JPH1148040A - Method and device for wire type electric discharge machine - Google Patents
Method and device for wire type electric discharge machineInfo
- Publication number
- JPH1148040A JPH1148040A JP21056997A JP21056997A JPH1148040A JP H1148040 A JPH1148040 A JP H1148040A JP 21056997 A JP21056997 A JP 21056997A JP 21056997 A JP21056997 A JP 21056997A JP H1148040 A JPH1148040 A JP H1148040A
- Authority
- JP
- Japan
- Prior art keywords
- machining
- electric discharge
- flow rate
- fluid
- wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はワイヤ放電加工機の
制御方法および装置に関し、特に、ワークとワイヤ電極
との放電加工作用部に対し噴流ノズルから噴流する加工
液の圧力を一定に制御しつつワイヤ断線を防止するワイ
ヤ放電加工機の制御方法および装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for controlling a wire electric discharge machine, and more particularly to a method and a device for controlling the pressure of a machining fluid jetted from a jet nozzle to an electric discharge machining portion between a workpiece and a wire electrode. The present invention relates to a method and an apparatus for controlling a wire electric discharge machine for preventing wire breakage.
【0002】[0002]
【従来の技術】一般に、ワイヤ放電加工機は、ワイヤガ
イドや加工液供給の噴流ノズルを有し、ワークの上下に
それぞれ配設したヘッドで規定されたワイヤ電極送り路
に沿ってワイヤ電極を走行させ、他方、テーブル上に設
けられたワーク取付台にワークを取り付け、ワークに予
め形成したイニシャルホールまたはワーク端面を起点と
してワークとワイヤ電極との間に間欠パルス状の電力を
供給して放電作用を付与し、ワークとワイヤ電極間との
相対移動に従って上記起点位置から所望の軌跡路に沿っ
て放電加工作用を進行させるものである。また、上下ヘ
ッド先端には加工液の噴流ノズルが設けられており該噴
流ノズルからワークとワイヤ電極との放電加工作用部に
加工液を噴出するか、または加工液中にワークを浸漬し
た状態で放電加工は行われる。2. Description of the Related Art In general, a wire electric discharge machine has a wire guide and a jet nozzle for supplying a machining fluid, and runs a wire electrode along a wire electrode feed path defined by heads provided above and below a work, respectively. On the other hand, the work is mounted on the work mounting table provided on the table, and an intermittent pulse-like electric power is supplied between the work and the wire electrode starting from an initial hole formed on the work or the end face of the work as a starting point to perform a discharging operation. And causes the electric discharge machining operation to proceed from the starting position along a desired trajectory according to the relative movement between the workpiece and the wire electrode. Further, a jet nozzle of a machining fluid is provided at the tip of the upper and lower heads, and the machining fluid is ejected from the jet nozzle to an electric discharge machining portion between the workpiece and the wire electrode, or the workpiece is immersed in the machining fluid. Electric discharge machining is performed.
【0003】このとき、放電加工作用部を充たす加工液
は、通常数Kgf/Cm2 の圧力で噴流ノズルから噴出
されており、ワイヤの冷却と放電加工作用部からの加工
屑の除去とを行い、これにより円滑かつ安定な放電加工
を確保している。すなわち、上記ワイヤの冷却作用およ
び加工屑の除去作用によってワイヤの断線を防止してい
る。これは、加工屑が集中するとワークとワイヤ電極と
のギャップが狭くなり、集中放電を起こしてワイヤの断
線を引き起こすからである。[0003] At this time, the machining fluid filling the electric discharge machining section is usually jetted from the jet nozzle at a pressure of several Kgf / Cm 2 to cool the wire and remove machining dust from the electric discharge machining section. Thereby, smooth and stable electric discharge machining is secured. In other words, the wire is prevented from being broken by the cooling action of the wire and the action of removing the processing waste. This is because the concentration of the processing debris narrows the gap between the workpiece and the wire electrode, causing a concentrated discharge and breaking the wire.
【0004】このようなワイヤ断線を防止するため、次
のようなワイヤ放電加工機の加工液供給制御装置が開示
されている。第1に特開昭63−74525号公報に、
加工液供給圧力を検出し、この検出圧力が基準値未満と
なったとき、ワークとワイヤ電極との間に供給する間欠
パルス状の電力を低減する技術が開示されている。第2
に特開平4−261713号公報に、加工液タンク内の
加工液を放電加工作用部の上下にそれぞれ噴出させる対
向した2つの噴流ノズルと、加工液タンクから各噴流ノ
ズルまでの各加工液供給通路内に加工液の吐出量可変用
ポンプをそれぞれ設け、各加工液供給通路内における加
工液の噴流圧力をそれぞれ検出し各検出圧力が所定レベ
ルとなるように加工液の吐出量を個別に制御する技術が
開示されている。[0004] In order to prevent such wire breakage, the following machining fluid supply control device for a wire electric discharge machine has been disclosed. First, JP-A-63-74525 discloses that
There is disclosed a technique for detecting a machining fluid supply pressure and reducing the intermittent pulse-like power supplied between a workpiece and a wire electrode when the detected pressure is less than a reference value. Second
Japanese Patent Application Laid-Open No. Hei 4-261713 discloses two opposing jet nozzles for jetting a machining fluid in a machining fluid tank above and below an electric discharge machining action part, and respective machining fluid supply passages from the machining fluid tank to the respective jet nozzles. Pumps for changing the discharge amount of the working fluid are provided in the inside, respectively, detecting the jet pressure of the working fluid in each of the working fluid supply passages, and individually controlling the discharge amount of the working fluid so that each detected pressure becomes a predetermined level. Techniques are disclosed.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、特開昭
63−74525号公報に開示の装置は、例えばワーク
に予め設けられたスタート穴から加工を開始するような
場合、噴流ノズルからワークへ向けて加工液が噴流する
部分が密閉状態になるため加工液の噴流圧力は低下せず
に流量が減少し、このため加工液の排出能力が低下し、
すなわちワイヤの冷却作用と加工屑の除去作用が低下
し、ワイヤ断線を引き起こすという問題を生じる。However, the apparatus disclosed in Japanese Patent Application Laid-Open No. 63-74525, for example, starts machining from a jet nozzle toward a work when processing is started from a start hole provided in the work in advance. Since the part where the machining fluid is jetted is in a closed state, the jet pressure of the machining fluid does not decrease and the flow rate decreases, thereby decreasing the machining fluid discharge ability,
In other words, there is a problem that the cooling action of the wire and the action of removing the processing debris are reduced, and the wire is broken.
【0006】また、特開平4−261713号公報に開
示の装置は、例えばワークの外部から加工を開始したり
加工経路がワークの端面近傍を通過したりする場合、加
工液の噴流部分が開放状態となり、圧力が所定レベルに
上がらず、加工液は噴流ノズルからワークとワイヤ電極
との放電加工作用部へ向けて十分噴流せずに主に開放部
へ吐出されて、ワイヤの冷却作用と加工屑の除去作用を
低下させ、場合によっては空気を吸い込んで気中放電し
てワイヤ断線を引き起こすという問題を生じる。The apparatus disclosed in Japanese Patent Application Laid-Open No. Hei 4-261713 discloses an apparatus in which, when, for example, processing is started from the outside of a work or a processing path passes near the end face of the work, a jet portion of the working fluid is in an open state. The pressure does not rise to a predetermined level, and the machining fluid is discharged from the jet nozzle mainly to the open portion without sufficiently jetting toward the electric discharge machining portion between the workpiece and the wire electrode, thereby cooling the wire and cutting dust. In some cases, there is a problem that the action of removing the wire is reduced, and in some cases, the wire is broken due to inhalation of air to cause air discharge.
【0007】それゆえ、本発明は上記問題を解決し、加
工液の噴流圧力が一定になるように制御しつつ放電加工
作用部に噴出される加工液の流量に応じてワークとワイ
ヤ電極との間に供給する電力を低減させ、ワイヤ断線を
防止するワイヤ放電加工機の制御方法および装置を提供
することを目的とする。Therefore, the present invention solves the above-mentioned problem, and controls the jet pressure of the machining fluid so that the jet pressure of the machining fluid is constant. An object of the present invention is to provide a method and an apparatus for controlling a wire electric discharge machine, which reduce electric power supplied therebetween and prevent wire breakage.
【0008】[0008]
【課題を解決するための手段】前記問題を解決する本発
明によるワイヤ放電加工機の制御方法は、ワイヤ電極に
よるワークの放電加工部に一定圧力で加工液を噴出する
とともに、前記放電加工部にパルス状の電力を供給して
前記ワークを放電加工するワイヤ放電加工機の制御方法
において、前記放電加工部に供給される加工液の流量を
検出し、前記検出した加工液の流量があらかじめ設定、
記憶した適正範囲にあるか判別し、前記検出した加工液
の流量が前記適正範囲にないと判別されたときに、前記
放電加工部に供給されるパルス状の電力を低減する、こ
とを特徴とする。A method for controlling a wire electric discharge machine according to the present invention, which solves the above-mentioned problems, comprises: In a control method of a wire electric discharge machine that supplies electric power in a pulse form to perform electric discharge machining on the work, a flow rate of the machining fluid supplied to the electric discharge machining unit is detected, and the detected flow rate of the machining fluid is set in advance.
It is determined whether or not the flow rate of the detected machining fluid is in the stored appropriate range, and when it is determined that the detected flow rate of the machining fluid is not in the appropriate range, the pulsed power supplied to the electric discharge machining unit is reduced. I do.
【0009】前記問題を解決する本発明によるワイヤ放
電加工機の制御装置は、ワイヤ電極によるワークの放電
加工部に一定圧力で加工液を噴出するとともに、前記放
電加工部にパルス状の電力を供給して前記ワークを放電
加工するワイヤ放電加工機の制御装置において、前記放
電加工部にパルス状の電力を供給する電力供給手段と、
前記放電加工部に加工液を噴出する噴出ノズルと、加工
液タンク内の加工液を前記噴出ノズルに供給する加工液
供給ポンプと、前記噴出ノズルから前記放電加工部に噴
出される加工液の流量を検出する加工液流量検出手段
と、前記電力供給手段から前記放電加工部に供給するパ
ルス状の電力の供給量、前記加工液供給ポンプから前記
放電加工部に供給する加工液の圧力および流量の適正範
囲を記憶する加工条件記憶手段と、前記検出した加工液
の流量が前記記憶した適正範囲にあるか判別し、前記適
正範囲にないと判別されたときに、前記放電加工部に供
給するパルス状の電力を低減させる指令を前記加工条件
記憶手段に送出する判別手段と、を具備することを特徴
とする。A control apparatus for a wire electric discharge machine according to the present invention for solving the above-mentioned problem is to supply a pulsed electric power to the electric discharge machining section while jetting a machining fluid at a constant pressure to an electric discharge machining section of a workpiece by a wire electrode. In a control device of a wire electric discharge machine that performs electric discharge machining of the work, a power supply unit that supplies pulsed electric power to the electric discharge machining unit,
An ejection nozzle for ejecting a machining fluid to the electric discharge machining part, a machining fluid supply pump for supplying a machining fluid in a machining fluid tank to the ejection nozzle, and a flow rate of the machining fluid ejected from the ejection nozzle to the electric discharge machining part And a supply amount of pulsed power supplied from the power supply unit to the electric discharge machining unit, a pressure and a flow rate of the machining fluid supplied from the machining fluid supply pump to the electric discharge machining unit. Machining condition storage means for storing an appropriate range; and determining whether or not the detected flow rate of the machining fluid is within the stored appropriate range. When it is determined that the flow rate is not within the appropriate range, a pulse supplied to the electric discharge machining unit. Discriminating means for sending a command to reduce the electric power to the machining condition storage means.
【0010】また、上記加工液流量検出手段は、加工液
供給ポンプの駆動周波数と加工条件記憶手段で記憶され
た加工液の圧力とから加工液の流量を演算する演算手段
を有する。Further, the machining fluid flow rate detecting means has computing means for computing the machining fluid flow rate from the driving frequency of the machining fluid supply pump and the machining fluid pressure stored in the machining condition storage means.
【0011】[0011]
【発明の実施の形態】図1は本発明に係るワイヤ放電加
工機の制御装置の一実施例を示す図である。本実施例の
制御装置は、ワイヤ放電加工機の加工液供給の制御を圧
力センサを用いて行うものである。図1に示すように、
ワイヤ放電加工機は上ヘッド12と下ヘッド14とを備
え、これら上下ヘッド12、14間を図示しないワイヤ
電極供給リールからガイドローラを有した走行路を経由
して供給されたワイヤ電極16が走行するように構成さ
れている。上下2つのヘッド間には二次元平面内で送り
変位可能なワーク取付台(図示せず)上に取り付け、固
定されたワーク17が配置され、このワーク17に予め
形成されたイニシャルホール(小穴)またはワーク端縁
を放電加工起点としてワイヤ電極16による放電加工が
遂行される。FIG. 1 is a diagram showing an embodiment of a control device for a wire electric discharge machine according to the present invention. The control device of the present embodiment controls the supply of the machining fluid of the wire electric discharge machine using a pressure sensor. As shown in FIG.
The wire electric discharge machine has an upper head 12 and a lower head 14, and a wire electrode 16 supplied from a wire electrode supply reel (not shown) via a traveling path having a guide roller travels between the upper and lower heads 12, 14. It is configured to be. A work 17 mounted and fixed on a work mount (not shown) that can be fed and displaced in a two-dimensional plane is disposed between the upper and lower heads, and an initial hole (small hole) formed in advance in the work 17 is provided. Alternatively, electric discharge machining by the wire electrode 16 is performed with the edge of the work as the starting point of electric discharge machining.
【0012】ワイヤ電極16とワーク17は共に放電加
工(パルス)電源51に接続され、両者が微小ギャップ
を介して対向することにより放電が発生し、この放電の
エネルギによりワーク17に放電加工が施されるもの
で、ワイヤ電極16は放電加工作用部の近傍で給電子
(図示せず)を介して放電加工電源51と導通し、ワー
ク17も適宜の導通回路を介して放電加工電源51と接
続している。そして、放電加工過程にワーク17がワー
ク取付台と共に二次元平面内で送り制御を受けることに
より、所望の軌跡に沿って放電加工が進行し、ワーク1
7から所望形状を有した製品が加工されるようになって
いる。The wire electrode 16 and the work 17 are both connected to an electric discharge machining (pulse) power supply 51, and a discharge occurs when the two oppose each other via a minute gap. The discharge energy is applied to the work 17 by the energy of this discharge. The wire electrode 16 is electrically connected to the electric discharge machining power supply 51 via a power supply (not shown) in the vicinity of the electric discharge machining action portion, and the work 17 is also connected to the electric discharge machining power supply 51 via an appropriate conduction circuit. doing. Then, during the electric discharge machining process, the workpiece 17 is subjected to the feed control together with the work mount in a two-dimensional plane, so that the electric discharge machining proceeds along a desired trajectory, and
From 7, a product having a desired shape is processed.
【0013】上下ヘッド12、14には加工液供給用の
噴流ノズル12a、14aが備えられ、この噴流ノズル
12aに供給される加工液は、加工液タンク18の清浄
液タンク18aからポンプ20により汲み上げられ、ポ
ンプ20の前後の配管路22a、22bを経由して供給
され、噴流ノズル12aから噴出流として放電加工作用
部へ上方から供給される。The upper and lower heads 12 and 14 are provided with jet nozzles 12a and 14a for supplying a machining fluid, and the machining fluid supplied to the jet nozzle 12a is pumped from a cleaning fluid tank 18a of the machining fluid tank 18 by a pump 20. The gas is supplied through piping paths 22a and 22b before and after the pump 20, and is supplied from above to the electric discharge machining section as a jet from the jet nozzle 12a.
【0014】また、加工液供給用の噴流ノズル14aに
供給される加工液は清浄液タンク18aからポンプ21
により汲み上げられ、ポンプ21の前後の配管路23
a、23bを経由して供給され、噴流ノズル14aから
噴出流として放電加工作用部へ下方から供給される。上
下ヘッド12、14の噴流ノズル12a、14aの先端
は円形の加工液噴出部として形成され、中心部をワイヤ
電極16が通過するように構成され、噴流ノズル12
a、14aの先端は通常は、ワーク17とワイヤ電極1
6との相対変位に障害とならない範囲で可及的にワーク
17の表面に密接させた状態に設定され、噴流ノズル1
2a、14aから加工液の噴流が加工軌跡の空隙に十分
供給されると共に噴流ノズル12a、14aの先端とワ
ーク17の表面との隙間から液漏出を極力抑えた構成と
なっている。そして、加工液は常時、ワーク17、ワイ
ヤ電極16間の放電加工作用部において安定した量が供
給されるように、ポンプ20および21による加工液供
給作用を制御する機能が備えられており、加工液の清浄
液タンク18aからポンプ20および21により汲み上
げられた加工液が放電加工作用部へ最適の指令圧力下で
噴出される。The processing liquid supplied to the jet nozzle 14a for supplying the processing liquid is supplied from the cleaning liquid tank 18a to the pump 21a.
And the piping 23 before and after the pump 21
a and 23b, and is supplied from below to the electric discharge machining section as a jet from the jet nozzle 14a. The tips of the jet nozzles 12a and 14a of the upper and lower heads 12 and 14 are formed as circular processing liquid jets, and are configured so that the wire electrode 16 passes through the center.
a and 14a usually have the work 17 and the wire electrode 1
6 is set as close as possible to the surface of the work 17 within a range that does not interfere with the relative displacement with respect to the workpiece 6.
The jet flow of the processing liquid is sufficiently supplied from 2a and 14a to the gap of the processing locus, and the liquid leakage from the gap between the tip of the jet nozzles 12a and 14a and the surface of the work 17 is minimized. The machining fluid is provided with a function of controlling the machining fluid supply operation by the pumps 20 and 21 so that the machining fluid is always supplied in a stable amount in the electric discharge machining operation portion between the workpiece 17 and the wire electrode 16. The machining fluid pumped up by the pumps 20 and 21 from the fluid cleaning fluid tank 18a is jetted to the electric discharge machining section under the optimal command pressure.
【0015】次いで、冷却や加工屑除去等の所定の加工
液作用を終了した加工液は、ワイヤ放電加工機内に設け
られた加工液回収部24に回収され、回収配管部25を
経由して加工液タンク18の回収液タンク18bへ戻さ
れ、ここからポンプ26、フィルタ28を介して清浄液
タンク18aに送出されて再利用される循環系が構成さ
れている。Next, the working fluid which has been subjected to a predetermined working fluid action such as cooling or removal of machining debris is collected by a working fluid collecting section 24 provided in the wire electric discharge machine, and is processed through a collecting pipe section 25. The circulating system is returned to the recovered liquid tank 18b of the liquid tank 18, and is sent out from this to the cleaning liquid tank 18a via the pump 26 and the filter 28 for reuse.
【0016】さらに、清浄液タンク18aよりオーバー
フローした液が回収液タンク18bに少しづつ戻すよう
に両タンクは調整管29により連通されている。この場
合に、従来、清浄液を汲み上げて噴流ノズル12a、1
4aに供給する流量と回収液タンク18bから清浄液タ
ンク18aに逆流し汚染したり、清浄液が調整管29の
レベルを越えて清浄液タンク18aからオーバーフロー
しないようにポンプ20、21、26の作用を調整する
制御を行っている。Further, the two tanks are connected by an adjusting pipe 29 so that the liquid overflowing from the cleaning liquid tank 18a is gradually returned to the recovery liquid tank 18b. In this case, conventionally, the cleaning liquid is pumped up and the jet nozzles 12a,
The operation of the pumps 20, 21 and 26 is performed so that the flow rate supplied to the recovery liquid tank 4a and the recovery liquid tank 18b flow back to the cleaning liquid tank 18a to contaminate it, and the cleaning liquid does not exceed the level of the regulating pipe 29 and overflow from the cleaning liquid tank 18a. Is adjusted.
【0017】次に、ワイヤ放電加工機の放電加工作用部
における加工液の供給量を制御して放電加工作用の安定
化を図る制御について以下に説明する。本実施例の制御
装置は、加工液供給用の噴流ノズル12a、14aにお
ける加工液の噴出量を制御するために、これら噴流ノズ
ル12a、14aの噴出口の上流部の位置における液圧
力の最適の指令圧力値に追従する制御を行うために加工
液供給ポンプ20および21による吐出供給量を制御す
る機構を構成している。Next, control for stabilizing the electric discharge machining operation by controlling the supply amount of the machining fluid in the electric discharge machining section of the wire electric discharge machine will be described below. The control device of the present embodiment controls the optimal amount of the liquid pressure at the position upstream of the ejection port of each of the jet nozzles 12a and 14a in order to control the ejection amount of the machining liquid from the jet nozzles 12a and 14a for supplying the machining liquid. A mechanism for controlling the discharge supply amount by the processing liquid supply pumps 20 and 21 for performing control following the command pressure value is configured.
【0018】また、NC・電源装置50は、放電加工電
源51、加工条件記憶部52、加工液流量検出部53、
判別部54を具備している。放電加工電源51は、ワー
ク17とワイヤ電極16との放電加工部にパルス状の電
力を供給する。加工条件記憶部52は、放電加工電源5
1から放電加工部に供給するパルス状の電力の供給量、
ポンプ20、21から放電加工部に供給する加工液の圧
力(一定圧力)、加工液の流量の上限値Q1 および下限
値Q2 で決定される流量の適正範囲を記憶する。The NC / power supply unit 50 includes an electric discharge machining power supply 51, a machining condition storage unit 52, a machining fluid flow rate detection unit 53,
The determination unit 54 is provided. The electric discharge machining power supply 51 supplies pulsed electric power to an electric discharge machining portion between the workpiece 17 and the wire electrode 16. The machining condition storage unit 52 stores the electric discharge machining power supply 5
Supply amount of pulsed power supplied from 1 to the electric discharge machining unit,
The pressure of the working fluid supplied to the discharge machining portion from the pump 20, 21 (constant pressure), and stores the appropriate range of the flow rate which is determined by the working fluid of the flow-rate upper limit Q 1 and the lower limit value Q 2 of.
【0019】加工液流量検出部53は、噴流ノズル12
a、14aから放電加工部に噴出される加工液の流量Q
を、図2で後述するように、ポンプ20、21の駆動用
のインバータ42、43の周波数と加工条件記憶部52
で記憶された加工液の圧力とから検出、演算する。判別
部54は、加工液流量検出部53で検出、演算した加工
液の流量Qが加工条件記憶部52で記憶した適正範囲
(Q1 <Q<Q2 )にあるか判別し、適正範囲にない
(Q<Q1 、Q>Q2 )と判別されたときに、放電加工
部に供給するパルス状の電力を低減させる指令を加工条
件記憶部52に送出する。The machining fluid flow rate detecting section 53 is provided with the jet nozzle 12
a, flow rate Q of the machining fluid ejected from 14a to the electric discharge machining part
The frequency of the inverters 42 and 43 for driving the pumps 20 and 21 and the processing condition storage 52
Is detected and calculated from the pressure of the working fluid stored in the step (1). The determination unit 54 determines whether the flow rate Q of the machining fluid detected and calculated by the machining fluid flow rate detection unit 53 is within an appropriate range (Q 1 <Q <Q 2 ) stored in the machining condition storage unit 52, and When it is determined that there is no (Q <Q 1 , Q> Q 2 ), a command to reduce the pulsed power supplied to the electric discharge machining unit is sent to the machining condition storage unit 52.
【0020】すなわち、加工液の配管路22bおよび2
3bにおける加工液圧を検出する圧力センサ30および
31が設けられ、これら圧力センサ30および31によ
り検出された加工液の圧力は電気信号に変換され、増幅
器32および33を有したフィードバック制御回路34
および35を介して圧力指令値入力部36および37に
それぞれフィードバックされる。That is, the piping paths 22b and 2
Pressure sensors 30 and 31 for detecting the working fluid pressure in 3b are provided. The pressure of the working fluid detected by these pressure sensors 30 and 31 is converted into an electric signal, and a feedback control circuit 34 having amplifiers 32 and 33 is provided.
And are fed back to the pressure command value input units 36 and 37 via the control unit 35, respectively.
【0021】圧力指令値入力部36および37は、圧力
の指令値と検出値との差異に応じた指令信号をポンプ駆
動回路38および39の制御部40および41に送出す
る。このとき、制御部40および41は指令信号をポン
プ駆動信号に変換し、インバータ42および43により
加工液供給ポンプ20および21のポンプ作用を制御し
て吐出液量を加減調節し、以て配管路22bおよび23
bの液圧を制御する。The pressure command value input units 36 and 37 send command signals corresponding to the difference between the pressure command value and the detected value to the control units 40 and 41 of the pump drive circuits 38 and 39. At this time, the control units 40 and 41 convert the command signal into a pump drive signal, and control the pumping action of the machining fluid supply pumps 20 and 21 by the inverters 42 and 43 to adjust the discharge fluid amount to adjust the discharge fluid amount. 22b and 23
The hydraulic pressure of b is controlled.
【0022】図2は加工液の流量と圧力の関係を示す図
である。図2において、横軸は加工液の単位時間当たり
の流量Q(l/min )を示し、縦軸は加工液の噴流圧力
P(Kgf/Cm2 )を示し、f1 〜fn はポンプ駆動
用のインバータの周波数(Hz)を示す。図2に示す流
量と圧力とインバータ周波数との関係は3次元マップ化
し記憶手段、例えばROMに予め格納しておく。図2か
ら判るように、例えば加工液の噴流圧力を設定値P1 で
一定に制御するためにはインバータの周波数をf3 〜f
5 に変更すればよい。すなわち、圧力センサ30、31
により加工液の圧力を検出し、上記3次元マップに基づ
き検出した圧力値に応じてインバータ42、43の周波
数を制御すれば圧力を一定に制御できる。逆に、圧力セ
ンサ30、31の代わりに配管路22b、23b内に流
量センサ(図示せず)を設けたときは、上記3次元マッ
プに基づき検出した流量値に応じてインバータ42、4
3の周波数を制御すれば圧力を一定に制御できる。FIG. 2 is a diagram showing the relationship between the flow rate of the working fluid and the pressure. In FIG. 2, the horizontal axis represents the flow rate Q (l / min) of the machining fluid per unit time, the vertical axis represents the jet pressure P (Kgf / Cm 2 ) of the machining fluid, and f 1 to f n represent the pump drive. Frequency (Hz) of the inverter for use. The relationship between the flow rate, the pressure, and the inverter frequency shown in FIG. 2 is converted into a three-dimensional map and stored in a storage unit, for example, a ROM in advance. As it can be seen from FIG. 2, for example, f 3 the frequency of the inverter in order to control a constant jet pressure of the working fluid in the setpoint P 1 ~f
Change it to 5 . That is, the pressure sensors 30, 31
By controlling the frequency of the inverters 42 and 43 according to the pressure value detected based on the three-dimensional map, the pressure can be controlled to be constant. Conversely, when flow rate sensors (not shown) are provided in the pipe lines 22b and 23b instead of the pressure sensors 30 and 31, the inverters 42, 4 and 4 are operated in accordance with the flow rate values detected based on the three-dimensional map.
By controlling the frequency 3, the pressure can be controlled to be constant.
【0023】しかし、上述したような圧力一定の制御を
してもワイヤ断線が生じる場合がある。本発明はこのよ
うなワイヤ断線が生じ得る状況を加工液の圧力と流量が
適正範囲内か否かにより判断し、適正範囲内と判別され
たときは通常の圧力一定制御を行い、適正範囲を外れた
と判断されたときは放電加工電源51から供給する電力
を低減することによりワイヤ断線を防止する。放電加工
電源51から供給する電力は、ワイヤ電極16とワーク
17間の印加電圧を下げるか通電時間τONを短くするか
休止時間τOFF を長くするか等により低減できる。However, even when the above-described constant pressure control is performed, the wire may be broken. The present invention determines the situation in which such wire breakage may occur based on whether or not the pressure and flow rate of the machining fluid are within an appropriate range. When it is determined that the wire is disconnected, the power supplied from the electric discharge machining power source 51 is reduced to prevent the wire from being broken. The power supplied from the electric discharge machining power supply 51 can be reduced by reducing the applied voltage between the wire electrode 16 and the work 17, shortening the energization time τ ON , or increasing the pause time τ OFF .
【0024】次にワイヤ放電加工機による放電加工につ
いて図3〜図9を参照しつつ以下に詳述する。図3はワ
イヤ放電加工機による放電加工の具体例を示す図であ
る。図3に示すように、ワーク17にはあらかじめイニ
シャルホールh1 〜h5 がxy直交座標の平面と垂直な
z軸方向に開けられている。また、ワーク各部a1 、a
n 、bn、c1 、c2 、d1 およびek は、それぞれワ
ーク表面に当接する噴流ノズルの外周を示す。図3はま
たワーク17を第1に始点(x1 ,y1 )から終点(x
n,y1 )まで加工し、第2に始点(x1 ,y2 )から
終点(xn ,y2 )まで加工し、第3に始点(x1 ,y
3 )から終点(xn ,y3 )まで加工し、第4に始点
(x1 ,y4 )から終点(xn ,y4 )まで加工し、第
5に始点(x1 ,y5)から終点(xn ,y5 )まで加
工する例を示す。Next, the electric discharge machining by the wire electric discharge machine will be described in detail with reference to FIGS. FIG. 3 is a diagram showing a specific example of electric discharge machining by a wire electric discharge machine. As shown in FIG. 3, initial holes h 1 to h 5 are previously formed in the work 17 in the z-axis direction perpendicular to the plane of the xy orthogonal coordinates. Also, each part a 1 , a
n, b n, c 1, c 2, d 1 and e k indicates the outer periphery abutting the jet nozzle to the respective workpiece surfaces. FIG. 3 also shows that the work 17 is first moved from the start point (x 1 , y 1 ) to the end point (x
n, y 1) to be processed, the second start point (x 1, y 2) from the end point (x n, is processed to y 2), the third starting point (x 1, y
Machined from 3) to the end point (x n, y 3), the fourth start point (machined from x 1, y 4) to the end (x n, y 4), the fifth start point (x 1, y 5) from the end point (x n, y 5) showing an example of processing up.
【0025】図4は図3に示すワーク各部の放電加工中
の断面図であり、Aはa1 部の断面図、Bはan および
bn 部の断面図、Cはc1 部の断面図、Dはc2 部の断
面図、Eはd1 部の断面図およびFはek 部の断面図で
ある。A〜Eはx軸に平行な平面に切断しかつ図3の下
方から見た断面図を示し、Fはy軸に平行な平面に切断
しかつ図3の右方から見た断面図を示す。図4におい
て、ワイヤ電極16は噴流ノズル12aおよび14aを
通過する部分およびワーク17で隠された部分を破線で
示し、ワーク17の穴または開放部を通過する露出部分
を実線で示す。また、ワーク17の斜線部は未加工領域
を右上から左下へ向かう斜線で示し、加工終了領域を左
上から右下へ向かう斜線で示す。FIG. 4 is a cross-sectional view of the electric discharge machining of the workpiece portions shown in FIG. 3, A is a sectional view of a portion a, B is a sectional view of a n and b n unit, C is the cross-section of one part c Figure, D is a cross-sectional view of c 2 parts, E is a cross-sectional view and F of d 1 part is a cross-sectional view of e k section. A to E show cross-sectional views cut along a plane parallel to the x-axis and viewed from below in FIG. 3, and F show cross-sectional views cut along a plane parallel to the y-axis and viewed from the right in FIG. . 4, a portion of the wire electrode 16 that passes through the jet nozzles 12a and 14a and a portion that is hidden by the work 17 are indicated by broken lines, and an exposed portion that passes through a hole or an open portion of the work 17 is indicated by a solid line. The hatched portion of the workpiece 17 indicates an unprocessed area by a diagonal line from upper right to lower left, and a processing end area by a diagonal line from upper left to lower right.
【0026】図5から図9はワーク17の第1〜第5の
放電加工例をそれぞれ示す図であり、AおよびBの横軸
はx軸変位を、Aの縦軸は噴流ノズル12aおよび14
aにおける加工液の流量Qを示し、Bの縦軸は噴流ノズ
ル12aおよび14aにおける加工液の圧力Pを示す。
以下に、第1〜第5放電加工例を順に説明する。図5は
図3に示すワークのイニシャルホール位置h1 から略y
=y1 一定でx軸に沿って放電加工する第1加工例を示
す図であり、始点では噴流ノズルの外周a1 内の面積は
イニシャルホールh1 の面積より十分大きく、噴流ノズ
ルは密閉状態となり加工液の圧力は低下せず一定に保た
れるが流量は著しく減少する。この場合、加工液の流量
の減少によりワイヤの冷却作用と加工屑の除去作用が不
十分となりワイヤ断線を引き起こす状態となる。それゆ
え、本発明はこの状態を検出したとき、加工液の流量が
適正範囲にないと判断しワイヤ電極16とワーク17間
への電力供給量を減少することでワイヤ断線を防止す
る。始点での加工後、加工の進行によりワーク内を通過
できる加工液の流路断面積が徐々に大きくなり、したが
って噴流ノズルの密閉度は減少し加工液の圧力は一定に
保たれるが流量は徐々に増大し、以降終点に到るまで圧
力、流量共に略一定となり、正常な加工状態が維持され
る。FIGS. 5 to 9 are views respectively showing first to fifth examples of electric discharge machining of the workpiece 17, wherein the horizontal axis of A and B represents the x-axis displacement, and the vertical axis of A represents the jet nozzles 12a and 14a.
The flow rate Q of the working fluid at a is shown, and the vertical axis of B shows the working fluid pressure P at the jet nozzles 12a and 14a.
Hereinafter, first to fifth electric discharge machining examples will be described in order. Figure 5 is substantially y from the initial hole position h 1 of the workpiece shown in FIG. 3
FIG. 4 is a diagram showing a first machining example in which electric discharge machining is performed along the x-axis at a constant = y 1 , where the area inside the outer circumference a 1 of the jet nozzle is sufficiently larger than the area of the initial hole h 1 at the start point, and the jet nozzle is in a closed state. Thus, the pressure of the working fluid is kept constant without decreasing, but the flow rate is significantly reduced. In this case, the cooling action of the wire and the action of removing the processing debris become insufficient due to the decrease in the flow rate of the working fluid, and the wire breaks. Therefore, when detecting this state, the present invention determines that the flow rate of the machining liquid is not within the appropriate range, and reduces the amount of power supply between the wire electrode 16 and the work 17 to prevent wire breakage. After machining at the starting point, the passage area of the machining fluid that can pass through the work gradually increases with the progress of the machining, so the sealing degree of the jet nozzle decreases and the pressure of the machining fluid is kept constant, but the flow rate is The pressure and the flow rate gradually increase until the end point is reached, and a normal machining state is maintained.
【0027】図6は図3に示すワークのイニシャルホー
ル位置h2 から略y=y2 一定でx軸に沿って放電加工
する第2加工例を示す図であり、始点から終点に到るま
で図5に示す第1加工例と略同じであるのでその説明は
省略するが、終点で噴流ノズルの外周bn 内におけるワ
ーク内を通過できる加工液の流路断面積が第1加工例と
比して大きくなり、その分だけ流量が増加している。FIG. 6 is a view showing a second machining example in which electric discharge machining is carried out along the x-axis at substantially constant y = y 2 from the initial hole position h 2 of the work shown in FIG. 3, and from the start point to the end point. since substantially the same as the first working example shown in FIG. 5 and a description thereof will be omitted, the flow path cross-sectional area is first processed example the ratio of the working fluid can pass through the work in the outer periphery b n of the jet nozzle at the end And the flow rate increases accordingly.
【0028】図7は図3に示すワークのイニシャルホー
ル位置h3 からワーク端面c2 部を経由して略y=y3
一定でx軸に沿って放電加工する第3加工例を示す図で
あり、始点では噴流ノズルの外周c1 内の面積はワーク
17から外れ、噴流ノズルは開放状態となり加工液の圧
力は低下し流量は著しく増大する。次いでワーク17の
移動により噴流ノズルが点(x2 ,y3 )のワーク端面
c2 部へ来ると噴流ノズルの外周c2 内の面積は略半分
ワーク17に当接し、噴流ノズルはその分だけ密閉状態
となり加工液の圧力は上昇し流量は減少する。この場
合、加工液の流量は減少するものの所定量よりは多い。
しかしながら、加工液は噴流ノズルの開放部から流出し
ワイヤ電極とワークとの放電加工作用部に供給される流
量は不十分となる。さらに、加工液の圧力は増加するも
のの設定値より低いので加工液の流速は遅くなる。これ
らの結果、ワイヤの冷却作用と加工屑の除去作用が不十
分となりワイヤ断線を引き起こす状態となる。それゆ
え、本発明はこの状態を検出したとき加工液の流量が適
正範囲にないと判断しワイヤ電極16とワーク17間へ
の電力供給量を減少することでワイヤ断線を防止する。
以降、加工の進行によりワーク内を通過できる加工液の
流路断面積が徐々に小さくなり、したがって噴流ノズル
の密閉度は増大し加工液の圧力は上昇し流量は減少し、
以降終点に到るまで圧力、流量共に略一定となり、正常
な加工状態が維持される。FIG. 7 shows that y = y 3 from the initial hole position h 3 of the work shown in FIG. 3 via the work end face c 2.
Is a diagram illustrating a third working example of discharge machining along the x-axis at a constant, the area of the outer peripheral c 1 of the jet nozzle deviates from the work 17 at the start point, the jet nozzle pressure of the working fluid becomes the open state decreases The flow rate increases significantly. Then the movement of the workpiece 17 area in the angular c 2 of the jet nozzle the jet nozzle comes to work end surface c 2 parts of the point (x 2, y 3) is in contact with substantially half the work 17, the jet nozzle is correspondingly It becomes a closed state, the pressure of the working fluid rises, and the flow rate decreases. In this case, the flow rate of the working fluid decreases but is larger than the predetermined amount.
However, the machining fluid flows out of the open portion of the jet nozzle and the flow rate supplied to the electric discharge machining portion between the wire electrode and the work becomes insufficient. Further, since the pressure of the working fluid increases but is lower than the set value, the flow speed of the working fluid becomes slow. As a result, the effect of cooling the wire and the effect of removing the processing debris become insufficient, and the wire is broken. Therefore, according to the present invention, when this state is detected, it is determined that the flow rate of the machining fluid is not within the appropriate range, and the amount of power supply between the wire electrode 16 and the work 17 is reduced to prevent wire breakage.
Thereafter, as the processing proceeds, the cross-sectional area of the flow path of the processing liquid that can pass through the inside of the work gradually decreases, so that the sealing degree of the jet nozzle increases, the pressure of the processing liquid increases, the flow rate decreases,
Thereafter, both the pressure and the flow rate become substantially constant until the end point is reached, and the normal machining state is maintained.
【0029】図8は図3に示すワークのイニシャルホー
ル位置h4 から略y=y4 一定でx軸に沿って放電加工
する第4加工例を示す図であり、始点では噴流ノズルの
外周d1 内の面積はイニシャルホールh4 の面積より十
分小さく、噴流ノズルは開放状態となり加工液の圧力は
上昇せず流量は著しく増大する。この場合、加工液の流
量は所定量より多いが、加工液は噴流ノズルの開放部か
ら流出しワイヤ電極とワークとの放電加工作用部に供給
される流量は不十分となる。さらに、加工液の圧力は低
いので加工液の流速は遅くなる。これらの結果、ワイヤ
の冷却作用と加工屑の除去作用が不十分となりワイヤ断
線を引き起こす状態となる。それゆえ、本発明はこの状
態を検出したとき加工液の流量が適正範囲にないと判断
しワイヤ電極16とワーク17間への電力供給量を減少
することでワイヤ断線を防止する。始点での加工後、ワ
ーク17のx軸方向への移動により噴流ノズルはイニシ
ャルホールh4 から離れワーク内へ入って来ると噴流ノ
ズルの密閉度は徐々に増大し、したがって加工液の圧力
は上昇し流量は減少する。以降、加工の進行によりワー
ク内を通過できる加工液の流路断面積が徐々に小さくな
り、終点に到るまで圧力、流量共に略一定となり、正常
な加工状態が維持される。FIG. 8 is a diagram showing a fourth processing example to electric discharge machining along the x-axis at approximately y = y 4 constant from the initial hole position h 4 of the workpiece shown in FIG. 3, the outer periphery of the jet nozzle d is the starting point area within 1 is sufficiently smaller than the area of the initial hole h 4, the jet nozzle pressure of the working fluid becomes the open state flow does not rise increases significantly. In this case, the flow rate of the working fluid is larger than a predetermined amount, but the working fluid flows out of the opening of the jet nozzle and is insufficiently supplied to the electric discharge working portion between the wire electrode and the workpiece. Further, since the pressure of the working fluid is low, the flow rate of the working fluid is reduced. As a result, the effect of cooling the wire and the effect of removing the processing debris become insufficient, and the wire is broken. Therefore, according to the present invention, when this state is detected, it is determined that the flow rate of the machining fluid is not within the appropriate range, and the amount of power supply between the wire electrode 16 and the work 17 is reduced to prevent wire breakage. After processing at the starting point, a sealed degree of the jet nozzle the jet nozzle by the movement of the x-axis direction enters into the workpiece away from the initial hole h 4 of the workpiece 17 gradually increases, thus the pressure of the working fluid is increased The flow rate decreases. Thereafter, as the processing proceeds, the cross-sectional area of the flow path of the processing liquid that can pass through the inside of the work gradually decreases, and both the pressure and the flow rate become substantially constant until the end point is reached, so that a normal processing state is maintained.
【0030】図9は図3に示すワークのイニシャルホー
ル位置h5 から略y=y5 一定でx軸に沿って放電加工
しつつ途中点(xk ,yk )の端縁ek 部を経由して放
電加工する第5加工例を示す図であり、始点では加工液
の圧力と流量は図5で示す第1加工例と略同じであるの
で説明は省略する。点(xk ,yk )の端縁ek 部では
噴流ノズルの外周ek 内の面積はある部分だけワーク1
7に当接し、残りの部分だけワーク17から外れる。噴
流ノズルはその分だけ開放状態となり加工液の圧力は低
下し流量は増大する。この場合、加工液の流量は多いが
加工液は噴流ノズルの開放部から流出しワイヤ電極とワ
ークとの放電加工作用部に供給される流量は不十分とな
る。さらに、加工液の圧力は低いので加工液の流速は遅
くなる。これらの結果、ワイヤの冷却作用と加工屑の除
去作用が不十分となりワイヤ断線を引き起こす状態とな
る。それゆえ、本発明はこの状態を検出したとき加工液
の流量が適正範囲にないと判断しワイヤ電極16とワー
ク17間への電力供給量を減少することでワイヤ断線を
防止する。以降、加工の進行によりワーク内を通過でき
る加工液の流路断面積が徐々に小さくなり、したがって
噴流ノズルの密閉度は増大し加工液の圧力は上昇し流量
は減少し、以降終点に到るまで圧力、流量共に略一定と
なり、正常な加工状態が維持される。[0030] Figure 9 is the middle point while electric discharge machining along the x-axis from the initial hole position h 5 of the workpiece with substantially y = y 5 constant shown in FIG. 3 (x k, y k) the edge e k of It is a figure which shows the 5th machining example which carries out electric discharge machining via, and since the pressure and flow volume of a machining fluid are substantially the same as the 1st machining example shown in FIG. 5 at a starting point, description is abbreviate | omitted. At the edge e k of the point (x k , y k ), the work 1 has only a certain area in the outer circumference e k of the jet nozzle.
7 and comes off the work 17 only at the remaining portion. The jet nozzle is opened by that much, and the pressure of the working fluid decreases and the flow rate increases. In this case, the flow rate of the machining fluid is large, but the machining fluid flows out from the opening of the jet nozzle and is insufficiently supplied to the electric discharge machining portion between the wire electrode and the workpiece. Further, since the pressure of the working fluid is low, the flow rate of the working fluid is reduced. As a result, the effect of cooling the wire and the effect of removing the processing debris become insufficient, and the wire is broken. Therefore, according to the present invention, when this state is detected, it is determined that the flow rate of the machining fluid is not within the appropriate range, and the amount of power supply between the wire electrode 16 and the work 17 is reduced to prevent wire breakage. Thereafter, as the processing proceeds, the cross-sectional area of the flow path of the processing liquid that can pass through the inside of the work gradually decreases, so that the degree of sealing of the jet nozzle increases, the pressure of the processing liquid increases, the flow rate decreases, and thereafter the end point is reached. Up to this point, the pressure and flow rate are substantially constant, and a normal machining state is maintained.
【0031】[0031]
【発明の効果】以上説明したように本発明によれば、ワ
イヤ電極とワークとの放電加工作用部に供給される加工
液の流量が適正範囲にあるか否かを判断し、ワイヤの冷
却作用と加工屑の除去作用に必要な加工液の流量が適正
範囲に確保できてないと判断されたときは放電加工に要
する電力供給量を低減するのでワイヤ電極の断線が防止
できる。また、ワイヤ断線による加工の中断が防止され
るので加工効率を向上できる。As described above, according to the present invention, it is determined whether or not the flow rate of the machining fluid supplied to the electric discharge machining portion between the wire electrode and the workpiece is within an appropriate range, and the cooling operation of the wire is performed. When it is determined that the flow rate of the machining fluid required for the action of removing the machining debris cannot be maintained in an appropriate range, the power supply amount required for electric discharge machining is reduced, so that disconnection of the wire electrode can be prevented. Further, since the interruption of the processing due to the wire break is prevented, the processing efficiency can be improved.
【図1】本発明に係るワイヤ放電加工機の制御装置の一
実施例を示す図である。FIG. 1 is a diagram showing one embodiment of a control device of a wire electric discharge machine according to the present invention.
【図2】加工液の流量と圧力の関係を示す図である。FIG. 2 is a diagram showing a relationship between a flow rate of a working fluid and a pressure.
【図3】ワイヤ放電加工機による放電加工の具体例を示
す図である。FIG. 3 is a view showing a specific example of electric discharge machining by a wire electric discharge machine.
【図4】図3に示すワーク各部の放電加工中の断面図で
あり、Aはa1 部の断面図、Bはan およびbn 部の断
面図、Cはc1 部の断面図、Dはc2 部の断面図、Eは
d1 部の断面図およびFはek 部の断面図である。[Figure 4] is a cross-sectional view of the electric discharge machining of the workpiece portions shown in FIG. 3, A is a sectional view of a portion a, B is a sectional view of a n and b n unit, C is a cross-sectional view of a portion c, D is a sectional view of c 2 parts, E is a cross-sectional view and F of d 1 part is a cross-sectional view of e k section.
【図5】図3に示すワークの第1加工例を示す図であ
り、Aは加工液の流量の変化を示す図であり、Bは加工
液の圧力の変化を示す図である。5A and 5B are diagrams illustrating a first processing example of the work illustrated in FIG. 3, in which A illustrates a change in a flow rate of a working fluid, and B illustrates a change in a pressure of the working fluid.
【図6】図3に示すワークの第2加工例を示す図であ
り、Aは加工液の流量の変化を示す図であり、Bは加工
液の圧力の変化を示す図である。6A and 6B are diagrams illustrating a second processing example of the work illustrated in FIG. 3, in which A illustrates a change in a flow rate of a working fluid, and B illustrates a change in a pressure of the working fluid.
【図7】図3に示すワークの第3加工例を示す図であ
り、Aは加工液の流量の変化を示す図であり、Bは加工
液の圧力の変化を示す図である。7A and 7B are diagrams showing a third working example of the work shown in FIG. 3, where A is a diagram showing a change in the flow rate of the working fluid, and B is a diagram showing a change in the pressure of the working fluid.
【図8】図3に示すワークの第4加工例を示す図であ
り、Aは加工液の流量の変化を示す図であり、Bは加工
液の圧力の変化を示す図である。8A and 8B are diagrams showing a fourth working example of the work shown in FIG. 3, in which A shows a change in the flow rate of the working fluid, and B shows a change in the pressure of the working fluid.
【図9】図3に示すワークの第5加工例を示す図であ
り、Aは加工液の流量の変化を示す図であり、Bは加工
液の圧力の変化を示す図である。9A and 9B are diagrams showing a fifth working example of the work shown in FIG. 3, in which A shows a change in the flow rate of the working fluid, and B shows a change in the pressure of the working fluid.
12、14…ヘッド 12a、14a…噴流ノズル 16…ワイヤ電極 17…ワーク 18…加工液タンク 18a…清浄液タンク 18b…回収タンク 20、21…ポンプ 36、37…圧力指令値入力部 42、43…インバータ 51…放電加工電源 52…加工条件記憶手段 53…加工液流量検出手段 54…判別手段 12, 14 ... head 12a, 14a ... jet nozzle 16 ... wire electrode 17 ... work 18 ... processing liquid tank 18a ... cleaning liquid tank 18b ... recovery tank 20, 21 ... pump 36, 37 ... pressure command value input section 42, 43 ... Inverter 51: EDM power supply 52: Machining condition storage means 53: Machining fluid flow rate detection means 54: Judgment means
Claims (3)
一定圧力で加工液を噴出するとともに、前記放電加工部
にパルス状の電力を供給して前記ワークを放電加工する
ワイヤ放電加工機の制御方法において、 前記放電加工部に供給される加工液の流量を検出し、 前記検出した加工液の流量があらかじめ設定、記憶した
適正範囲にあるか判別し、 前記検出した加工液の流量が前記適正範囲にないと判別
されたときに、前記放電加工部に供給されるパルス状の
電力を低減する、 ことを特徴としたワイヤ放電加工機の制御方法。1. A control method for a wire electric discharge machine which discharges a machining fluid at a constant pressure to an electric discharge machining portion of a workpiece by a wire electrode and supplies pulsed power to the electric discharge machining portion to perform electrical discharge machining of the workpiece. In the above, the flow rate of the machining fluid supplied to the electric discharge machining part is detected, it is determined whether the detected flow rate of the machining fluid is in a preset, stored proper range, and the detected flow rate of the machining fluid is in the proper range. A pulse-like electric power supplied to the electric discharge machining section when it is determined that the electric discharge machining section does not exist.
一定圧力で加工液を噴出するとともに、前記放電加工部
にパルス状の電力を供給して前記ワークを放電加工する
ワイヤ放電加工機の制御装置において、 前記放電加工部にパルス状の電力を供給する電力供給手
段と、 前記放電加工部に加工液を噴出する噴出ノズルと、 加工液タンク内の加工液を前記噴出ノズルに供給する加
工液供給ポンプと、 前記噴出ノズルから前記放電加工部に噴出される加工液
の流量を検出する加工液流量検出手段と、 前記電力供給手段から前記放電加工部に供給するパルス
状の電力の供給量、前記加工液供給ポンプから前記放電
加工部に供給する加工液の圧力および流量の適正範囲を
記憶する加工条件記憶手段と、 前記検出した加工液の流量が前記記憶した適正範囲にあ
るか判別し、前記適正範囲にないと判別されたときに、
前記放電加工部に供給するパルス状の電力を低減させる
指令を前記加工条件記憶手段に送出する判別手段と、 を具備することを特徴としたワイヤ放電加工機の制御装
置。2. A control device for a wire electric discharge machine which discharges a machining fluid at a constant pressure to an electric discharge machining portion of a work by a wire electrode and supplies pulsed power to the electric discharge machining portion to perform electric discharge machining of the work. A power supply unit for supplying pulsed power to the electric discharge machining unit; an ejection nozzle for ejecting a machining fluid to the electric discharge machining unit; and a machining fluid supply for supplying a machining fluid in a machining fluid tank to the ejection nozzle. A pump, a machining fluid flow rate detecting unit that detects a flow rate of the machining fluid ejected from the ejection nozzle to the electric discharge machining unit, a supply amount of pulsed electric power supplied from the power supply unit to the electric discharge machining unit, Machining condition storage means for storing an appropriate range of pressure and flow rate of the machining fluid supplied from the machining fluid supply pump to the electric discharge machining section; It is determined whether it is within the range, and when it is determined that it is not within the appropriate range,
A determination unit for sending a command to reduce the pulsed power supplied to the electric discharge machining unit to the machining condition storage unit, a control device for the wire electric discharge machine.
プの駆動周波数と加工条件記憶手段で記憶された加工液
の圧力とから加工液の流量を演算する演算手段を有する
請求項2に記載のワイヤ放電加工機の制御装置。3. The machining fluid flow rate detecting means according to claim 2, further comprising: computing means for computing a machining fluid flow rate from the driving frequency of the machining fluid supply pump and the machining fluid pressure stored in the machining condition storage means. Control device of wire electric discharge machine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21056997A JPH1148040A (en) | 1997-08-05 | 1997-08-05 | Method and device for wire type electric discharge machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21056997A JPH1148040A (en) | 1997-08-05 | 1997-08-05 | Method and device for wire type electric discharge machine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1148040A true JPH1148040A (en) | 1999-02-23 |
Family
ID=16591499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21056997A Pending JPH1148040A (en) | 1997-08-05 | 1997-08-05 | Method and device for wire type electric discharge machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1148040A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1502689A2 (en) * | 2003-07-31 | 2005-02-02 | Fanuc Ltd | Device for treating working fluid for electric discharge machining |
US20150202704A1 (en) * | 2014-01-23 | 2015-07-23 | Fanuc Corporation | Working fluid supply control apparatus for wire electric discharge machine |
CN110977067A (en) * | 2019-12-17 | 2020-04-10 | 牧野机床(中国)有限公司 | Control system capable of being self-adaptive according to shape of workpiece in linear cutting machine |
WO2023127901A1 (en) * | 2021-12-28 | 2023-07-06 | 株式会社牧野フライス製作所 | Control method of wire electric discharge machine and wire electric discharge machine |
-
1997
- 1997-08-05 JP JP21056997A patent/JPH1148040A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1502689A2 (en) * | 2003-07-31 | 2005-02-02 | Fanuc Ltd | Device for treating working fluid for electric discharge machining |
EP1502689A3 (en) * | 2003-07-31 | 2005-11-23 | Fanuc Ltd | Device for treating working fluid for electric discharge machining |
US20150202704A1 (en) * | 2014-01-23 | 2015-07-23 | Fanuc Corporation | Working fluid supply control apparatus for wire electric discharge machine |
EP2898973A2 (en) | 2014-01-23 | 2015-07-29 | Fanuc Corporation | Working fluid supply control apparatus for a wire electric discharge machine |
JP2015136768A (en) * | 2014-01-23 | 2015-07-30 | ファナック株式会社 | Working fluid supply control device for wire electric discharge machine |
EP2898973A3 (en) * | 2014-01-23 | 2015-11-18 | Fanuc Corporation | Working fluid supply control apparatus for a wire electric discharge machine |
CN110977067A (en) * | 2019-12-17 | 2020-04-10 | 牧野机床(中国)有限公司 | Control system capable of being self-adaptive according to shape of workpiece in linear cutting machine |
WO2023127901A1 (en) * | 2021-12-28 | 2023-07-06 | 株式会社牧野フライス製作所 | Control method of wire electric discharge machine and wire electric discharge machine |
JP2023098106A (en) * | 2021-12-28 | 2023-07-10 | 株式会社牧野フライス製作所 | Control method of wire electric discharge machine and wire electric discharge machine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4904405B2 (en) | Wire break EDM machine disconnection repair device | |
JPH027772B2 (en) | ||
JPH1148040A (en) | Method and device for wire type electric discharge machine | |
US5113051A (en) | Method of returning a wire electrode when broken in a wire cut electric discharging machine | |
JPS5822629A (en) | Wire cut electric spark machining apparatus | |
JP2784612B2 (en) | Machining fluid supply control device for wire electric discharge machine | |
JPH04141322A (en) | Repair method for wire electrode disconnection of wire electric discharging work device | |
JP2541690B2 (en) | Machining fluid supply controller for wire electric discharge machine | |
JPH06114632A (en) | Method and device for wire-cut discharge machining | |
WO2023127901A1 (en) | Control method of wire electric discharge machine and wire electric discharge machine | |
JPH10296538A (en) | Electrical discharge machining device | |
JPS5973232A (en) | Wire cut electric discharge machining device | |
JP3773318B2 (en) | Wire electric discharge machine | |
JP2001087946A (en) | Controlling method for supplying working fluid in a wire electric discharge machine | |
JP2559219B2 (en) | Perforation electric discharge machine | |
JP2732293B2 (en) | Small hole electrical discharge machining method | |
JPH1158138A (en) | Work rust prevention device for wire electric discharge machine | |
JPS59175927A (en) | Working liquid supplying device in wire-cut electric discharge | |
JPH1058237A (en) | Wire electric discharge machining device and wire electric discharge machining method | |
JP2000000722A (en) | Electric discharge machining device | |
JP2013220497A (en) | Tool breakage detection device, machine tool and tool | |
JP4408014B2 (en) | Wire electric discharge machining apparatus and wire electric discharge machining method | |
JP2003170316A (en) | Wire electric discharge machining method and its device | |
JPH0677884B2 (en) | Wire cut electrical discharge machine | |
JPH0536172B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Effective date: 20040107 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20040203 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Effective date: 20040405 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040706 |