enclosure frame
JPH11293403A (en) Steel for bearing long service life and delayed fracture resistance and its production
JPH10140294A (en) High strength austenitic stainless steel plate for flapper valve, excellent in fatigue characteristic, and its production