JPH03247738A - Aluminum alloy excellent in bendability - Google Patents

Aluminum alloy excellent in bendability

Info

Publication number
JPH03247738A
JPH03247738A JP4206590A JP4206590A JPH03247738A JP H03247738 A JPH03247738 A JP H03247738A JP 4206590 A JP4206590 A JP 4206590A JP 4206590 A JP4206590 A JP 4206590A JP H03247738 A JPH03247738 A JP H03247738A
Authority
JP
Japan
Prior art keywords
alloy
aluminum alloy
bendability
bending
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4206590A
Other languages
Japanese (ja)
Inventor
Osamu Takezoe
竹添 修
Yoshinori Yasuda
安田 善則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4206590A priority Critical patent/JPH03247738A/en
Publication of JPH03247738A publication Critical patent/JPH03247738A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the dimentional defect in an aluminum alloy produced at the time of bending by specifying the content of Si, Mg and Cu in an Al alloy and adding small amounts of Zr, Cr and Mn thereto. CONSTITUTION:The compsn. of an Al alloy is formed of a one essentially consisting of, by weight, 0.8 to 1.2% Si, 0.6 to 1.1% Mg and 0.2 to 0.6% Cu, contg. one or two kinds among 0.1 to 0.2% Zr, 0.1 to 0.3% Cr and 0.1 to 0.4% Mn and the balance Al with inevitable impurities. This Al alloy is preferably constituted of a recrystallized structure. Zn, Cr and Mn to be added have an effect of refining the crystalline grains. In this way, working cracks are reduced and bendability is improved in the alloy.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、曲げ加工性に優れたアルミニウム合金に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an aluminum alloy with excellent bending workability.

[従来の技術] 自動車においては、軽量化のため、種々の部品にアルミ
ニウム合金が用いられるようになってきた。このような
なかて、例えは、レール、モールなどにもアルミニウム
材力号使用されるようになってきた。これらは曲げ加工
されるため、使用される材料は、強度とともに曲げ加工
性が必要である。これらの部品にはJIS6061 6205が現在使用されているか、曲げ加工において寸
法不良や加工割れが生しる場合があり、製品の歩留まり
を低下させ問題となっている。
[Prior Art] In order to reduce the weight of automobiles, aluminum alloys have come to be used for various parts. Under these circumstances, aluminum materials have come to be used for rails, moldings, etc. Since these are bent, the materials used need to have both strength and bendability. JIS 6061 6205 is currently used for these parts, and dimensional defects and processing cracks may occur during bending, which is a problem and reduces product yield.

[発明が解決しようとする課B] 本発明は、曲げ加工時に生じる寸法不良を著しく減少せ
しめた曲げ加工性に優れたアルミニウム合金を提供する
ことを目的とする。
[Problem B to be Solved by the Invention] An object of the present invention is to provide an aluminum alloy with excellent bending workability that significantly reduces dimensional defects that occur during bending.

また、本発明は、加工割れが著しく少ない曲げ加工性に
優れたアルミニウム合金を提供することを別の目的とす
る。
Another object of the present invention is to provide an aluminum alloy that exhibits excellent bending workability with significantly less processing cracks.

[課題を解決するための手段] 本発明の第1の要旨は、8108〜1.2wt%、Mg
:0.6〜1.1wt%、CuO,2〜0.6wt%を
主成分とし、Zr:0.1 〜0.2wt%、 Cr 
 :  0. 1〜0. 3wt%、Mn : 0.1
〜0.4wt%の一種または二種を含有し、歿りAuお
よび不可避不純物からなるアルミニウム合金。
[Means for Solving the Problems] The first gist of the present invention is that 8108 to 1.2 wt%, Mg
:0.6 to 1.1 wt%, CuO, 2 to 0.6 wt% as main components, Zr: 0.1 to 0.2 wt%, Cr
: 0. 1~0. 3wt%, Mn: 0.1
An aluminum alloy containing ~0.4 wt% of one or both of Au and inevitable impurities.

本発明の第2の要旨は、当該アルミニウム合金が再結晶
組織からなることを特徴する曲げ加工性に優れたアルミ
ニウム合金に存在する。
A second aspect of the present invention resides in an aluminum alloy having excellent bending workability, which is characterized by having a recrystallized structure.

[作用] 木発明者は、従来のアルミニウム合金における寸法不良
の発生原因を鋭意探究したところ、寸法不良はスプリン
グ・バックのバラツキによるものであることを解明した
。スプリング・バック量は耐力て決まるため耐力の安定
化が寸法不良を防止する上で必要であろうとの知見を得
た。そこで、耐力の安定化を達成するための手段を多大
な実験を重ねて探究したところ、S1添加量か安定化に
関係してことを見い出した。さらに、実験を重ね具体的
にどの程度の添加量とすればよいかを解明し、本発明を
なすにいたったものである。
[Function] The inventor of the invention earnestly investigated the cause of dimensional defects in conventional aluminum alloys and discovered that dimensional defects were due to variations in spring back. Since the amount of spring back is determined by the yield strength, we found that stabilizing the yield strength is necessary to prevent dimensional defects. Therefore, after conducting numerous experiments to find a means to stabilize the yield strength, it was discovered that the amount of S1 added was related to stabilization. Furthermore, through repeated experiments, we determined the specific amount of addition that should be made, leading to the present invention.

また、加工割れの原因の探究を行ったところ以下の知見
を得た。すなわち、−船釣に加工割れは伸びに関係して
いると考えられる。しかし、さらに子細に検討すると、
本発明合金においては、様伸びを大きくしても加工割れ
は必ずしも改善されないことを見い出した。さらに検討
と重ねたところ、本発明合金においては、局部的な伸び
(局部的なすへり)か加工割れに大きく関与しているこ
とを解明した。そこで、局部的な伸びを犬きくするため
の手段を探究したところ合金組織を再結晶組織とすれは
局部的な伸びは大きくなることを見い出し本発明をなす
にいたった。なお、従来は、アルミニウム合金の強度を
たすために繊維組織としていたか、本発明合金において
は、再結晶組織としても強度の低下はなく、むしろ向上
することか判明した。
In addition, we investigated the cause of machining cracks and obtained the following findings. In other words, it is thought that processing cracks in boat fishing are related to elongation. However, if we consider it more closely,
In the alloy of the present invention, it has been found that even if the modulus elongation is increased, processing cracking is not necessarily improved. Further investigation revealed that in the alloy of the present invention, local elongation (local hem) is largely responsible for the process cracking. Therefore, we searched for a means to increase the local elongation and found that if the alloy structure was made into a recrystallized structure, the local elongation would become larger.This led us to the present invention. In addition, it has been found that although in the past, a fiber structure was used to increase the strength of aluminum alloys, in the alloy of the present invention, even if a recrystallized structure is used, the strength does not decrease, but rather increases.

以下に成分、組織の限定理由についてより詳細に説明す
る。
The reasons for limiting the components and organization will be explained in more detail below.

(成分の限定理由) Slは、耐力に犬ぎ〈影響する元素である。(Reasons for limiting ingredients) Sl is an element that significantly affects yield strength.

Stは、MgとMg2Si化合物を作り析出強化で強度
を向上させる元素である。slが08%未満では、鋳塊
作製時の微量な含有量の相違により耐力が大きく変動し
、加工時に寸法不良が生じやすい。また、1.2wt%
を越えると加工性が劣る。従ってStの量は0.8〜1
.2wt%とする。
St is an element that creates a Mg2Si compound with Mg and improves strength through precipitation strengthening. If sl is less than 0.8%, the yield strength will vary greatly due to minute differences in content during ingot production, and dimensional defects are likely to occur during processing. Also, 1.2wt%
If it exceeds this, the workability will be poor. Therefore, the amount of St is 0.8 to 1
.. It is set to 2wt%.

Mgは、StとMg2Si化合物を作り析出強化で強度
を向上させる元素である。Mgが06%未満では耐力が
安定せず、寸法不良が生じやすい。また1、1%越える
と加工性か劣る。従ってMgの!は0.6〜1.1wt
%とする。
Mg is an element that forms a Mg2Si compound with St and improves strength through precipitation strengthening. If the Mg content is less than 0.6%, the yield strength is not stable and dimensional defects are likely to occur. Moreover, if it exceeds 1.1%, the workability will be poor. Therefore, Mg! is 0.6~1.1wt
%.

Cuは、析出強化で強度を付与させるとともに伸びを向
上させる元素である。Cuが02%未満ではその効果か
小さく、06%を越えると耐食性低下させる。従ってC
uは02〜06wt%とする。
Cu is an element that imparts strength through precipitation strengthening and improves elongation. If Cu is less than 0.2%, the effect will be small, and if it exceeds 0.6%, corrosion resistance will be reduced. Therefore C
u is 02 to 06 wt%.

Zr、Mn、Crは、結晶粒を微細化する効果かある。Zr, Mn, and Cr have the effect of making crystal grains finer.

しかしZr:0.ICr+0.1未満てはその添加効果
は十分てない。またZr0.2Mn:0.7Cr:0.
3を越えると繊維組織となり限界曲げ加工率を低下させ
る。
However, Zr: 0. If it is less than ICr+0.1, the effect of its addition is not sufficient. Also, Zr0.2Mn:0.7Cr:0.
If it exceeds 3, it becomes a fibrous structure and reduces the limit bending rate.

従って、Zr:0.1〜0.2wt%、CrO,1〜0
.3wt%、Mn : 0. 1〜0. 7wt%とす
る。なお、Zr、Mn、Crはいずれか一種含有すれば
よく、また2種以上を含有してもよい。
Therefore, Zr: 0.1-0.2 wt%, CrO, 1-0
.. 3wt%, Mn: 0. 1~0. It is set to 7wt%. Note that any one of Zr, Mn, and Cr may be contained, or two or more types may be contained.

(組織の限定理由) 割れの原因は材料の伸び(−様伸ひ)たけの問題でなく
、結晶組織の状態か大きく影響している事を知見した。
(Reason for limiting the structure) It was discovered that the cause of cracking was not due to the elongation (-like elongation) of the material, but was largely influenced by the state of the crystal structure.

すなわち、押出加工等により成形されたアルミニウム合
金は強度をたすためや、伸びを向上させるため繊維組織
化させるが、繊維組織を有している場合は曲げ加工にお
いてずへりが分散されにくいため局部的なすへりか生じ
やすくなり、加工量が大きいと割れに発展する。一方、
再結晶組織を有する場合、この様な局部的なすべりが生
しにくいため、割れが発生しにくい。
In other words, aluminum alloys formed by extrusion processing etc. have a fiber structure to increase strength and elongation, but when the aluminum alloy has a fiber structure, it is difficult to disperse the shear during bending, so Edges tend to form, and if the amount of machining is large, this can lead to cracks. on the other hand,
If the material has a recrystallized structure, such local slips are less likely to occur, so cracks are less likely to occur.

なお、組織の制御は、均質化処理温度、押出温度、Zr
、Mn、Crの添加量を制御することにより行うことが
てき、均質化処理温度、押出温度は高い方が再結晶組織
となりやすく、また、Zr、Mn、Crの添加量は少な
い方か再結晶組織となりやすいため、これらを適宜制御
ずれはよい。
The structure is controlled by homogenization temperature, extrusion temperature, Zr
, Mn, and Cr. The higher the homogenization temperature and extrusion temperature, the easier it is to form a recrystallized structure, and the smaller the added amount of Zr, Mn, and Cr, the easier it is to recrystallize. Since this tends to result in tissue formation, it is best to adjust these controls appropriately.

[実施例] 以下、本発明の実施例について述べる。ます、試験片の
作製工程を述へる。
[Examples] Examples of the present invention will be described below. First, we will describe the process for preparing the test piece.

■第1表に示した組成を有するアルミニウム合金鋳塊(
155mmφ)を、それぞれ常法により溶製した。
■Aluminum alloy ingots with the composition shown in Table 1 (
155 mmφ) were melt-produced by a conventional method.

■この鋳塊を540℃X4hrの条件にて均質化処理を
行った。
(2) This ingot was homogenized at 540°C for 4 hours.

■押出温度500℃、押出速度8m/minの押出条件
にて4. t X 100 wの形状に押出した。
4. Under extrusion conditions of extrusion temperature 500°C and extrusion speed 8m/min. It was extruded into a shape of t x 100 w.

■上記押出材を、530℃xlhr−水玲、190℃X
4hrの熱処理を行い供試材を作製した。
■The above extruded material was heated to 530°C
A test material was prepared by performing heat treatment for 4 hours.

以上のようにして作製した供試材につき機械的性質と曲
げ加工性の試験を行った。また、組織観察を行った。
Mechanical properties and bending workability tests were conducted on the sample materials prepared as described above. In addition, tissue observation was performed.

なお、曲げ加工性の評価はU字曲げにて、表面目視によ
り割れの有無を観察することにより行った。
The bending workability was evaluated by U-shaped bending and visually observing the surface for the presence or absence of cracks.

以上の結果を第1表に示す。The above results are shown in Table 1.

第1表に示すように、6061組成であるNo、12.
No、13 (比較例)は、S1含有量の差0.2wt
%ては約3kgf/mm2の耐力差を生じるが発明合金
(No、1〜NOI 1)てはS1含有量の差0.4w
t%ても耐力の差は最大でも約1kgf/mm2である
。従って発明合金はスプリング・バックか安定であり、
寸法不良が少ないことかわかる。
As shown in Table 1, No. 6061 composition, No. 12.
No. 13 (comparative example) has a difference in S1 content of 0.2wt
%, a yield strength difference of about 3 kgf/mm2 occurs, but the difference in S1 content for the invention alloys (No. 1 to NOI 1) is 0.4 w.
Even if the difference is t%, the difference in yield strength is about 1 kgf/mm2 at most. The invention alloy is spring-back or stable and therefore
It can be seen that there are few dimensional defects.

第1図にSi量とスプリング・バックの関係を示す。6
061組成範囲ではスプリング・バックに幅を生するか
発明合金では幅を生しない。
FIG. 1 shows the relationship between Si content and springback. 6
The 061 composition range produces a width in springback, while the invention alloy produces no width.

No、i4(比較例)は6205相当組成材である。繊
維組織であるため曲げ半径9Rて割れが発生するのに対
し発明合金は全て9Rても割れか生じなかった。
No. i4 (comparative example) is a material with a composition equivalent to 6205. Since it has a fibrous structure, cracking occurs at a bending radius of 9R, whereas all invention alloys only cracked at a bending radius of 9R.

No、5は、曲げ加工性は良好であるが、強度か低かっ
た。
No. 5 had good bending workability but low strength.

[発明の効果] 本発明によれば、曲げ加工時に生しる寸法不良を著しく
減少させることかできる。
[Effects of the Invention] According to the present invention, dimensional defects that occur during bending can be significantly reduced.

また、本発明によれは、加工割れか著しく少なくするこ
とができる。
Further, according to the present invention, processing cracks can be significantly reduced.

4

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、 スプリング・ハックに及ぼずS]量 の影響を示すグラフである。 第 図 0.4 0.8    1.2 5i wt% Figure 1 shows Less than Spring Hack S] amount This is a graph showing the influence of No. figure 0.4 0.8 1.2 5i wt%

Claims (2)

【特許請求の範囲】[Claims] (1)Si:0.8〜1.2wt%、Mg:0.6〜1
.1wt%、Cu:0.2〜0.6wt%を主成分とし
、Zr:0.1〜0. 2wt%、Cr:0.1〜0.3wt%、Mn:0.1
〜0.4wt%の一種または二種を含有し、残りAlお
よび不可避不純物からなるアルミニウム合金。
(1) Si: 0.8-1.2wt%, Mg: 0.6-1
.. 1 wt%, Cu: 0.2-0.6 wt% as main components, Zr: 0.1-0. 2wt%, Cr: 0.1-0.3wt%, Mn: 0.1
An aluminum alloy containing ~0.4 wt% of one or two types, with the remainder consisting of Al and inevitable impurities.
(2)当該アルミニウム合金が再結晶組織からなること
を特徴する曲げ加工性に優れたアルミニウム合金。
(2) An aluminum alloy with excellent bending workability, characterized in that the aluminum alloy has a recrystallized structure.
JP4206590A 1990-02-22 1990-02-22 Aluminum alloy excellent in bendability Pending JPH03247738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4206590A JPH03247738A (en) 1990-02-22 1990-02-22 Aluminum alloy excellent in bendability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4206590A JPH03247738A (en) 1990-02-22 1990-02-22 Aluminum alloy excellent in bendability

Publications (1)

Publication Number Publication Date
JPH03247738A true JPH03247738A (en) 1991-11-05

Family

ID=12625695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4206590A Pending JPH03247738A (en) 1990-02-22 1990-02-22 Aluminum alloy excellent in bendability

Country Status (1)

Country Link
JP (1) JPH03247738A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017512260A (en) * 2014-03-11 2017-05-18 サパ・イクストリュージョンズ・インコーポレイテッドSapa Extrusions, Inc. High strength aluminum alloy
CN117405420A (en) * 2023-10-24 2024-01-16 嘉兴泰特橡胶有限公司 Universal rubber track driven static driving test method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177143A (en) * 1986-01-30 1987-08-04 Kobe Steel Ltd Aluminum alloy sheet excellent in formability and baking hardening and its production
JPS62202061A (en) * 1986-03-03 1987-09-05 Sky Alum Co Ltd Manufacture of aluminum alloy material having fine grain

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177143A (en) * 1986-01-30 1987-08-04 Kobe Steel Ltd Aluminum alloy sheet excellent in formability and baking hardening and its production
JPS62202061A (en) * 1986-03-03 1987-09-05 Sky Alum Co Ltd Manufacture of aluminum alloy material having fine grain

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017512260A (en) * 2014-03-11 2017-05-18 サパ・イクストリュージョンズ・インコーポレイテッドSapa Extrusions, Inc. High strength aluminum alloy
CN117405420A (en) * 2023-10-24 2024-01-16 嘉兴泰特橡胶有限公司 Universal rubber track driven static driving test method

Similar Documents

Publication Publication Date Title
KR100245632B1 (en) Low density high strength al-li alloy
CA2114285C (en) Superplastic aluminum alloy and process for producing same
EP0157600A2 (en) Aluminum lithium alloys
JP2697400B2 (en) Aluminum alloy for forging
EP0059812A1 (en) Method for producing an aluminium alloy forming sheet
JP3335732B2 (en) Hypoeutectic Al-Si alloy and casting method thereof
JPS63501883A (en) Aluminum-lithium alloy and method of manufacturing the same
JPH07109536A (en) Aluminum alloy for forging and heat treatment therefor
US4795502A (en) Aluminum-lithium alloy products and method of making the same
JPH11310841A (en) Aluminum alloy extruded shape excellent in fatigue strength, and its production
Sodergren et al. The influence of lithium on the ageing of a 7000 series alloy
WO2001012868A1 (en) Aluminum-magnesium-scandium alloys with hafnium
JPH07242976A (en) Aluminum alloy for elongation, excellent in heat resistance, and its production
JPH03247738A (en) Aluminum alloy excellent in bendability
JPH07145440A (en) Aluminum alloy forging stock
JP2831157B2 (en) Al-Mg based superplastic aluminum alloy sheet excellent in strength and corrosion resistance and method for producing the same
JPH083701A (en) Production of wear resistant aluminum alloy extruded material excellent in strength and machinability
WO1988003575A1 (en) Aluminum-lithium alloys and process therefor
JPS61163232A (en) High strength al-mg-si alloy and its manufacture
JPH09256095A (en) Aluminum alloy sheet excellent in formability and its production
JPH0718389A (en) Production of al-mg series alloy sheet for forming
JPH0557346B2 (en)
JPS627836A (en) Manufacture of aluminum alloy having fine-grained structure
JPS61257459A (en) Manufacture of aluminum foil
JP3543362B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability