JPH03245498A - Ion beam deceleration device - Google Patents
Ion beam deceleration deviceInfo
- Publication number
- JPH03245498A JPH03245498A JP2038228A JP3822890A JPH03245498A JP H03245498 A JPH03245498 A JP H03245498A JP 2038228 A JP2038228 A JP 2038228A JP 3822890 A JP3822890 A JP 3822890A JP H03245498 A JPH03245498 A JP H03245498A
- Authority
- JP
- Japan
- Prior art keywords
- ion
- ion beam
- frequency
- quadrupole
- deceleration device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010884 ion-beam technique Methods 0.000 title claims abstract description 60
- 239000000758 substrate Substances 0.000 claims description 11
- 230000005684 electric field Effects 0.000 claims description 8
- 238000000605 extraction Methods 0.000 claims description 4
- 239000000284 extract Substances 0.000 claims description 3
- 230000010355 oscillation Effects 0.000 claims description 2
- 230000001133 acceleration Effects 0.000 abstract description 16
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 150000002500 ions Chemical class 0.000 description 37
- 238000010586 diagram Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 7
- 230000008859 change Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007737 ion beam deposition Methods 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Particle Accelerators (AREA)
- Electron Tubes For Measurement (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はイオンビーム減速装置に係り、特に、イオンビ
ームを減速し試料基板にイオンビームを照射するイオン
ビーム減速装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an ion beam deceleration device, and more particularly to an ion beam deceleration device that decelerates an ion beam and irradiates a sample substrate with the ion beam.
100eV以下の低速のイオンビームを得る従来の装置
は、文献「′88イオン工学特別シンポジウム」テキス
ト、D−1頁「イオンビームデポジションとその関連の
話題」のFj、g、6に記載されている様に、数kV〜
数10kVの電位に保たれたイオン源からイオンビーム
を引出し、質量分離器で質量分離した後、イオン源より
やや低い電位に置かれた試料基板にビームを照射する。A conventional device for obtaining a low-velocity ion beam of 100 eV or less is described in the text of the document "'88 Special Symposium on Ion Engineering", page D-1 "Ion Beam Deposition and Related Topics", Fj, g, 6. Several kV~
An ion beam is extracted from an ion source maintained at a potential of several tens of kV, and after mass separation by a mass separator, the beam is irradiated onto a sample substrate placed at a slightly lower potential than the ion source.
この時、ビームの照射エネルギーは、イオン源電位と試
料基板電位の差に等しい。即ち、イオンビームは試料基
板に近づくにつれ減速電界を受け、スピードを減じて基
板に照射されることになる。減速に伴うビームの発散を
抑えるため、同文献中のFig、 3 +Fig、 4
、 Fig、7に見られるように、多数枚の電極を何
べこれに適当な電圧を印加している。この場合。At this time, the irradiation energy of the beam is equal to the difference between the ion source potential and the sample substrate potential. That is, as the ion beam approaches the sample substrate, it is subjected to a decelerating electric field, and the speed of the ion beam is reduced to irradiate the substrate. In order to suppress beam divergence due to deceleration, Fig. 3 + Fig. 4 in the same document is used.
As seen in Figure 7, appropriate voltages are applied to a number of electrodes. in this case.
これら減速電極及び試料電圧は全て直流電圧である。These deceleration electrodes and sample voltages are all DC voltages.
イオンビーム減速時のビーム発散を抑える手段として、
従来例の様な平板電極を組合わせたものでは中心軸から
離れるに伴い収束効果が小さくなる謂ゆる弱収束作用を
利用しているため、その発散抑制効果は小さい。このた
め、100eV以下に減速した場合、試料基板に到達す
る低エネルギービーム電流は高々数μA〜数10μAの
桁であった。特に50eV以下の極低エネルギービーム
のビーム電流は1μ八以下となり、イオンビームによる
堆積膜を作る場合、実用的な堆積速度を得るのは不可能
であった。As a means to suppress beam divergence during ion beam deceleration,
The combination of flat plate electrodes as in the conventional example utilizes a so-called weak convergence effect in which the convergence effect decreases as the distance from the central axis increases, so the divergence suppression effect is small. Therefore, when decelerating to 100 eV or less, the low-energy beam current reaching the sample substrate was on the order of several μA to several tens of μA at most. In particular, the beam current of an extremely low energy beam of 50 eV or less is 1 μ8 or less, making it impossible to obtain a practical deposition rate when depositing a film using an ion beam.
更に、従来技術においては試料基板をイオン源とほぼ同
程度の高電圧に保つ必要があるため、他の部品との電気
的絶縁や試料の取扱い(交換など)が繁雑になる欠点が
あった。Furthermore, in the conventional technique, it is necessary to maintain the sample substrate at a voltage almost as high as that of the ion source, which has the disadvantage of making electrical insulation from other parts and handling (replacement, etc.) of the sample complicated.
本発明の目的は、イオンビーム減速器として高周波四重
極電極を利用することにより、100eV以下で大電流
(mAレベル)のイオンビームが得られるイオンビーム
減速装置を提供することにある。An object of the present invention is to provide an ion beam deceleration device that can obtain an ion beam of 100 eV or less and a large current (mA level) by using a high frequency quadrupole electrode as an ion beam deceleration device.
本発明の他の目的は、試料電位を接地電位に保ちながら
照射を行うことを可能にしたイオンビーム減速装置を提
供するにある。Another object of the present invention is to provide an ion beam deceleration device that makes it possible to perform irradiation while keeping the sample potential at ground potential.
100eV以下のエネルギーにmA級イオンビームを減
速するために、本発明では軸方向に波打ち形状を持つ四
重極電極に高周波(数M Hz〜数100MHz)高電
圧を印加する方法を採用する。In order to decelerate the mA class ion beam to an energy of 100 eV or less, the present invention employs a method of applying a high frequency (several MHz to several 100 MHz) high voltage to a quadrupole electrode having a wavy shape in the axial direction.
これにより高周波四重極電極の持つイオンビーム強収束
作用が働くので、ビーム損失の少ない減速が実現できる
。更に、この発明を効果的に行うため、付随する技術的
手段として以下の発明を採用する。This allows the strong ion beam focusing effect of the high-frequency quadrupole electrode to work, making it possible to achieve deceleration with little beam loss. Furthermore, in order to carry out this invention effectively, the following invention is adopted as an accompanying technical means.
即ち、減速を受けるビームは高周波四重極の特定の位相
範囲に入った入射ビームだけであり、その位相範囲から
はずれた入射ビームは減速の途中で波打ち四重極電極に
あたり、電極間の放電を誘発する。これを避けるため特
定の位相範囲にのみビームを入射させるようにする。In other words, the only beams that undergo deceleration are the incident beams that fall within a specific phase range of the high-frequency quadrupole, and the incident beams that deviate from that phase range hit the undulating quadrupole electrodes during deceleration, causing a discharge between the electrodes. provoke. In order to avoid this, the beam is made incident only in a specific phase range.
具体的には、イオン加速電圧に制御を加えたり、イオン
源プラズマ発生時間を高周波四重極の特定の位相範囲の
みで行うようにすれば良い。更に、別のビーム集群装置
を付加する改良がある。Specifically, the ion accelerating voltage may be controlled or the ion source plasma generation time may be controlled only within a specific phase range of the high frequency quadrupole. Additionally, there are improvements that add another beam focusing device.
この他の付随する改良として、高周波四重極電極に印加
する電圧の周波数を可変にすることにより、所望とする
減速ビームのエネルギーを自在に調整、制御する。As another accompanying improvement, by varying the frequency of the voltage applied to the high-frequency quadrupole electrodes, the energy of the desired deceleration beam can be freely adjusted and controlled.
波打った四重極電極に高周波四重極を印加し、ビームエ
ネルギーを制御する高周波四重極(ラジオ・フリクエン
シー・クアドルボール、 Radi。Radio Frequency Quadrupole (Radio Frequency Quadrupole, Radi.
Frequency Quadrupole)の従来例
を第2図に示す。A conventional example of a frequency quadrupole is shown in FIG.
高周波四重極では、向い合った2本の電極の波打ち形状
は同一で、水平方向のlb、lb’ と垂直方向1a、
la’の2組の電極では互いの位相が180°ズしてい
る。即ち一方が山の時、他方は谷である。更に、2組の
電極には電圧は同じで位相が互いに180°ズした高周
波四重極が印加される。図中Vは高周波電圧の最大振幅
、ωは高周波の角周波数、βはイオンの速さと光速塵の
比、λは高周波の波長である。In a high-frequency quadrupole, the waving shapes of the two opposing electrodes are the same: lb, lb' in the horizontal direction, 1a in the vertical direction,
The two sets of electrodes la' are out of phase by 180°. That is, when one side is a mountain, the other side is a valley. Furthermore, a high frequency quadrupole with the same voltage and 180° phase shift is applied to the two sets of electrodes. In the figure, V is the maximum amplitude of the high frequency voltage, ω is the angular frequency of the high frequency, β is the ratio of the speed of ions to the speed of light dust, and λ is the wavelength of the high frequency.
通常の高周波四重極はイオンビームの加速に主に用いら
れ、数1. Ok e Vのイオンビームを約IM s
V程度に加速する時に使われる。四重接電極長は通常
1〜2m、印加する高周波の周波数は数M Hz〜数1
00MHzの桁で、通常は周波数は固定である。イオン
ビームが四重極電極内を通過すると軸方向に発生してい
る加速電界により加速され、速度が徐々に増す。したが
って、第2図中のβλは徐々に長くなる。即ち、波打ち
の形状としては、加速を行う場合、入射側で波のピッチ
(βλ)は細かく、徐々に粗くなるように加工される。A normal high-frequency quadrupole is mainly used for accelerating ion beams, and is expressed by the formula 1. Ok e V ion beam about IM s
It is used when accelerating to about V. The length of the quadruple contact electrode is usually 1 to 2 m, and the frequency of the applied high frequency is several MHz to several 1.
The frequency is usually fixed in the digits of 00 MHz. When the ion beam passes through the quadrupole electrode, it is accelerated by an accelerating electric field generated in the axial direction, and its speed gradually increases. Therefore, βλ in FIG. 2 gradually becomes longer. That is, the wave shape is processed so that when acceleration is performed, the wave pitch (βλ) is fine on the incident side and gradually becomes coarser.
波の形状は、イオンの種類、入射エネルギ、印加周波数
、高周波電圧振幅等により、計算によって求めることが
できる。The shape of the wave can be determined by calculation based on the type of ion, incident energy, applied frequency, high frequency voltage amplitude, etc.
高周波四重極によるイオンビームの加速は、数100e
Vから数kev〜数10kevへの加速に対しても効率
良く行われる。特に、高周波四重横加速では、四重極電
場が作る半径方向のビーム強収束作用が加速の全行程に
亘って鋤らくため、ビーム損失が少なく、100%近い
透過率で加速が行える利点がある。The acceleration of the ion beam by the high-frequency quadrupole is several 100 e
Acceleration from V to several keV to several tens of keV is also efficiently performed. In particular, in high-frequency quadruple transverse acceleration, the strong beam convergence effect in the radial direction created by the quadrupole electric field is maintained throughout the entire acceleration process, which has the advantage that beam loss is small and acceleration can be performed with nearly 100% transmittance. be.
ところで、イオン光学によれば、イオン源から出て試料
基板に到るまでにイオンビームが受ける制御器(例えば
ビームを絞る電界レンズや軌道を曲げる偏向器、加速、
減速電極など)は、制御器中心付近の近軸軌道を通るイ
オンに対し、光の場合のレンズと同じ働らきを持つもの
として扱える。By the way, according to ion optics, the ion beam is subjected to controllers (for example, an electric field lens that focuses the beam, a deflector that bends the trajectory, an acceleration,
A deceleration electrode, etc.) can be treated as having the same function as a lens in the case of light for ions passing on a paraxial trajectory near the center of the controller.
従って、光の場合と同様に、基板にあたった同じ条件(
エネルギー、イオンの位置、勾配)で逆進させれば、イ
オンは同じ軌道を通ってイオン源に到る。Therefore, as in the case of light, the same conditions (
If the ions are reversed (energy, ion position, gradient), the ions will reach the ion source via the same trajectory.
以上の考察から、100eV以下で入射し、数keV〜
数10keVで加速される様に構成した高周波四重極を
使って、逆に、数keV〜数1゜keVのエネルギーで
イオン源から引出したイオンビームを逆進させれば、高
い透過率でイオンビームは効率良<100eV以下に減
速されることになる。From the above considerations, the incidence is below 100 eV, and several keV ~
Conversely, if you use a high-frequency quadrupole configured to accelerate at several tens of keV and reverse the ion beam extracted from the ion source with an energy of several keV to several 1° keV, ions can be generated with high transmittance. The beam will be efficiently decelerated to less than <100 eV.
次に、高周波四重極による加速では、イオンビームは直
流的に入射させる。しかし、軸方向の加速で進むにつれ
、イオンビームは軸方向に集群されて塊状となる。高周
波四重極から出るイオンビームは、あたかも機関銃の玉
の様に出射される。Next, in acceleration using a high-frequency quadrupole, the ion beam is made to enter in a direct current manner. However, as the ion beam progresses with axial acceleration, it becomes concentrated in the axial direction and becomes clumpy. The ion beam emitted from the high-frequency quadrupole is fired like a machine gun ball.
集群後の状態を高周波電界の位相に対して見ると、第3
図に示した様に、通常は−30”付近を中心に、塊状と
なる。従って、逆進させる場合、直流ビームで入射させ
ると集群位相に入っていないイオンビームは減速を受け
ず発散して電極等に当る。If we look at the state after clustering with respect to the phase of the high-frequency electric field, the third
As shown in the figure, the ion beam usually forms a lump centered around -30". Therefore, when reversing, if the ion beam is incident as a DC beam, the ion beam that has not entered the cluster phase will not be decelerated and will diverge. Corresponds to electrodes, etc.
電極間には数10keVの高電圧が印加されるのでビー
ム電極照射により電極間放電が誘発され、安定な減速操
作が困難となる。安定運転のためには、パルス状のイオ
ンビームを高周波四重極に導入すれば良い。Since a high voltage of several tens of keV is applied between the electrodes, discharge between the electrodes is induced by beam electrode irradiation, making stable deceleration operation difficult. For stable operation, a pulsed ion beam can be introduced into a high-frequency quadrupole.
次に、高周波四重極を使ってイオンビームを減速する場
合、高周波電圧の周波数が一定の時、減速エネルギーは
固定となる。実用上は、エネルギーを変えることが要求
される。特定の波打ち形状を持つ電極に対し、減速エネ
ルギーを可変にするには、その周波数を可変にする必要
がある。このためには、周波数可変の高周波四重極発生
回路の電圧を電極に給電すれば良い。Next, when decelerating an ion beam using a high-frequency quadrupole, the deceleration energy is fixed when the frequency of the high-frequency voltage is constant. In practice, it is required to change the energy. In order to make the deceleration energy variable for an electrode with a specific wavy shape, it is necessary to make the frequency variable. For this purpose, a voltage from a frequency-variable high-frequency quadrupole generating circuit may be supplied to the electrodes.
以下、本発明の一実施例を第1図により説明する。本図
は、実施例と共に本発明の原理構成図でもある。イオン
源には磁場中のマイクロ波放電で高温、高密度プラズマ
を発生し、引出し電極5を使ってイオンビームを引出す
マイクロ波イオン源を使用した。イオン源から引出した
ビームを磁場偏向型の質量分離器4により質量分離し、
特定のイオンを高周波四重極1 b、1 b’ (1a
、1 a’ )を内蔵する容器9に導入した。高周波四
重極は、100eV以下で入射するSi イオンビー
ムが数10keVで加速される様に設計されたものを用
いた。電極長は60(1m、高周波電力は10MHz〜
30MHzで実験を行った。高周波電圧は1〜6kVで
実験を行った。投入電力はl0KW以下である。周波数
を可変にするため、ワンターンの銅製コイル(長さ20
〜45aa)と容量可変の真空コンデンサーからなる電
気共振回路で発生した高電圧を電極に供給している。周
波数の変化はコンデンサー容量値を変えて行った。第1
図の実施例では、入射ビーム電流は直流で入射させ、1
mA以下とした。実験の結果、試料室10内の試料8に
100eV以下のビーム電流が1mA弱、到達し、表面
にSi膜が堆積された。An embodiment of the present invention will be described below with reference to FIG. This figure is also a diagram of the principle configuration of the present invention as well as an embodiment. The ion source used was a microwave ion source that generates high-temperature, high-density plasma by microwave discharge in a magnetic field and extracts an ion beam using an extraction electrode 5. The beam extracted from the ion source is mass-separated by a magnetic field deflection type mass separator 4,
Specific ions are transferred to high-frequency quadrupole 1 b, 1 b' (1a
, 1a') was introduced into a container 9 containing the following. The high-frequency quadrupole used was one designed so that a Si 2 ion beam incident at 100 eV or less was accelerated at several tens of keV. Electrode length is 60 (1 m, high frequency power is 10 MHz ~
Experiments were conducted at 30 MHz. The experiment was conducted at a high frequency voltage of 1 to 6 kV. The input power is less than 10KW. To make the frequency variable, a one-turn copper coil (length 20
~45aa) and a high voltage generated by an electric resonant circuit consisting of a vacuum capacitor with variable capacity is supplied to the electrodes. The frequency was changed by changing the capacitance value of the capacitor. 1st
In the embodiment shown, the incident beam current is direct current and 1
mA or less. As a result of the experiment, a beam current of 100 eV or less reached the sample 8 in the sample chamber 10 at a little less than 1 mA, and a Si film was deposited on the surface.
第4図は1本発明に基づく別の実施例を説明する図であ
る。図では、高周波電圧の集群位相にある時だけイオン
ビームを高周波四重極に導入する。FIG. 4 is a diagram illustrating another embodiment based on the present invention. In the figure, the ion beam is introduced into the radio-frequency quadrupole only when it is in the cluster phase of the radio-frequency voltage.
このため、高周波電源11からの位相信号を受は取って
、所定の時間内だけイオン源加速電圧を所定の値に設定
する加速電圧制御器12を設けている。本実施例でのイ
オン源にかかる加速電圧の時間変化を第5図に示した。For this reason, an accelerating voltage controller 12 is provided which receives the phase signal from the high frequency power source 11 and sets the ion source accelerating voltage to a predetermined value only within a predetermined time. FIG. 5 shows the temporal change in the accelerating voltage applied to the ion source in this example.
設定電圧以下の加速電圧ではイオンは質量分離器により
大きく曲げられるため四重極電極の中心に入射しなくな
る。第5図では、パルス的に加速電圧が立上る波形とな
っているが、一部が設定電圧で一定になっている波形で
あれば良い。更に、第5図中の加速電圧パルスが、パル
ス幅のより小さい矩形パルスの高繰返しされたものであ
っても良いことは明らかである。When the accelerating voltage is lower than the set voltage, the ions are significantly bent by the mass separator and do not enter the center of the quadrupole electrode. In FIG. 5, the waveform is such that the acceleration voltage rises in a pulsed manner, but any waveform may be used as long as a part of the waveform is constant at the set voltage. Furthermore, it is clear that the accelerating voltage pulse in FIG. 5 may be a highly repeated rectangular pulse with a smaller pulse width.
また、集群位相にある時以外のイオン源加速電圧を設定
電圧値より高い値に保つ方法により、パルス的にビーム
を導入できることは明らかである。Furthermore, it is clear that the beam can be introduced in a pulsed manner by keeping the ion source acceleration voltage at a value higher than the set voltage value except when the ion source is in the cluster phase.
第6図は本発明に基づく別の実施例を説明する図である
。図では入射ビームをパルス的に導入するため、集群位
相にある時間の間だけマイクロ波発振器7を動作させ、
プラズマ室16にイオン源プラズマを発生させ、イオン
ビームを引出すものである。この時、加速電圧は一定の
設定電圧に保っである。実施例では、マグネトロンを発
振器7として用いていた。従って、マグネトロン電源1
−5からのマグネトロン陽極電圧が集群位相にある時間
だけマグネトロンに印加される制御回路14を設けた。FIG. 6 is a diagram illustrating another embodiment based on the present invention. In the figure, in order to introduce the incident beam in a pulsed manner, the microwave oscillator 7 is operated only during the time in the collective phase.
The ion source generates plasma in the plasma chamber 16 and extracts an ion beam. At this time, the acceleration voltage is kept at a constant set voltage. In the embodiment, a magnetron was used as the oscillator 7. Therefore, magnetron power supply 1
A control circuit 14 is provided in which the magnetron anode voltage from -5 is applied to the magnetron only during the time that it is in the cluster phase.
陽極電圧が一定値以上であれば。If the anode voltage is above a certain value.
マイクロ波発振し、マイクロ波が導入されれば。Microwave oscillation and if microwaves are introduced.
プラズマが点火してイオンビームは引出される。The plasma is ignited and the ion beam is extracted.
従って、陽極電圧波形は第5図の様に平坦な部分を持つ
必要はない。陽極電圧の大小はプラズマ密度の大小、従
って引出されるイオンビーム電流値に影響し、質量分離
器4中のビーム軌道には影響を与えない。実際のイオン
ビーム蒸着では膜厚を別な方法でモニターするので、試
料基板へのイオンビーム電流の多少の変動は実用上、問
題とならない。Therefore, the anode voltage waveform does not need to have a flat portion as shown in FIG. The magnitude of the anode voltage affects the magnitude of the plasma density and therefore the extracted ion beam current value, but does not affect the beam trajectory in the mass separator 4. In actual ion beam evaporation, the film thickness is monitored using a different method, so slight fluctuations in the ion beam current to the sample substrate do not pose a practical problem.
第4図、第6図に示した別の実施例に基づき、マイクロ
波イオン源にGa蒸気を導入してGaイオンを100e
V以下に減速し、mAレベルの減速ビーム電流でGaを
試料に堆積させた。次いで。Based on another embodiment shown in FIGS. 4 and 6, Ga vapor is introduced into the microwave ion source to generate Ga ions at 100 e
The beam was decelerated below V, and Ga was deposited on the sample with a decelerated beam current at the mA level. Next.
A s H3ガスをイオン源に導入し、Asイオンを試
料基板にイオンビーム蒸着し、これらを繰返してGaと
Asの多層膜を高速で積層した。As H3 gas was introduced into the ion source, As ions were ion beam-deposited onto the sample substrate, and these steps were repeated to form a multilayer film of Ga and As at high speed.
本発明では、LOOeV以下にイオンビームを減速する
ことを目的に記述したが、発明の内容から数keV〜数
100keVのイオンビームを100eV以上のエネル
ギーに減速する時にも有効であることは自明である。ま
た、減速エネルギーを可変にするため、第1図に示した
様に、共振周波数可変の電気回路で発生した電圧を供給
した。Although the present invention has been described for the purpose of decelerating an ion beam to below LOOeV, it is obvious from the content of the invention that it is also effective when decelerating an ion beam of several keV to several 100 keV to an energy of 100 eV or more. . In addition, in order to make the deceleration energy variable, as shown in FIG. 1, a voltage generated by an electric circuit with a variable resonance frequency was supplied.
これにより、100eV以下の領域でも効率良くイオン
エネルギーが変えられた。本実施例ではSi、Ga、A
sのイオンビーム減速例を示したが、他のイオン種に対
しても同様な効果が得られることは明らかである。As a result, the ion energy could be efficiently changed even in the region of 100 eV or less. In this example, Si, Ga, A
Although an example of ion beam deceleration for s is shown, it is clear that similar effects can be obtained for other ion types.
次に、第7図は本発明に基づく別の実施例を説明する図
である。図では、イオン源から引出された直流ビームを
別途集群させるため、別の高周波電源18で励振させた
シングルギャップ型のキャビティー17を設け、直流ビ
ームを塊状に集群させる。集群されたビームが減速器高
周波四重極の安定位相に入射させるため、位相制御器1
9を設れ、2つの励振電源11.18相互の位相差を調
整する。本実施例の場合、装置全体がやや大きくなり操
作はやや複雑になるものの、直流ビーム電流を無駄なく
減速させる利点が生まれ、大電流化に有利であることが
確かめられた。Next, FIG. 7 is a diagram illustrating another embodiment based on the present invention. In the figure, in order to separately collect the DC beams extracted from the ion source, a single-gap cavity 17 excited by another high-frequency power source 18 is provided, and the DC beams are collected in a lump. In order to make the focused beam enter the stable phase of the decelerator high frequency quadrupole, the phase controller 1
9 to adjust the mutual phase difference between the two excitation power sources 11 and 18. In the case of this example, although the entire device is a little larger and the operation is a little more complicated, it has been confirmed that it has the advantage of decelerating the DC beam current without waste, and is advantageous for increasing the current.
本発明によれば、従来は高々数μA〜数1゜μAの桁の
ビーム電流値しか得られなかった100eV以下の極低
エネルギーイオンビームについて、100μAを越える
大電流ビームの実現が可能となる。これにより、高速の
イオンビーム蒸着が可能となり、新機能の多層膜、単結
晶膜が作製可能となり、実用に供しその効果は著しく大
である。According to the present invention, it is possible to realize a large current beam exceeding 100 μA for an ultra-low energy ion beam of 100 eV or less, which conventionally could only obtain beam current values of the order of several μA to several 1° μA. This makes it possible to perform high-speed ion beam evaporation, making it possible to produce multilayer films and single crystal films with new functions.
第1図は本発明のイオンビーム減速装置の一実施例を示
す図、第2図は従来の高周波四重極の形状と電圧印加状
態を説明する斜視図、第3図は従来の高周波四重極にお
ける加速時のビームの集群位相を説明する図、第4図は
本発明の別の実施例を説明する図、第5図は第4図の実
施例におけるイオン源加速電圧の時間変化を説明する図
、第6図、及び第7図はそれぞれ本発明に基づく別の実
施例を説明する図である。
la、la’ 、lb、lb’ −高周波四重極電極、
2・・容量可変真空コンデンサー、3 銅製ワンタンコ
イル、4・・・質量分離器、5・・イオン引出し電極、
6・・・空芯コイル、7・・・マイクロ波発振器、8・
・・試料基板、9・・減速器真空容器、1o・・試料室
真空容器、11・・高周波電源、12・・加速電圧制御
器、13・・・引出し電極用電源、14・・マグネトロ
ン陽極電圧制御器、15・・マグネトロン電源、16・
・・プラズマ室、17・・・シングルギャップ型のキャ
ビティー、18・・キャビティー励振用高周波第
図
第
図
10
第
図
1
第
図
第
図Fig. 1 is a diagram showing an embodiment of the ion beam deceleration device of the present invention, Fig. 2 is a perspective view illustrating the shape and voltage application state of a conventional high-frequency quadrupole, and Fig. 3 is a diagram showing a conventional high-frequency quadrupole. FIG. 4 is a diagram explaining the clustering phase of the beam during acceleration at the pole, FIG. 4 is a diagram explaining another embodiment of the present invention, and FIG. 5 is a diagram explaining the temporal change of the ion source acceleration voltage in the embodiment of FIG. 4. , FIG. 6, and FIG. 7 are diagrams each explaining another embodiment based on the present invention. la, la', lb, lb' - high frequency quadrupole electrodes,
2. Capacity variable vacuum condenser, 3. Copper wonton coil, 4. Mass separator, 5. Ion extraction electrode,
6...Air core coil, 7...Microwave oscillator, 8.
...sample substrate, 9..decelerator vacuum container, 1o..sample chamber vacuum container, 11..high frequency power supply, 12..acceleration voltage controller, 13..power supply for extraction electrode, 14..magnetron anode voltage Controller, 15... Magnetron power supply, 16...
...Plasma chamber, 17...Single gap type cavity, 18...High frequency for cavity excitation Fig. 10 Fig. 1 Fig. Fig.
Claims (1)
らのイオンビームのエネルギーを減速するイオン減速器
と、該イオン減速器で減速されたイオンビームを基板に
照射する試料室とを備えたイオンビーム減速装置におい
て、前記イオン減速器として、軸方向に沿って波打ち形
状を持つ四本の電極を四重極配置し、且つ、ビーム入射
側での波打ちのピッチを粗く、出射側に進むにつれてピ
ッチを細かくなるように電極形状を形成し、この電極に
高周波高電圧を印加すると共に、四重極中心部分の軸方
向にイオンビームを導入せしめたことを特徴とするイオ
ンビーム減速装置。 2、請求項1記載のものにおいて、前記イオン源に印加
するイオン引出し用のイオン加速用直流電圧の印加時間
を制御し、前記四重極印加の高周波電圧が特定の位相範
囲にある時、イオンビームが入射するようにせしめたこ
とを特徴とするイオンビーム減速装置。 3、請求項1記載のイオン減速装置において、前記イオ
ン源が磁場中のマイクロ波放電で高温高密度プラズマを
発生し、大電流イオンビームを引出すマイクロ波イオン
源であり、且つマイクロの発振時間を、高周波四重極印
加電圧の特定の位相範囲制限せしめたことを特徴とする
イオンビーム減速装置。 4、請求項1記載のイオン減速装置において、前記高周
波四重極に印加する高周波電圧の周波数を可変にし、減
速エネルギーを可変としたことを特徴とするイオンビー
ム減速装置。 5、請求項1記載のイオン減速装置において、減速器の
前に高周波電界を発生するシングルギャップ型のキャビ
ティーを設けると共に、減速器に印加する高周波電界と
シングルギャップに印加される高周波電界の位相を調整
する位相調整器を備えていることを特徴とするイオンビ
ーム減速装置。[Claims] 1. An ion source that generates an ion beam, an ion decelerator that decelerates the energy of the ion beam from the ion source, and a sample that irradiates a substrate with the ion beam decelerated by the ion decelerator. an ion beam deceleration device comprising a chamber, the ion decelerator having four electrodes having a wavy shape arranged in a quadrupole along the axial direction, and having a coarse pitch of the undulations on the beam incidence side; An ion beam characterized in that an electrode shape is formed so that the pitch becomes finer as it advances toward the emission side, a high frequency and high voltage is applied to this electrode, and the ion beam is introduced in the axial direction of the central portion of the quadrupole. Reduction device. 2. The device according to claim 1, wherein the application time of the ion accelerating DC voltage for ion extraction applied to the ion source is controlled, and when the high frequency voltage applied to the quadrupole is in a specific phase range, the ion An ion beam deceleration device characterized by causing a beam to enter. 3. The ion deceleration device according to claim 1, wherein the ion source is a microwave ion source that generates high-temperature, high-density plasma by microwave discharge in a magnetic field and extracts a large current ion beam, and that the ion source has a microwave oscillation time of , an ion beam deceleration device characterized in that a specific phase range of a high-frequency quadrupole applied voltage is limited. 4. The ion beam deceleration device according to claim 1, wherein the frequency of the high-frequency voltage applied to the high-frequency quadrupole is made variable, and the deceleration energy is made variable. 5. In the ion deceleration device according to claim 1, a single-gap type cavity for generating a high-frequency electric field is provided in front of the decelerator, and the phase of the high-frequency electric field applied to the decelerator and the high-frequency electric field applied to the single gap is adjusted. An ion beam deceleration device characterized by comprising a phase adjuster for adjusting the ion beam deceleration device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2038228A JPH0817117B2 (en) | 1990-02-21 | 1990-02-21 | Ion beam reducer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2038228A JPH0817117B2 (en) | 1990-02-21 | 1990-02-21 | Ion beam reducer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03245498A true JPH03245498A (en) | 1991-11-01 |
JPH0817117B2 JPH0817117B2 (en) | 1996-02-21 |
Family
ID=12519452
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2038228A Expired - Fee Related JPH0817117B2 (en) | 1990-02-21 | 1990-02-21 | Ion beam reducer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0817117B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117293006B (en) * | 2023-11-27 | 2024-04-05 | 青岛四方思锐智能技术有限公司 | Radio frequency leading-out hydrogen helium high-energy ion implanter |
-
1990
- 1990-02-21 JP JP2038228A patent/JPH0817117B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117293006B (en) * | 2023-11-27 | 2024-04-05 | 青岛四方思锐智能技术有限公司 | Radio frequency leading-out hydrogen helium high-energy ion implanter |
Also Published As
Publication number | Publication date |
---|---|
JPH0817117B2 (en) | 1996-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4667111A (en) | Accelerator for ion implantation | |
TW202013415A (en) | Compact high energy ion implantationsystem and apparatus and method forproducing high energy ion beam | |
WO1985002489A1 (en) | Quadrupole particle accelerator | |
Wutte et al. | Emittance measurements for high charge state ion beams extracted from the AECR-U ion source | |
Faircloth | Ion sources for high-power hadron accelerators | |
US4749910A (en) | Electron beam-excited ion beam source | |
EP0565089B1 (en) | Ion implanting apparatus | |
EP0639939A1 (en) | Fast atom beam source | |
JPH03245498A (en) | Ion beam deceleration device | |
JP3510174B2 (en) | Ion generator and film forming device | |
Abdelrahman | Factors enhancing production of multicharged ion sources and their applications | |
JPH0770512B2 (en) | Low energy ionized particle irradiation device | |
JPH0488165A (en) | Sputtering type ion source | |
JP2617240B2 (en) | Control method of acceleration energy in high frequency quadrupole accelerator | |
JP2566602B2 (en) | Ion source | |
JPH0757898A (en) | High frequency type charged particle accelerating device | |
Qian et al. | A new compensating element for a femtosecond photoelectron gun | |
RU2004081C1 (en) | Source of fast heavy atoms | |
JPS63221547A (en) | Ion neutralizer | |
JP2915164B2 (en) | Ion extraction method from plasma by high frequency electric field | |
RU2119730C1 (en) | Source of multicomponent nuclear flows | |
JP2700035B2 (en) | Ion source | |
JP2671219B2 (en) | Fast atom beam source | |
JPH0822789A (en) | Multicusp type microwave ion source | |
Riyopoulos | Micropulsed ion source via self-sputtering avalanche |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |