JPH0324652B2 - - Google Patents

Info

Publication number
JPH0324652B2
JPH0324652B2 JP55166542A JP16654280A JPH0324652B2 JP H0324652 B2 JPH0324652 B2 JP H0324652B2 JP 55166542 A JP55166542 A JP 55166542A JP 16654280 A JP16654280 A JP 16654280A JP H0324652 B2 JPH0324652 B2 JP H0324652B2
Authority
JP
Japan
Prior art keywords
liquid crystal
color
value
display
tnlcd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55166542A
Other languages
Japanese (ja)
Other versions
JPS5790618A (en
Inventor
Sakae Someya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP55166542A priority Critical patent/JPS5790618A/en
Publication of JPS5790618A publication Critical patent/JPS5790618A/en
Publication of JPH0324652B2 publication Critical patent/JPH0324652B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell

Description

【発明の詳細な説明】 本発明は、コントラスト良好かつ視野範囲の広
い液晶表示素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a liquid crystal display element with good contrast and a wide viewing range.

TN形液晶表示素子(以後TNLCDと略称)は
消費電力が非常に少なくCMOSと組合せて電池
駆動可能で、また受光形なので明るい場所べも見
易いなどの利点があるため、電卓や腕時計等に広
く用いられている。しかしTNLCDの欠点として
視野範囲が比較的狭いことがあり、特定の方向、
角度からのみ表示が見えるが、それ以外の角度か
らは表示が見えない。これらの点を改善するため
液晶材料やセル構造が改良されてきてはいるが、
大幅な改善はない。また一方ではTNLCDのかか
る欠点をおぎなうために、ゲストホスト形カラー
液晶表示素子やエレクトロクロミツク表示素子な
どの実用化が進められており、これらの素子は特
定の視野範囲がなく、どの方向からも良く見える
が、逆にこれらの素子には、コントラストが低
い、寿命が短い、応答が遅い、時分割が困難等、
種々の問題点があり、TNLCDを代替するにはい
たつていない。
TN type liquid crystal display elements (hereinafter abbreviated as TNLCD) have the advantage of very low power consumption, can be powered by batteries in combination with CMOS, and are light-receiving type, making them easy to see even in bright places, so they are widely used in calculators, wristwatches, etc. It is being However, the disadvantage of TNLCD is that the field of view is relatively narrow, and
The display is visible only from certain angles, but not from other angles. Although liquid crystal materials and cell structures have been improved to improve these points,
No significant improvement. On the other hand, in order to overcome the shortcomings of TNLCD, the practical use of guest-host type color liquid crystal display elements and electrochromic display elements is progressing, but these elements do not have a specific viewing range and can be viewed from any direction. Although they look good, these elements have problems such as low contrast, short lifespan, slow response, and difficulty in time division.
Due to various problems, it has not yet been able to replace TNLCD.

本発明の目的は、前記の様な問題点を改良し
た、視野範囲が広く、コントラスト良好な
TNLCDを提供することにある。
The purpose of the present invention is to solve the above-mentioned problems by providing a wide viewing range and good contrast.
Our goal is to provide TNLCD.

上記目的を達成するために本発明においては、
液晶材料の屈折率異方性をΔnとし、液晶層の厚
さのμmによる表示数値をdとしたとき、Δn・
dの値を0.5以下に設定した単層の液晶層ととも
にカラー偏光板を用いて液晶色と同様な地色のカ
ラー表示とした。
In order to achieve the above object, in the present invention,
When the refractive index anisotropy of the liquid crystal material is Δn, and the displayed value in μm of the liquid crystal layer is d, Δn・
A color polarizing plate was used together with a single liquid crystal layer with the value of d set to 0.5 or less to provide a color display with the same ground color as the liquid crystal color.

第1図aに示す様にTNLCDを見る方向φを規
定すると、同図bに示す様に駆動電圧VDが低け
れば、液晶材料の長い分子は電界方向に余り立上
らず、例えば電圧V2ではφが40度の方向から見
易い。これに対し高い電圧V1ではφが10度の場
合に見易い。いまΔφ=V2/V1と定義した時、
Δφが1.0に近ければφが40度の方向から見易い電
圧値と、φが10度の方向から見易い電圧値とが近
いことを示し、すなわち一定駆動電圧VDにおい
て視野範囲が広いことになる。TNLCDにおいて
は、前記の如く規定したΔn・dとΔφとの関係は
第2図に示すようになり、Δn・dの値が小さい
方がΔφの値は1.0に近付く。ちなみに現在一般に
広く用いられているTNLCDでは、Δn・dの値
は1.5程度である。またTNLCDに対するΔn・d
とコントラストの関係は第3図に示す如く、
Δn・dを0.5にすれば、現行のΔn・d値1.5の場
合に比し、コントラストは非常に改善される。し
かしΔn・dを小さくすると光の波長により旋光
能力に差が生じ、色がつくという問題が生ずる。
また現在、既に10μm程度しかないdを更に小さ
くすると、dの値をセルのすべての場所で所定の
一定値に保持できなくなつて色むらが発生しやす
い。このような問題を償うためにカラ偏光板を用
い、液晶の色と同様な地色のカラー表示を行うこ
とにより、視野範囲の広いコントラストの高いカ
ラー表示が可能となる。Δn・dを小さくする方
法には、Δnの小さい液晶材料を使用する方法と、
dを小さくする方法とがあるが、前者は現在のプ
ロセスのまま、液晶材料の変更のみですみ、比較
的簡単である。これに対し後者すなわちdを小さ
くする方法は、既述の如く現在10μm程度の間隙
を更に小さくしようとするのであるから、製造工
程でこの微小間隙を正確に、均一に作る品質管理
は容易ではなく、セル上下基板接触事故等の不良
も生じ易く、歩留低下の傾向を生ずる恐れはある
が、特性的には応答速度も非常に早くなり、立上
り時間を500ms以下とすることも可能となる。
When the viewing direction φ of the TNLCD is defined as shown in FIG. 1a, if the driving voltage V D is low as shown in FIG. 2 , it is easy to see φ from the 40 degree direction. On the other hand, at high voltage V 1 , it is easy to see when φ is 10 degrees. Now when we define Δφ=V 2 /V 1 ,
If Δφ is close to 1.0, it means that the voltage value that is easy to see from the direction where φ is 40 degrees is close to the voltage value that is easy to see from the direction where φ is 10 degrees, that is, the viewing range is wide at a constant driving voltage V D. In TNLCD, the relationship between Δn·d and Δφ defined as described above is as shown in FIG. 2, and the smaller the value of Δn·d, the closer the value of Δφ is to 1.0. Incidentally, in TNLCD, which is currently widely used, the value of Δn·d is about 1.5. Also, Δn・d for TNLCD
The relationship between and contrast is shown in Figure 3,
If Δn·d is set to 0.5, the contrast will be greatly improved compared to the current case of Δn·d value of 1.5. However, if Δn·d is made small, the optical rotation ability will differ depending on the wavelength of the light, resulting in the problem of coloration.
Further, if d, which is currently only about 10 μm, is further reduced, the value of d cannot be maintained at a predetermined constant value at all locations in the cell, and color unevenness is likely to occur. To compensate for this problem, a color polarizing plate is used to display a background color similar to the color of the liquid crystal, thereby making it possible to display a color display with a wide viewing range and high contrast. There are two ways to reduce Δn・d: using a liquid crystal material with a small Δn;
There is a method of reducing d, but the former method is relatively simple as it requires only changing the liquid crystal material without changing the current process. On the other hand, the latter method, that is, the method of reducing d, attempts to further reduce the current gap of about 10 μm, so it is not easy to control the quality of making this minute gap accurately and uniformly during the manufacturing process. Although there is a risk that defects such as contact accidents between the top and bottom of the cell may occur and a tendency for yield to decrease, characteristically, the response speed is also very fast, and it is possible to reduce the rise time to 500 ms or less.

以上説明したように本発明によれば、コントラ
スト良好で、視野範囲が広く、更に品質管理を適
切に行えば応答速度を短縮できる効果も得られ
る。
As explained above, according to the present invention, it is possible to obtain good contrast, a wide viewing range, and, if quality control is properly performed, the response speed can be shortened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aはTNLCDを見る方向φを規定する
図、第1図bは駆動電圧VDとφの関係を示す図、
第2図はΔn・dφとの関係を示す図、第3図は
Δn・dとコントラストの関係を示す図である。
Figure 1a is a diagram that defines the viewing direction φ of the TNLCD, Figure 1b is a diagram showing the relationship between the drive voltage V D and φ,
FIG. 2 is a diagram showing the relationship between Δn·dφ, and FIG. 3 is a diagram showing the relationship between Δn·d and contrast.

Claims (1)

【特許請求の範囲】[Claims] 1 TN形液晶表示素子において、液晶材料の屈
折率異方性をΔnとし、液晶層の厚さのμmによ
る表示数値をdとしたとき、Δn・dの値を0.5以
下に設定した単層の液晶層とともにカラー偏光板
を用いて液晶色と同様な地色のカラー表示とした
ことを特徴とする液晶表示素子。
1 In a TN type liquid crystal display element, when the refractive index anisotropy of the liquid crystal material is Δn, and the display value in μm of the liquid crystal layer is d, the value of Δn・d is set to 0.5 or less. A liquid crystal display element characterized in that a color polarizing plate is used together with a liquid crystal layer to display a color display with a ground color similar to the liquid crystal color.
JP55166542A 1980-11-28 1980-11-28 Liquid crystal display element Granted JPS5790618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55166542A JPS5790618A (en) 1980-11-28 1980-11-28 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55166542A JPS5790618A (en) 1980-11-28 1980-11-28 Liquid crystal display element

Publications (2)

Publication Number Publication Date
JPS5790618A JPS5790618A (en) 1982-06-05
JPH0324652B2 true JPH0324652B2 (en) 1991-04-03

Family

ID=15833203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55166542A Granted JPS5790618A (en) 1980-11-28 1980-11-28 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JPS5790618A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59128522A (en) * 1983-01-14 1984-07-24 Hitachi Ltd Liquid crystal display device
JPS61137127A (en) * 1984-12-07 1986-06-24 Hitachi Ltd Liquid crystal display element
DE3774977D1 (en) * 1986-09-12 1992-01-16 Hoffmann La Roche LIQUID CRYSTAL DISPLAY.
ATE83081T1 (en) * 1986-10-24 1992-12-15 Hoffmann La Roche LIQUID CRYSTAL DISPLAY CELL.
JPH01214818A (en) * 1988-02-23 1989-08-29 Alps Electric Co Ltd Liquid crystal element
DE69016184T2 (en) * 1989-12-18 1995-08-03 Honeywell Inc Flat color color liquid crystal display.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740229A (en) * 1980-06-19 1982-03-05 Merck Patent Gmbh Liquid crystal display element
JPS5746227A (en) * 1980-09-03 1982-03-16 Sharp Corp Liquid crystal indicator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740229A (en) * 1980-06-19 1982-03-05 Merck Patent Gmbh Liquid crystal display element
JPS5746227A (en) * 1980-09-03 1982-03-16 Sharp Corp Liquid crystal indicator

Also Published As

Publication number Publication date
JPS5790618A (en) 1982-06-05

Similar Documents

Publication Publication Date Title
US4097128A (en) Liquid crystal color display devices
US6295113B1 (en) Twisted nematic color liquid crystal display
JPH0475022A (en) Reelection type liquid crystal display device and production thereof
JPS58173718A (en) Optical modulating device of liquid crystal and its production
JPS60107020A (en) Liquid crystal display
JP3308154B2 (en) Liquid crystal panel and its driving method
DE3765797D1 (en) DISPLAY CELL.
JPH0324652B2 (en)
JPH01280722A (en) Liquid crystal display device
JPH0497121A (en) Liquid crystal display element
US6011603A (en) Double super twisted nematic liquid crystal display with improved pre-tilt angles
JPH02189518A (en) Liquid crystal electrooptic element
JP2673533B2 (en) Liquid crystal display device
JPH0756177A (en) Liquid crystal display element
JPH01238621A (en) Liquid crystal display device
JP2860806B2 (en) LCD color display
JP2662672B2 (en) Liquid crystal display device
JPS62163015A (en) Liquid crystal display element
JP2858142B2 (en) LCD color display
JPH03215831A (en) Liquid crystal display element
JPH0440411A (en) Liquid crystal display element
JPS62222218A (en) Liquid crystal display element
JPS63301022A (en) Liquid crystal display element
JPH0125934Y2 (en)
JPH0438328B2 (en)