JPH0125934Y2 - - Google Patents

Info

Publication number
JPH0125934Y2
JPH0125934Y2 JP15491478U JP15491478U JPH0125934Y2 JP H0125934 Y2 JPH0125934 Y2 JP H0125934Y2 JP 15491478 U JP15491478 U JP 15491478U JP 15491478 U JP15491478 U JP 15491478U JP H0125934 Y2 JPH0125934 Y2 JP H0125934Y2
Authority
JP
Japan
Prior art keywords
liquid crystal
voltage
layer
molecules
transmittance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15491478U
Other languages
Japanese (ja)
Other versions
JPS5571323U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15491478U priority Critical patent/JPH0125934Y2/ja
Publication of JPS5571323U publication Critical patent/JPS5571323U/ja
Application granted granted Critical
Publication of JPH0125934Y2 publication Critical patent/JPH0125934Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Eyeglasses (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は、外界の明るさに応じて光の透過率が
変化する調光メガネに関する。 従来、電気光学素子を用い、外界の明るさに応
じて光の透過率を変化させる調光メガネとして、
二枚の偏光板の間にPLZTや液晶などの電圧によ
つて旋光性が変化する物質を挿入したものや、酸
化還元反応によつて着消色するエレクトロクロミ
ツク物質を用いたものが考案されていた。しか
し、前者の場合は二枚の偏光板を必要とするもの
であるため、光を最も透過させる状態であつて
も、透過率がせいぜい50%程度しかなく、例えば
室内では暗すぎてよく見えないという問題が生
じ、一部の特殊な用途を除けば実用不能であつ
た。また後者の場合は、前者の場合のように偏光
板を必要としないため、レンズが明るくなるとい
う利点を有しているが、酸化還元反応を生じさせ
るために比較的大きな電流を流す必要があり、電
池容量の関係から携帯には不向きで実用的でなか
つた。 この欠点を除去するために、本考案者は実願昭
53−96714号(実開昭55−16526号明細書参照)に
おいて、二色性染料を添加してゲストホスト効果
をもたせた液晶を用いた調光メガネを提案した。
該実願昭53−96714号の考案は、第1図に示すよ
うに、基板となる2枚のレンズ1の内側表面に透
明電極2を形成し、スペーサ3を間にはさんで重
ね合わせて形成された空隙にネマチツク液晶4と
二色性染料5を封入したものであり、前記エレク
トロクロミツク物質を用いた場合と同様偏光板を
必要としないため、充分大きな最大透過率が得ら
れると共に、エレクトロクロミツク物質に比べて
消費電力がきわめて少なく、携帯性にすぐれてい
るという利点を有している。しかし、実開昭53−
96714号においては、ゲストホスト効果を有する
液晶の層が一層であるため、充分なコントラスト
比(最大透過率と最小透過率との比)が得られな
い。すなわち第1図に示すように、細長いネマチ
ツク液晶4の分子がレンズ1に平行になつた状態
が、二色性染料5が光を吸収して光をさえぎる状
態であるが、この時光吸収特性から直線偏光板と
同じ働きをするため、一部の光波成分はさえぎら
れるが、これと垂直な成分は素通りとなり、結果
として透過率があまり減少せず、コントラスト比
が低くなつて充分な防眩効果が得られないという
欠点があつた。 この欠点を解決する方法として、液晶層を二層
とする方法が考えられる。例えば、表示装置に関
する特開昭53−55047号公報には、正の誘電異方
性を有するネマチツク液晶に二色性染料を添加し
てゲストホスト効果をもたせた液晶層を二層と
し、かつ液晶の分子の方向が基板と平行になつた
状態において、第1層と第2層とで分子の方向が
互いに直角になるように構成することにより、き
わめて高いコントラスト比を得られることが記載
されている。しかし、このような構成の液晶素子
を調光メガネに転用した場合には、以下のような
問題を生ずる。 すなわち、正の誘電異方性を有するネマチツク
液晶は、電圧を印加した時に分子の方向が電圧の
印加方向に平行、すなわち基板に対して垂直にな
り、その時に透過率が最大となる。調光メガネ
は、通常は透過率が最大で、外界が明るい時にま
ぶしさを緩和するために透過率を最小にする必要
があるから、そのためには通常の状態では液晶層
が常に電圧を印加しなければならないことにな
る。しかし、調光メガネは、メガネとしての使用
状態から明らかな如く、できるだけ軽量であるこ
とが望まれることから、使用できる電源の容量に
大幅な制限を受けるため、上記のように常時電圧
を印加するような構成では、消費電力が著しく増
大し、調光メガネに用いることが可能な電源では
長時間の使用ができないという問題があり、さら
に駆動回路が故障した時などのように電圧の印加
が停止した場合には、視野が不意に暗くなつてし
まい、例えば夜間に車を運転しているような時に
は、重大な事故を起こしかねないという致命的な
欠点も有している。 本考案は、このような従来の欠点を解消するた
めになされたものであり、負の誘電異方性を有す
るネマチツク液晶に二色染料を添加してゲストホ
スト効果をもたせた液晶層をそれぞれ液晶層に接
する表面に透明電極を形成した少なくとも3枚の
レンズ基材によつて二層に形成し、かつレンズ基
板の表面に、電圧が印加されない状態では液晶の
分子の方向をレンズ基板に対して垂直な方向に
し、電圧が印加された状態ではレンズ基板に平行
でかつ第1層と第2層とで互いに直角な方向にす
る配向処理を施したことを特徴とするものであ
る。 このような構成とすることにより、光を吸収す
る状態では、二色性染料の分子の方向もネマチツ
ク液晶の分子の方向に従つて互いに直角になるた
め、第1の層に入射した光は二色性染料10によ
り、図の面に平行な方向の光波成分が吸収されて
直線偏光となるが、次に第2の層の二色性染料1
2によつて第1の層を通過した図の面に垂直な方
向の光波成分が吸収されるので、従来に比べて光
の透過率が大幅に減少する。光の通過させる状態
ではすべての分子がレンズ6および中間レンズ1
3に対して垂直になるので、従来の液晶層が一層
の場合に比べれば若干劣るが、実用上充分な明る
さの最大透過率が得られる。 なお、液晶層の数を三層以上にしても、単に最
大透過率が減少して暗くなるだけで、光の吸収性
すなわち最小透過率はほとんど変化しない。した
がつて最大透過率が減少した分コントラスト比も
低下し、かつコストも増加するので、液晶層は二
層が最適であつた。 また、液晶層へ電圧を印加して光の透過率を変
化させる方法としては、 (1) 太陽電池を電源と外界の明るさを検出するフ
オトセルに兼用し、明るさに応じて透明電極に
電圧を供給する方法。 (2) 太陽電池と小型電池を組み合わせ、電池交換
を不要とする方法。 等がある。 以下実施例に基づいて詳述する。 第2図に示すように、無機ガラスで曲率半径70
mm、厚みが1.5mmのレンズ基板6を2枚作り、液
晶層と接する内側表面に酸化インジウムの透明電
極7を形成した。また、同じく無機ガラスで曲率
半径70mm、厚みが0.5mmの中間レンズ基材13を
作り、両側に透明電極7を形成した。ポリエステ
ルフイルムのスペース8を用いて、約10μの2つ
の空隙を形成し、それぞれの空隙に負の誘電異方
性を有するエステル系ネマチツク液晶9,11
と、商品名GR−No.17(日光感光色素社製)の紫
色二色性染料10,12を封入した。この場合は
垂直配向処理と斜め蒸着配向処理を透明電極7の
表面に施すことにより、電圧を印加しない状態で
は分子がレンズ基材6と中間レンズ基材13に対
して垂直な方向に配列して光を透過し、電圧を印
加すると分子はレンズ基材6と中間レンズ基材1
3に平行でかつ互いに直角な方向に配列して光を
吸収する。二色性染料の添加量を、それぞれ
0.12wt%,0.20wt%とし、この状態で5Vの電圧
をON−OFFしながら可視域の平均透過率を測定
したところ、下表のようになつた。
The present invention relates to photochromic glasses whose light transmittance changes depending on the brightness of the outside world. Conventionally, photochromic glasses that use electro-optical elements to change the light transmittance depending on the brightness of the outside world have been used.
Some ideas have been devised, such as inserting a substance such as PLZT or liquid crystal whose optical rotation changes depending on voltage between two polarizing plates, or using an electrochromic substance that changes color through a redox reaction. . However, in the former case, two polarizing plates are required, so even in the most transparent state, the transmittance is only about 50%, and it is too dark to see clearly indoors, for example. This problem arose, making it impractical except for some special uses. In the latter case, unlike the former case, a polarizing plate is not required, so the lens has the advantage of being brighter, but it requires a relatively large current to flow in order to cause the redox reaction. However, due to its battery capacity, it was unsuitable for mobile use and was impractical. In order to eliminate this drawback, the inventor of the present invention
In No. 53-96714 (see Utility Model Application Publication No. 55-16526), we proposed photochromic glasses using liquid crystals to which a dichroic dye was added to give a guest-host effect.
The invention of Utility Model Application No. 53-96714, as shown in Figure 1, forms transparent electrodes 2 on the inner surfaces of two lenses 1 that serve as substrates, and overlaps them with a spacer 3 in between. A nematic liquid crystal 4 and a dichroic dye 5 are sealed in the formed void, and as in the case of using the electrochromic material, a polarizing plate is not required, so a sufficiently large maximum transmittance can be obtained, and Compared to electrochromic materials, they have the advantage of extremely low power consumption and excellent portability. However, in 1973-
In No. 96714, since there is only one layer of liquid crystal having a guest-host effect, a sufficient contrast ratio (ratio between maximum transmittance and minimum transmittance) cannot be obtained. That is, as shown in FIG. 1, the state in which the molecules of the elongated nematic liquid crystal 4 are parallel to the lens 1 is the state in which the dichroic dye 5 absorbs light and blocks it. Since it functions in the same way as a linear polarizer, some light wave components are blocked, but components perpendicular to this are allowed to pass through.As a result, the transmittance does not decrease much, the contrast ratio is low, and the anti-glare effect is sufficient. The disadvantage was that it was not possible to obtain A possible solution to this drawback is to use a two-layer liquid crystal layer. For example, Japanese Patent Application Laid-Open No. 53-55047 concerning display devices has two liquid crystal layers in which a dichroic dye is added to a nematic liquid crystal having positive dielectric anisotropy to give it a guest-host effect. It is stated that an extremely high contrast ratio can be obtained by configuring the first and second layers so that the molecular directions are perpendicular to each other when the molecular directions of the first layer and the second layer are parallel to the substrate. There is. However, when a liquid crystal element having such a configuration is used for photochromic glasses, the following problems occur. That is, in a nematic liquid crystal having positive dielectric anisotropy, when a voltage is applied, the direction of the molecules is parallel to the direction of voltage application, that is, perpendicular to the substrate, and the transmittance is maximum at that time. Photochromic glasses usually have maximum transmittance, but when the outside world is bright, it is necessary to minimize transmittance to reduce glare, so under normal conditions the liquid crystal layer must always apply voltage. It will have to be done. However, as is clear from the way they are used as glasses, it is desirable for photochromic glasses to be as light as possible, and as a result, the capacity of the power source that can be used is severely limited, so it is necessary to constantly apply a voltage as described above. In such a configuration, power consumption increases significantly, and the power supply that can be used for photochromic glasses cannot be used for a long time.Furthermore, the voltage application stops when the drive circuit breaks down. In this case, the field of vision suddenly becomes dark, which has the fatal disadvantage of potentially causing a serious accident, for example when driving a car at night. The present invention was devised to eliminate these conventional drawbacks, and consists of a liquid crystal layer in which a dichroic dye is added to a nematic liquid crystal having negative dielectric anisotropy to provide a guest-host effect. It is formed in two layers by at least three lens substrates each having a transparent electrode formed on the surface in contact with the layer, and when no voltage is applied to the surface of the lens substrate, the direction of the liquid crystal molecules is set relative to the lens substrate. It is characterized by performing an alignment process such that the first layer and the second layer are aligned in a perpendicular direction, parallel to the lens substrate when a voltage is applied, and perpendicular to each other in the first layer and the second layer. With this structure, in the state where light is absorbed, the directions of the molecules of the dichroic dye are perpendicular to each other according to the direction of the molecules of the nematic liquid crystal, so that the light incident on the first layer is dichroic. The light wave component in the direction parallel to the plane of the figure is absorbed by the chromatic dye 10 and becomes linearly polarized light. Next, the dichroic dye 1 of the second layer
2 absorbs the light wave component in the direction perpendicular to the plane of the drawing that has passed through the first layer, so the light transmittance is significantly reduced compared to the conventional one. In the state where light is allowed to pass through, all molecules pass through lens 6 and intermediate lens 1.
3, the maximum transmittance is slightly inferior to the conventional case where the liquid crystal layer is one layer, but the maximum transmittance is sufficiently bright for practical use. Note that even if the number of liquid crystal layers is increased to three or more, the maximum transmittance simply decreases and becomes darker, but the light absorption property, that is, the minimum transmittance hardly changes. Therefore, the maximum transmittance decreases, the contrast ratio also decreases, and the cost also increases, so a two-layer liquid crystal layer is optimal. In addition, as a method to change the light transmittance by applying voltage to the liquid crystal layer, (1) A solar cell is used both as a power source and a photocell that detects the brightness of the outside world, and a voltage is applied to the transparent electrode according to the brightness. How to supply. (2) A method that eliminates the need for battery replacement by combining solar cells and small batteries. etc. A detailed explanation will be given below based on examples. As shown in Figure 2, the radius of curvature is 70 with inorganic glass.
Two lens substrates 6 having a thickness of 1.5 mm and a thickness of 1.5 mm were made, and a transparent electrode 7 of indium oxide was formed on the inner surface in contact with the liquid crystal layer. Further, an intermediate lens base material 13 having a radius of curvature of 70 mm and a thickness of 0.5 mm was similarly made of inorganic glass, and transparent electrodes 7 were formed on both sides. Using the space 8 of the polyester film, two voids of about 10μ are formed, and each void has an ester-based nematic liquid crystal 9, 11 having negative dielectric anisotropy.
and purple dichroic dyes 10 and 12, trade name GR-No. 17 (manufactured by Nikko Kanko Shiki Co., Ltd.). In this case, by applying vertical alignment treatment and oblique vapor deposition alignment treatment to the surface of the transparent electrode 7, the molecules are aligned in a direction perpendicular to the lens base material 6 and the intermediate lens base material 13 when no voltage is applied. When light is transmitted and a voltage is applied, the molecules form the lens base material 6 and the intermediate lens base material 1.
They absorb light by arranging them in directions parallel to 3 and perpendicular to each other. The amount of dichroic dye added is
0.12wt% and 0.20wt%, and in this state, the average transmittance in the visible range was measured while turning on and off a voltage of 5V, and the results were as shown in the table below.

【表】 以上から明らかなように、本考案はゲストホス
ト効果を有する液晶の層の二層とし、かつ各層の
ネマチツク液晶と二色性染料の分子の方向が、電
圧を印加した状態で互いに直角になるように配向
処理を施したので、実用上充分な明るさの最大透
過率を有すると共に、充分な防眩効果が得られる
コントラスト比を有する調光メガネを提供し得る
ものであり、かつ負の誘電異方性を有するネマチ
ツク液晶を用い、電圧を印加しない状態ではレン
ズ基材に対して垂直な方向に配列するように配向
処理を施したので、電圧を印加しない状態で最大
の透過率が得られるため、故障や電池寿命などに
よつて突然電圧が印加されなくなつても、重大な
事故につながるようなトラブルが生ずる危険もな
く、また、必要な時だけ電圧を印加すれば良いた
め、電池容量がきわめて少なくて済み、あるいは
太陽電池のみでの駆動も可能となるため、非常に
軽量な調光メガネが実現できるなど、多大の実用
効果を有するものである。 なお、実施例においては、レンズ基材6および
中間レンズ基材13を無機ガラスで構成したが、
軽量化のためにプラスチツク素材を用いても良
い。またレンズに屈折力を加えて度付きサングラ
スとしても、本考案の範囲に含まれる。
[Table] As is clear from the above, the present invention consists of two layers of liquid crystal having a guest-host effect, and the directions of the molecules of the nematic liquid crystal and dichroic dye in each layer are perpendicular to each other when a voltage is applied. Since the alignment treatment has been performed so that Using a nematic liquid crystal with a dielectric anisotropy of Therefore, even if voltage suddenly stops being applied due to malfunction or battery life, there is no risk of trouble that could lead to a serious accident, and voltage can only be applied when necessary. Since the battery capacity is extremely small or it can be driven only by solar cells, it has many practical effects, such as making it possible to realize extremely lightweight photochromic glasses. In addition, in the example, the lens base material 6 and the intermediate lens base material 13 were made of inorganic glass, but
Plastic material may be used to reduce weight. Further, prescription sunglasses by adding refractive power to the lenses are also included within the scope of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の調光メガネの構成を示す図で
ある。第2図は、本考案の調光メガネの構成を示
す図である。 6……レンズ基材、7……透明電極、8……ス
ペーサ、9,11……ネマチツク液晶、10,1
2……二色性染料、13……中間レンズ基材。
FIG. 1 is a diagram showing the configuration of conventional photochromic glasses. FIG. 2 is a diagram showing the configuration of the photochromic glasses of the present invention. 6... Lens base material, 7... Transparent electrode, 8... Spacer, 9, 11... Nematic liquid crystal, 10, 1
2...Dichroic dye, 13...Intermediate lens base material.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ネマチツク液晶に二色性染料を添加してゲスト
ホスト効果をもたせた液晶層に電圧を印加するこ
とにより光の透過率を変化させる調光メガネにお
いて、前記液晶層と接するそれぞれの表面に透明
電極を形成した少なくとも3枚のレンズ基板をス
ペーサーを介して重ね合わせることにより第1お
よび第2の空隙を形成し、前記各空隙に負の誘電
異方性を有するネマチツク液晶と二色性染料を封
入すると共に、前記透明電極を形成したそれぞれ
の表面に、電圧が印加されない状態では前記液晶
の分子を前記表面に垂直な方向に配向させ、電圧
が印加された状態では前記表面に平行でかつ前記
第1の空隙と第2の空隙とで互いに直角な方向に
配向させる配向処理を施したことを特徴とする調
光メガネ。
In photochromic glasses that change the transmittance of light by applying a voltage to a liquid crystal layer made by adding a dichroic dye to a nematic liquid crystal to give it a guest-host effect, transparent electrodes are provided on each surface in contact with the liquid crystal layer. First and second voids are formed by stacking the formed at least three lens substrates via spacers, and each void is filled with a nematic liquid crystal having negative dielectric anisotropy and a dichroic dye. In addition, when no voltage is applied to each surface on which the transparent electrode is formed, the molecules of the liquid crystal are aligned in a direction perpendicular to the surface, and when a voltage is applied, the molecules of the liquid crystal are aligned parallel to the surface and in the first direction. The photochromic glasses are characterized in that they are subjected to an alignment treatment in which the gap and the second gap are aligned in directions perpendicular to each other.
JP15491478U 1978-11-10 1978-11-10 Expired JPH0125934Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15491478U JPH0125934Y2 (en) 1978-11-10 1978-11-10

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15491478U JPH0125934Y2 (en) 1978-11-10 1978-11-10

Publications (2)

Publication Number Publication Date
JPS5571323U JPS5571323U (en) 1980-05-16
JPH0125934Y2 true JPH0125934Y2 (en) 1989-08-03

Family

ID=29143459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15491478U Expired JPH0125934Y2 (en) 1978-11-10 1978-11-10

Country Status (1)

Country Link
JP (1) JPH0125934Y2 (en)

Also Published As

Publication number Publication date
JPS5571323U (en) 1980-05-16

Similar Documents

Publication Publication Date Title
CN101288020B (en) Liquid crystal display device using nematic liquid crystal
JPH10161110A (en) Reflection type liquid crystal display element
WO2015078026A1 (en) Color liquid crystal display panel
JP2000066195A (en) Reflection type liquid crystal display device
JPH0534656A (en) Focal length variable liquid crystal lens
JPH0125934Y2 (en)
CN113031348B (en) Backlight module and liquid crystal display device
JPH02111918A (en) Liquid crystal electrooptic element
JP2001183644A (en) Liquid crystal display device
JP2001033766A (en) Liquid crystal display device
JP2005043698A (en) Liquid crystal display
JPH0588144A (en) Liquid crystal antidazzle mirror
JPH0561024A (en) Liquid crystal display device
CN216817132U (en) Liquid crystal light valve and automobile light screen adopting same
JP2813222B2 (en) Liquid crystal display device
JPH02110511A (en) Sunglass with degree
JPH01197723A (en) Liquid crystal optical element
KR100291988B1 (en) Liquid crystal display
JPH02308214A (en) Spectacles with liquid crystal dimmer
JPS5824765B2 (en) display device
JPH0728035A (en) Display device
CN114371581A (en) Liquid crystal light valve and automobile light screen adopting same
JPH06317792A (en) Color liquid crystal display device
JPH05323292A (en) Reflection type liquid crystal display device
JPH11337982A (en) Liquid crystal display device