JPH03245922A - Electric discharge machining device - Google Patents

Electric discharge machining device

Info

Publication number
JPH03245922A
JPH03245922A JP3881290A JP3881290A JPH03245922A JP H03245922 A JPH03245922 A JP H03245922A JP 3881290 A JP3881290 A JP 3881290A JP 3881290 A JP3881290 A JP 3881290A JP H03245922 A JPH03245922 A JP H03245922A
Authority
JP
Japan
Prior art keywords
machining
machining fluid
electric discharge
supply means
working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3881290A
Other languages
Japanese (ja)
Inventor
Takashi Kanetani
金谷 隆史
Hiroshi Okamoto
浩 岡本
Toshiro Oizumi
敏郎 大泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3881290A priority Critical patent/JPH03245922A/en
Publication of JPH03245922A publication Critical patent/JPH03245922A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To optimumly discharge the working chips and always carry out stable work by installing a means for selecting the injection direction of the working liquid jetted from the working liquid injection hole of a working liquid feeding means according to the proceeding direction in the electric discharge machining and obtain an optimum working liquid injection direction. CONSTITUTION:The injection direction of the working liquid which is jetted from the working liquid injection hole 5 of a working liquid feeding means 2 installed in a working tank 1 is selected according to the process direction of the electric discharge machining. Accordingly, the working chips can be always discharged in an optimum state, and electric discharge is stabilized, and the working speed can be increased, by jetting the working liquid according to the processing direction in the electric discharge machining.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は放電加工・装置に係り、特に、加工槽内に加
工液を供給する加工液供給手段を備えた放電加工装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an electric discharge machining apparatus, and particularly to an electric discharge machining apparatus equipped with a machining liquid supply means for supplying machining liquid into a machining tank.

[従来の技術] 第11図及び第12図は1例えば特開昭63−2838
28号公報等に開示されている従来の放電加工装置の加
工槽を示す概略構成図で、第11図は平面図、第12図
は正面断面図である。
[Prior art] Figures 11 and 12 are 1, for example, Japanese Patent Application Laid-Open No. 63-2838.
11 is a plan view and FIG. 12 is a front sectional view. FIG.

図において、(1)は加工槽、(2)は第13図にその
拡大図を示す加工液供給手段、(3)は工具電極、(4
)は被加工物、(5)は加工液供給手段(2)に等間隔
に形成された加工液噴出孔で、カプラー(6を介して加
工液噴出量調節弁(7)に接続されている。なお、(8
)はカプラー(6)を備える加工液供給ブロック、(9
)はポンプである。
In the figure, (1) is a machining tank, (2) is a machining fluid supply means whose enlarged view is shown in FIG. 13, (3) is a tool electrode, and (4)
) denotes the workpiece, and (5) denotes machining fluid jetting holes formed at equal intervals in the machining fluid supply means (2), which are connected to the machining fluid jetting amount control valve (7) via the coupler (6). .In addition, (8
) is a machining fluid supply block equipped with a coupler (6), (9
) is a pump.

又、(10)は加工液の液位を調整するスライダー(1
1)はオーバーフローした加工液の排出口、(12)は
各噴出孔(5)からの加工液の流れを表わしており、(
13)は加工槽(1) 内部の全体の加工液の流れを表
わしている。
In addition, (10) is a slider (1) that adjusts the liquid level of the machining fluid.
1) represents the outlet for overflowing machining fluid, (12) represents the flow of machining fluid from each jet hole (5), and (
13) represents the entire flow of machining fluid inside the machining tank (1).

なお、加工液系の配管は図示していない加工液処理装置
に接続されている。
Note that the machining fluid system piping is connected to a machining fluid processing device (not shown).

次に、上記従来装置の動作並びに作用について説明する
Next, the operation and effect of the above-mentioned conventional device will be explained.

工具電極(3)と被加工物(4)との間に液中放電を生
じさせて加工を行なう際には、生成される加工屑を除去
して放電加工領域を清浄な状態に保ち、かつ、正常で速
やかに加工を進行させるために加工液供給手段(2)か
ら清浄な加工液を供給し加工屑を含む汚染された加工液
は排出口(11)よ排出される。加工液供給手段(2)
からの加工液供給量は、調整弁(7)で制御される。加
工屑でi染された加工液は、加工液処理装置で清浄にさ
1て再度加工液供給手段(2)に供給される。従っ加工
液は常に循環している。
When machining is performed by generating a submerged electrical discharge between the tool electrode (3) and the workpiece (4), it is necessary to remove the generated machining debris and keep the electrical discharge machining area in a clean state. In order to proceed with machining normally and quickly, clean machining fluid is supplied from the machining fluid supply means (2), and contaminated machining fluid containing machining waste is discharged through the discharge port (11). Processing liquid supply means (2)
The amount of machining fluid supplied from is controlled by a regulating valve (7). The machining fluid dyed with machining waste is cleaned by a machining fluid treatment device and then supplied to the machining fluid supply means (2) again. Therefore, the machining fluid is constantly circulating.

【発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の放電加工装置は以上のように構成されズおり、加
工液の噴出方向が常に一定であるため、放電加工間隙に
対して最適な噴出方向を常時設πすることができず、加
工液の噴出方向と放電加工間隙が不適当な位置間・係に
ある場合、加工屑の邦1除能力が低下して加工不安定に
なり、加工速度が低下する課題があった。
Conventional electrical discharge machining equipment is configured as described above, and the jetting direction of machining fluid is always constant. Therefore, it is not possible to always set the optimal jetting direction for the discharge machining gap, and the machining fluid jetting direction is always constant. If the ejection direction and the electrical discharge machining gap are at an inappropriate position/relationship, there is a problem that the ability to remove machining debris is reduced, machining becomes unstable, and machining speed decreases.

この発明は上記のような課題を解消するためになされた
もので、am加工間隙に対して常にN適な加工液の噴出
方向を得ることができる放電加工装置の提供を目的とす
るものである。
This invention was made in order to solve the above-mentioned problems, and aims to provide an electric discharge machining device that can always obtain the proper machining fluid jet direction with respect to the am machining gap. .

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る放電加工装置は、加工槽内に設けられた
加工液供給手段の加工液噴出孔から噴出する加工液の噴
出方向を、放電加工の進行方向に応じて切り換える手段
を備えたものである。
The electrical discharge machining apparatus according to the present invention includes means for switching the direction of machining fluid spouted from the machining fluid spouting hole of the machining fluid supply means provided in the machining tank, depending on the direction of progress of electrical discharge machining. be.

〔作用] 更に又、この発明に係る放電加工装置は、加工液が放電
加工の進行方向に応じて噴出されることにより、常に最
適な状態で加工屑の排出ができて放電が安定し、加工速
度が速くなる。
[Function] Furthermore, in the electric discharge machining apparatus according to the present invention, machining fluid is ejected according to the direction of progress of electric discharge machining, so that machining debris can be discharged in an optimal state at all times, stabilizing electric discharge, and machining. speed increases.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の実施例について説明する。 Examples of the present invention will be described below.

第1図及び第2図はこの発明の実施例装置を示す平面図
及び側面図で・1図において、(2)は加工液供給手段
で、加工槽(1)内の前後左右の4方向に取り付けられ
ている。(20a)〜(20dlは加工液制御弁で、加
工液供給手段のそれぞれ(2A)〜(2D)に独立して
接続されている。 (21)は加工液制御弁(20a)
 〜(20dlの制御装置、(22)は数値制御装置で
、この数値制御装! (221の指令により、1lil
+御装置(21)が作動Lr加工液制御弁(20a’l
 〜[(20d) 0)それぞれに開閉動作させる。
Figures 1 and 2 are a plan view and a side view showing an embodiment of the present invention. In Figure 1, (2) is a machining fluid supply means, which is supplied to the machining tank (1) in four directions: front, rear, left, and right. installed. (20a) to (20dl are machining fluid control valves, which are independently connected to machining fluid supply means (2A) to (2D), respectively. (21) is a machining fluid control valve (20a)
~(20dl control device, (22) is a numerical control device, this numerical control device! (221 command, 1lil control device)
+ Control device (21) operates Lr machining fluid control valve (20a'l)
~[(20d) 0) Operate opening and closing respectively.

ところで、前記加工液供給手段(2) としては、次の
実施例が考えらする。
By the way, the following embodiment can be considered as the machining fluid supply means (2).

即ち、第3図及び第4図は、加工液供給手段(2)の第
1宴施例を示すもので、第3図は平面図、第4ヌは第3
図のIV −rV線断面図である。
That is, FIGS. 3 and 4 show the first embodiment of the processing fluid supply means (2), where FIG. 3 is a plan view and No.
It is a sectional view taken along the line IV-rV in the figure.

この第1実施例に基づく加工液供給手段(2)には、同
じ直径の複数個の加工液噴8孔(5)が不等間隔で配置
されており、加工液の供給側から遠い端部に従って加工
液噴出孔(5)の配置される間隔が狭くなっている。
In the machining fluid supply means (2) based on the first embodiment, a plurality of eight machining fluid injection holes (5) having the same diameter are arranged at irregular intervals, and the end farthest from the machining fluid supply side is Accordingly, the intervals at which the machining fluid ejection holes (5) are arranged become narrower.

第5図及び第6図は2加工液供給手段(2)の第2実施
例を示すもので、!5図は平面図、第6図は第5図のV
[−VT線断面図である。
Figures 5 and 6 show a second embodiment of the two machining fluid supply means (2). Figure 5 is a plan view, Figure 6 is V in Figure 5.
[-VT line sectional view.

この第2実施例に基づく加工液供給手段(2)には、異
なる面積の?I数例の加工液噴出孔(5)が等間隔で配
置されており、加工液の供給側から遠い端に従って加工
液噴出孔(5)の面積が広くなるように形成されている
The machining fluid supply means (2) based on this second embodiment have different areas. Several machining fluid ejection holes (5) are arranged at equal intervals, and the area of the machining fluid ejection holes (5) increases toward the end farther from the machining fluid supply side.

第7図及び第8図は、加工液供給手段(2)の第3英施
例を示すもので、第7図は平面図、第8図は第7図の■
−■線断面図である。
7 and 8 show a third embodiment of the machining fluid supply means (2), FIG. 7 is a plan view, and FIG. 8 is a
It is a sectional view taken along the line -■.

この第3実施例に基づく加工液供給手段(2)には、加
工液噴出孔(5) に筒状の整流手段(23)が設けら
れている。この第3芙施例に基づく整流手段(23)は
、前記第1実施例に基づく加工液供給手段(2)の加工
液噴出孔(5)に設けてもよいし、又、第2実施例に基
づく加工液供給手段(2)の加工液噴出孔(5)に設け
てもよい。
The machining fluid supply means (2) based on this third embodiment is provided with a cylindrical rectifying means (23) in the machining fluid ejection hole (5). The rectifying means (23) based on the third embodiment may be provided in the machining fluid spouting hole (5) of the machining fluid supply means (2) based on the first embodiment, or may be provided in the machining fluid spouting hole (5) of the machining fluid supply means (2) based on the first embodiment. It may be provided in the machining fluid ejection hole (5) of the machining fluid supply means (2) based on the above.

又、第9図は、加工液供給手段(2)の第4実施例を示
すもので、第7図、第8図で説明した第3実施例におけ
る整流手段(23)の変形例であり、複数個の加工液の
噴出孔(5)の代わりに、複数の筒状体(24)の集合
体で構成された加工液供給手段(2)を用いた例である
Further, FIG. 9 shows a fourth embodiment of the machining fluid supply means (2), which is a modification of the rectifying means (23) in the third embodiment explained in FIGS. 7 and 8. This is an example in which a machining fluid supply means (2) constituted by an assembly of a plurality of cylindrical bodies (24) is used instead of a plurality of machining fluid ejection holes (5).

なお上記加工液供給手段(2)は、加工液の圧力に耐え
得る強度と、耐加工液性を兼ね備えていれば良く、加工
性等の考曙は必要であるものの、特に材質を限定する必
要はない・ 次に上記各加工液供給手段(2)の作用につぃて説明す
る。第13図に示したような、1本の筒状体の側壁に孔
をあけた構造の加工液供給手段(2)の一端から圧力の
高い加工液を供給すると、加工液の流れによる摩擦損失
等によって内部に圧力匂配ができ、供給側から遠い端で
は供給側よりも圧力が低くなる。従って、同じ面積の加
工液噴出孔(5)を等間隔で配置すると、加工液は均一
な流量では流出せず、第11図に矢印(工3)で示した
ように、加工槽(1)内の加工液の流れが渦状になり、
放電加工の行なわれる頻度の最も高い加工槽(1)の中
央部分では、加工液が淀み状態になり、加工屑の除去性
能が著しく低下する。そこで、加工液供給手段内の圧力
匂配を考廖し、第3図及び第4図に示したように、加工
液噴出孔(5)を不等間隔で配置したり、第5図及び第
6図に示したように加工液噴出孔(5)の面積を位置に
よって変化させれば、均一な流量で加工液を流出させる
ことができる。
Note that the machining fluid supply means (2) needs only to have strength enough to withstand the pressure of the machining fluid and resistance to the machining fluid, and although it is necessary to consider workability, etc., it is necessary to specifically limit the material. Next, the operation of each of the above-mentioned machining fluid supply means (2) will be explained. When high-pressure machining fluid is supplied from one end of the machining fluid supply means (2), which has a hole in the side wall of one cylindrical body as shown in Figure 13, friction loss due to the flow of machining fluid occurs. etc., a pressure gradient is created inside, and the pressure at the end far from the supply side is lower than that at the supply side. Therefore, if the machining fluid spout holes (5) with the same area are arranged at equal intervals, the machining fluid will not flow out at a uniform flow rate, and the machining fluid will not flow out of the machining tank (1) as shown by the arrow (step 3) in Fig. 11. The flow of machining fluid inside becomes vortex-like,
In the central part of the machining bath (1) where electrical discharge machining is most frequently performed, the machining fluid becomes stagnant and the removal performance of machining debris is significantly reduced. Therefore, by considering the pressure distribution within the machining fluid supply means, we arranged the machining fluid ejection holes (5) at irregular intervals as shown in Figs. 3 and 4, and If the area of the machining fluid jet hole (5) is varied depending on the position as shown in FIG. 6, the machining fluid can flow out at a uniform flow rate.

一方、加工液噴出孔(5)において加工液はその流れを
所定の角度、例えば直角に変化させねばならない。しか
し、第13図に示したように、1本の筒状体の側壁に孔
をあけただけの構造の従来の加工液供給手段(2)では
、加工液は慣性のため直角には曲がりきれず、ある角度
を持って流出してしまう。そこで第7図及び第8図に示
したように、加工液噴出孔(5)の先に加工液の流れが
十分に得られる長さの整流手段(23)を設ければ、加
工液の流れを所定の角度で流出させることができ、第1
0図に矢印(13)で示すように、加工槽内全域にわた
って均一で、加工屑の除去性能の高い加工液の流れをつ
くることができる。
On the other hand, the flow of the machining fluid at the machining fluid ejection hole (5) must be changed at a predetermined angle, for example, at a right angle. However, as shown in Fig. 13, in the conventional machining fluid supply means (2), which has a structure of simply making a hole in the side wall of one cylindrical body, the machining fluid cannot bend at right angles due to inertia. Instead, it flows out at a certain angle. Therefore, as shown in FIGS. 7 and 8, if a rectifying means (23) of a length sufficient to obtain a sufficient flow of the machining fluid is provided at the tip of the machining fluid jet hole (5), the flow of the machining fluid will be reduced. can be flowed out at a predetermined angle, and the first
As shown by the arrow (13) in Figure 0, it is possible to create a flow of machining fluid that is uniform throughout the entire interior of the machining tank and has high performance in removing machining debris.

また、第7図及び第8図に示す実施例の発展として、加
工液噴出孔(5)の先に整流手段(23)を設けるので
はなく、第9・図に示すように、加工液供給手段(2)
そのものを筒状体(24)の集合体として構成しても第
7図及び第8図で示す整流手段(23)を設けたのと同
様の効果を得ることができる。
Further, as a development of the embodiment shown in FIGS. 7 and 8, instead of providing a rectifying means (23) at the end of the machining fluid jet hole (5), as shown in FIG. Means (2)
Even if it is configured as an assembly of cylindrical bodies (24), the same effect as provided by the rectifying means (23) shown in FIGS. 7 and 8 can be obtained.

なお、上記第3及び第4実施例では、整流手段(23)
や筒状体(24)を同じ面積で等間隔に配置したが、前
述のように位置によって面積を変化させたり、不等間隔
で配置したりすることもできる。
In addition, in the third and fourth embodiments described above, the rectifying means (23)
Although the cylindrical bodies (24) have the same area and are arranged at regular intervals, the areas can be changed depending on the position or they can be arranged at unequal intervals as described above.

また、上述の加工液噴8孔〔5)や整流手段(23)あ
るいは筒状体(24)の向きを位置によって変化させる
ことによって、上述の効果をさらに高めることもできる
Moreover, the above-mentioned effect can be further enhanced by changing the orientation of the above-mentioned 8 machining fluid jet holes [5], the rectifying means (23), or the cylindrical body (24) depending on the position.

この実施例による放電加工装置は上記のよう番こ構成さ
れており、次のその動作について説明する。
The electrical discharge machining apparatus according to this embodiment is constructed as described above, and its operation will be explained below.

第1図及び第2図では+X方同に放電加工を進行させて
いる状態を図示しており、加工液供給ポンプ(9)によ
って供給される加工液は、数値制御装置(22)の指令
で加工液制御弁(20a)を開き、加工液供給手段(2
A)を介して噴出孔(5)から加工槽(1)内に噴出さ
れる。同様にして放電加工の進行方向が−Y力方向場合
・は、加工液制御弁(20b)を開き加工液供給手段(
20B)かも加工液が噴出される。
Figures 1 and 2 illustrate a state in which electrical discharge machining is progressing in the +X direction, and the machining fluid supplied by the machining fluid supply pump (9) is controlled by commands from the numerical control device (22). Open the machining fluid control valve (20a) and turn on the machining fluid supply means (20a).
A) is ejected from the ejection hole (5) into the processing tank (1). Similarly, if the progress direction of electrical discharge machining is the -Y force direction, open the machining fluid control valve (20b) and the machining fluid supply means (
20B) The machining fluid is also spouted.

又、放電加工の進行方向が〜X方向の場合は。Also, if the direction of progress of electrical discharge machining is the ~X direction.

加工液制御弁(20c)を開き、加工液供給手段(20
ε)から加工液が噴出される。更に又、放電加工の進行
方向が+Y方向の場合、加工液制御弁(20dlを開き
、加工液供給手段(2[ID)より加工液を噴出さ 4
せる。この結果、加工液の噴出方向を、放電加工の進行
方向に応じて変化させることができて、常に最適な加工
屑の排除ができるようになり、放電加工を安定させるこ
とになる。
Open the machining fluid control valve (20c) and turn on the machining fluid supply means (20c).
Processing fluid is spouted from ε). Furthermore, when the progress direction of electrical discharge machining is the +Y direction, the machining fluid control valve (20 dl) is opened and machining fluid is spouted from the machining fluid supply means (2 [ID)].
let As a result, the direction in which the machining fluid is ejected can be changed in accordance with the direction of progress of electric discharge machining, making it possible to always optimally remove machining debris and stabilizing electric discharge machining.

なお、上記実施例においては、各加工液供給手段の夫々
から加工液を噴出させる場合について図示説明したが、
放電加工の進行方向によっては、複数個の加工液供給手
段から加工液を噴出させ。
In the above embodiment, the case where the machining fluid is spouted from each of the machining fluid supply means is illustrated and described.
Depending on the direction of progress of electrical discharge machining, machining fluid is ejected from a plurality of machining fluid supply means.

その合成された加工液の噴出方向を生成させることも可
能であり、この発明と同等の作用効果を奏する諸種の設
計的変更が可能である。
It is also possible to generate the ejecting direction of the synthesized machining fluid, and various design changes that achieve the same effects as the present invention are possible.

[発明の効果1 この発明に係る放電加工装置は、加工槽内に設けられた
加工液供給手段から噴出する加工液の噴出方向を、放電
加工の進行方向に応じて切り換える手段を備えたから、
最適な加工液噴出方向を得ることができ、加工屑が最適
に排除されて京に安定な加工が出来る。従って加工速度
の速い放電加工装置が提供できる。
[Effects of the Invention 1] The electric discharge machining apparatus according to the present invention is equipped with a means for switching the spouting direction of the machining fluid spouted from the machining fluid supply means provided in the machining tank according to the advancing direction of the electric discharge machining.
The optimum machining fluid jet direction can be obtained, machining debris is optimally removed, and stable machining is possible. Therefore, it is possible to provide an electric discharge machining device with a high machining speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す平面図、第2図は第
1図の部分側面図、第3区〜第9図は加工液供給手段の
それぞれ異なる実施例を示す図、第10図は加工液の流
れを説明する図、第11区〜第13図は従来装置を説明
する図である。 図中、(1)は加工槽、(2)は加工液供給手段、(5
)は加工液噴出孔、 f23+は整流手段、(24)は
筒状体、(21)は制御装置である。 なお1図中、同一符号は同一、または相当部分を示す。
FIG. 1 is a plan view showing one embodiment of the present invention, FIG. 2 is a partial side view of FIG. The figure is a diagram for explaining the flow of machining fluid, and Sections 11 to 13 are diagrams for explaining a conventional device. In the figure, (1) is a machining tank, (2) is a machining fluid supply means, and (5
) is a machining fluid ejection hole, f23+ is a rectifying means, (24) is a cylindrical body, and (21) is a control device. In Figure 1, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims]  加工液噴出孔が形成された加工液供給手段によって加
工槽内に加工液を供給する放電加工装置において、上記
加工液供給手段の加工液噴出孔から噴出する加工液の噴
出方向を、放電加工の進行方向に応じて切り換える手段
を備えたことを特徴とする放電加工装置。
In an electrical discharge machining device that supplies machining fluid into a machining tank by a machining fluid supply means in which a machining fluid spouting hole is formed, the spouting direction of the machining fluid spouted from the machining fluid spouting hole of the machining fluid supplying means is set to An electrical discharge machining device characterized by comprising means for switching according to the direction of travel.
JP3881290A 1990-02-20 1990-02-20 Electric discharge machining device Pending JPH03245922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3881290A JPH03245922A (en) 1990-02-20 1990-02-20 Electric discharge machining device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3881290A JPH03245922A (en) 1990-02-20 1990-02-20 Electric discharge machining device

Publications (1)

Publication Number Publication Date
JPH03245922A true JPH03245922A (en) 1991-11-01

Family

ID=12535691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3881290A Pending JPH03245922A (en) 1990-02-20 1990-02-20 Electric discharge machining device

Country Status (1)

Country Link
JP (1) JPH03245922A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014133297A (en) * 2012-12-10 2014-07-24 Canon Marketing Japan Inc Wire electric discharge machining apparatus, wire electric discharge machining method, and workpiece
JP2015091613A (en) * 2013-09-30 2015-05-14 キヤノンマーケティングジャパン株式会社 Wire electrical discharge machine and wire electrical discharge machining method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014133297A (en) * 2012-12-10 2014-07-24 Canon Marketing Japan Inc Wire electric discharge machining apparatus, wire electric discharge machining method, and workpiece
JP2015091613A (en) * 2013-09-30 2015-05-14 キヤノンマーケティングジャパン株式会社 Wire electrical discharge machine and wire electrical discharge machining method

Similar Documents

Publication Publication Date Title
US4581513A (en) Wire-cut electric discharge machining apparatus
KR100328887B1 (en) Liquid coater
EP1819886B1 (en) Nozzle structure of bidet with swirling water current
KR102491059B1 (en) Abrasive Fluid Jet Cutting Systems, Components and Associated Methods for Cutting Sensitive Materials
JPH03245922A (en) Electric discharge machining device
JP4781036B2 (en) Shower coolant equipment
JPS62255013A (en) Electro-chemical machining device
JPS5822629A (en) Wire cut electric spark machining apparatus
JP3815328B2 (en) Wire electrical discharge machine
JPS6247646B2 (en)
JP2008062328A (en) Compound machining apparatus capable of performing water jet machining and wire electric discharge machining
SU1211361A1 (en) Cavitation reactor
JP2784612B2 (en) Machining fluid supply control device for wire electric discharge machine
JP2788065B2 (en) Nozzle device for liquid jet processing
JP2008110440A (en) Coolant supply device
CN211332136U (en) Electric arc micro-explosion and cutting combined machining device
US5374795A (en) Wire cut electric discharge machine
EP0180195A2 (en) Wire electrode discharge machining apparatus
JPH1148040A (en) Method and device for wire type electric discharge machine
JPH0253523A (en) Machining fluid jetting for wire electric discharge machine
JPS62287931A (en) Wire cut electric spark machine
JPH04360722A (en) Electric discharge machining device
JPS5848034Y2 (en) Machining fluid supply nozzle device for wire cut electrical discharge machining equipment
JP2000000722A (en) Electric discharge machining device
JPS614624A (en) Nozzle device supplying machining fluid for wire cut electric discharge machining device