JP2915164B2 - Ion extraction method from plasma by high frequency electric field - Google Patents
Ion extraction method from plasma by high frequency electric fieldInfo
- Publication number
- JP2915164B2 JP2915164B2 JP3107081A JP10708191A JP2915164B2 JP 2915164 B2 JP2915164 B2 JP 2915164B2 JP 3107081 A JP3107081 A JP 3107081A JP 10708191 A JP10708191 A JP 10708191A JP 2915164 B2 JP2915164 B2 JP 2915164B2
- Authority
- JP
- Japan
- Prior art keywords
- plasma
- electric field
- frequency
- frequency electric
- ion extraction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Electron Sources, Ion Sources (AREA)
- Plasma Technology (AREA)
- Particle Accelerators (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は高周波電界によるプラズ
マからのイオン引き出しに係り、プラズマを用いたイオ
ン源や、プラズマからイオンを引き出し利用する半導体
製造プロセス、またレ−ザ照射により生成された光電離
プラズマからのイオン引出し方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to extraction of ions from plasma by a high-frequency electric field, an ion source using plasma, a semiconductor manufacturing process for extracting and utilizing ions from plasma, and light generated by laser irradiation. The present invention relates to a method for extracting ions from ionized plasma.
【0002】[0002]
【従来の技術】従来技術として、プラズマからのイオン
の引出しは、プラズマに静電界を印加して実施してい
た。2. Description of the Related Art Conventionally, extraction of ions from plasma has been performed by applying an electrostatic field to the plasma.
【0003】一方、高周波電界によりプラズマ中に電界
を発生させ、プラズマ中の荷電粒子(電子及びイオン)
を加速する技術が、核融合におけるプラズマ加熱研究
で、種々試みられてきた。その代表的な従来技術とし
て、プラズマ中のイオンサイクロトロン運動の周波数近
くの高周波電界を印加しイオンの閉じ込め効率を向上す
る技術がある(文献名古屋大学プラズマ研究所研究報
告、IPPJ−REV−5(1989)「高周波閉じ込
めとカスプ」佐藤照幸・高山一男編、)。On the other hand, an electric field is generated in a plasma by a high-frequency electric field, and charged particles (electrons and ions) in the plasma are generated.
Various techniques have been attempted in plasma heating research in nuclear fusion. As a typical conventional technique, there is a technique for improving the ion confinement efficiency by applying a high-frequency electric field near the frequency of ion cyclotron motion in plasma (Nagoya University Research Institute for Plasma Research, IPPJ-REV-5 (1989)). ) "High Frequency Confinement and Cusps", edited by Teruyuki Sato and Kazuo Takayama,).
【0004】[0004]
【発明が解決しようとする課題】しかし前者の従来技術
では、引出しイオン流束を増加させるためにプラズマの
密度を増加させても、外部電界はプラズマ表面近傍でシ
−ルドされプラズマ内部へ浸透できなくなり、イオン引
き出し効率が改善されない問題があった。また、イオン
引出し効率を向上させるために高電圧を印加するとイオ
ンの運動エネルギ−が大きくなるために、反射等により
電極へのイオン付着率が低下したり、電極の消耗が激し
くなる問題があった。However, in the former prior art, even if the density of the plasma is increased to increase the extracted ion flux, the external electric field can be shielded near the plasma surface and penetrate into the plasma. There is a problem that ion extraction efficiency is not improved. In addition, when a high voltage is applied to improve the ion extraction efficiency, the kinetic energy of the ions increases, so that there is a problem that the ion adhesion rate to the electrode is reduced due to reflection or the like, and the electrode is greatly consumed. .
【0005】後者の従来技術は、イオンをプラズマ内に
閉じ込める様にイオンを加速することを目的として、高
周波電界の周波数や発生方法及び電極構造を決定してお
り、後述の本発明の目的であるイオンの引出しには適用
できない。In the latter prior art, the frequency, generation method, and electrode structure of a high-frequency electric field are determined for the purpose of accelerating the ions so as to confine the ions in the plasma. Not applicable for ion extraction.
【0006】本発明の目的は、プラズマにより外部より
印加された静電界がシ−ルドされることによってプラズ
マからのイオン引出し効率が低下するのを改善するため
のイオン引出し方法を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide an ion extraction method for improving the efficiency of extraction of ions from the plasma due to the shielding of an externally applied electrostatic field by the plasma. .
【0007】[0007]
【課題を解決するための手段】上記目的を達成するため
に、プラズマからイオンを引出すプロセスにおいて、プ
ラズマが持つ固有の振動の周波数である共鳴周波数に一
致させた高周波電界をプラズマに印加することにより、
プラズマ全域に電界を浸透させて、イオンをプラズマ外
部にドリフトさせ引出すことを特徴とするイオン引出し
方法が用いられる。 In order to achieve the above object, in a process of extracting ions from a plasma, a process for extracting ions is performed.
The resonance frequency, which is the frequency of natural vibration
By applying the matched high-frequency electric field to the plasma,
The electric field penetrates the entire plasma to remove ions from the plasma.
Extraction characterized by drifting out to the part
A method is used.
【0008】[0008]
【作用】高周波電界をプラズマに印加する際に、その周
波数をプラズマが持つ固有の振動の周波数に一致させる
と高周波電界はプラズマ中に浸透し、この電界はイオン
をプラズマの外部に引出すように働く。When a high-frequency electric field is applied to the plasma and the frequency is made to coincide with the frequency of the inherent vibration of the plasma, the high-frequency electric field penetrates into the plasma, and this electric field works to extract ions out of the plasma. .
【0009】特に、プラズマをはさんだ電極で高周波電
界を印加する場合には、プラズマと電極は静電的に結合
し、プラズマ中に静電固有振動を効率良く誘起できる。
この静電固有振動が作る電界は電極面の法線方向であ
り、イオンはこの電界で周期的に加速減速しながら電極
方向にドリフトし、プラズマの表面まで導かれる。プラ
ズマ表面に導かれたイオンは外部電界でプラズマ外部に
引出すことができる。In particular, when a high-frequency electric field is applied between the electrodes sandwiching the plasma, the plasma and the electrodes are electrostatically coupled to each other, and the electrostatic natural vibration can be efficiently induced in the plasma.
The electric field generated by the electrostatic natural vibration is in the normal direction of the electrode surface, and the ions drift toward the electrode while periodically accelerating and decelerating with the electric field, and are guided to the plasma surface. The ions guided to the plasma surface can be extracted outside the plasma by an external electric field.
【0010】また、印加する高周波電界の周波数をプラ
ズマパラメ−タ及び電極構造にあわせて適当に選択する
と、プラズマ中に固有振動を発生できるので、プラズマ
中の電界強度を真空中の強度に比べてかなり強くするこ
とができる。ここで、固有振動とはプラズマ中を伝播す
る波で進行方向が互いに逆の2つの波が合成されて作る
定在波型の振動のことである。When the frequency of the high-frequency electric field to be applied is appropriately selected in accordance with the plasma parameters and the electrode structure, a natural vibration can be generated in the plasma. Can be quite strong. Here, the natural vibration is a standing wave vibration generated by combining two waves that travel in the plasma and that travel in opposite directions.
【0011】[0011]
【実施例】以下、本発明の一実施例を図1により説明す
る。プラズマ1を挾んで1対の平行平板電極2を設置
し、電極面に平行に磁場3を印加しながら、電極に電源
4から高周波電界5を印加してイオンを電極に引出す。An embodiment of the present invention will be described below with reference to FIG. A pair of parallel plate electrodes 2 are placed with the plasma 1 interposed therebetween, and while applying a magnetic field 3 parallel to the electrode surface, a high frequency electric field 5 is applied to the electrodes from a power source 4 to extract ions to the electrodes.
【0012】プラズマ中に浸透する高周波電界の周波数
を以下計算する。高周波電界印加時のプラズマの比誘電
率εpは εp=1+εe+εi と表わせる。ここで、εeはプラズマ中の電子による寄
与を示し、εiはイオンの寄与を示す。ここで、εpは
複素数であるが、その実数部Re(εp)がゼロ近傍の
値となる共鳴周波数の時、高周波電界はプラズマ中に浸
透できる。The frequency of the high-frequency electric field penetrating into the plasma is calculated below. The relative permittivity εp of the plasma when a high-frequency electric field is applied can be expressed as εp = 1 + εe + εi. Here, εe indicates the contribution of electrons in the plasma, and εi indicates the contribution of ions. Here, .epsilon.p is a complex number, but when the real part Re (.epsilon.p) has a resonance frequency near zero, a high-frequency electric field can penetrate into the plasma.
【0013】ここで、「電子のラ−マ半径がプラズマの
幅に比べて十分小さく、かつ、イオンのラ−マ半径がプ
ラズマの幅に比べて十分大きいという条件」(条件−1
と呼ぶ。)を満たす様な磁場をプラズマ領域に作ると、
εpの周波数依存は図2のように変化する。この特性を
計算する際に用いたパラメ−タ−を以下にまとめる。Here, "the condition that the rama radius of electrons is sufficiently smaller than the width of the plasma and the rama radius of ions is sufficiently larger than the width of the plasma" (condition-1)
Call. When a magnetic field that satisfies) is created in the plasma region,
The frequency dependence of εp changes as shown in FIG. The parameters used in calculating this characteristic are summarized below.
【0014】電極間隔;5cm、 電極長さ;100cm、 磁場強度;50ガウス、 プラズマ密度;5×1010/cm3、 イオン温度;0.5eV、 電子温度;1eV 図中で実線は誘電率の実数部を示し、Re(εp)〜0
となるプラズマの共鳴周波数は4つある。また、図中の
点線は誘電率の虚数部で、この値が大きいとプラズマ中
で高周波電界が電子にエネルギ−を与え、波が減衰して
しまうため、プラズマ中で電界が均一に生成できない可
能性がある。Electrode spacing: 5 cm, electrode length: 100 cm, magnetic field strength: 50 gauss, plasma density: 5 × 10 10 / cm 3 , ion temperature: 0.5 eV, electron temperature: 1 eV Indicates the real part, and Re (εp) ε0
There are four plasma resonance frequencies. The dotted line in the figure is the imaginary part of the dielectric constant. If this value is large, the high-frequency electric field gives energy to the electrons in the plasma and the waves are attenuated, so that the electric field cannot be generated uniformly in the plasma. There is.
【0015】プラズマ中の高周波電界によるイオンのド
リフト速度は周波数に逆比例するため、低周波の高周波
電界ほどイオンの引出し速度が速くなり、引出し時間が
短くなるので、引出し効率は高くなる。よって、図中の
144MHzや2.8GHzの高い共鳴周波数では、高
周波電界の振動周期が速すぎるためにイオンのドリフト
速度が小さく、引出し効率が低くなる。一方、270k
Hz(f1と呼ぶ)及び5.7MHz(f2と呼ぶ)の共
鳴周波数では、前2者に比べ2〜4桁振動数が低くイオ
ン引出しに適している。この共鳴周波数f1では誘電率
の虚数部が大きいが、電極間でイオン引出し用の電界は
波長程度の領域にしか存在せず、電子の相互作用距離が
非常に短いので、上述したプラズマ中での高周波電界の
減衰は一般に無視できる。Since the drift speed of ions due to the high-frequency electric field in the plasma is inversely proportional to the frequency, the lower the frequency of the high-frequency electric field, the faster the extraction speed of the ions and the shorter the extraction time, and the higher the extraction efficiency. Therefore, at a high resonance frequency of 144 MHz or 2.8 GHz in the figure, the oscillation period of the high-frequency electric field is too fast, so that the ion drift speed is low and the extraction efficiency is low. On the other hand, 270k
The resonant frequency of Hz (f 1 hereinafter) and 5.7MHz (referred to as f 2), 2 to 4 orders of magnitude frequency is suitable for low ion extraction compared to the former two. Although the imaginary part of the dielectric constant The resonant frequency f 1 is large, the electric field for ion extraction between the electrodes exist only in a region having a wavelength of about, because the interaction length of the electrons is very short, in the plasma as described above In general, the attenuation of the high-frequency electric field can be ignored.
【0016】共鳴周波数f1及びf2は、電極長を長くす
ると低周波側にシフトするので、イオン引出し効率向上
の観点から可能な限り長尺型の電極を用いることが望ま
しい。また、共鳴周波数f1は電極間隔を大きくした
り、電子温度を低下させることで低周波側にシフトす
る。共鳴周波数f2は、磁場強度を条件−1の範囲内で
弱くしたり、電極間隔を狭くすると低周波側にシフトさ
せることができる。Since the resonance frequencies f 1 and f 2 shift to the lower frequency side when the electrode length is increased, it is desirable to use as long an electrode as possible from the viewpoint of improving the ion extraction efficiency. Further, the resonance frequency f 1 is shifted or increasing the electrode distance, the low frequency side by reducing the electron temperature. Resonance frequency f 2 may be shifted or weaken the magnetic field strength within the range of conditions -1 and narrowing the electrode spacing to a lower frequency.
【0017】プラズマに周波数f1の高周波電界を印加
した場合のプラズマ内の電界強度の空間分布の1例を図
3に示す。高周波電界はプラズマ中心で最大となり、電
極面でゼロとなる固有振動となる。この電界中でイオン
の運動を考えると、図4のようになる。ピ−ク値100
V/cmで、時刻t=0μsで立ち上がり始める電界が
プラズマ中で発生したとき(図4(a))、電極に対し
て垂直方向(x軸方向)のイオンの速度及び位置の時間
変化は図4(b)及び(c)の様になる。t=0で初速
度0のイオンの速度は、高周波電界と90°位相が遅れ
るために図4−(b)の様になる。イオンの移動距離は
(b)を積分して得られ、イオンは振動しながらx軸方
向にドリフトする。したがって、イオンはプラズマの表
面に導かれ、プラズマ表面から引出される。この計算で
は、プラズマ中に100V/cmの一様な電界が存在す
るとイオンは3cmの距離を7μsで移動できることに
なる。この速度は、静電界がプラズマで完全にシ−ルド
された場合のイオンの速度に比べ約1桁速く、よって高
周波電界によるイオン引出し効率を約1桁向上できるこ
とになる。FIG. 3 shows an example of the spatial distribution of the electric field intensity in the plasma when a high-frequency electric field having a frequency f 1 is applied to the plasma. The high-frequency electric field has a natural vibration that becomes maximum at the center of the plasma and becomes zero at the electrode surface. Considering the movement of ions in this electric field, the result is as shown in FIG. Peak value 100
When an electric field that starts rising at time t = 0 μs is generated in the plasma at V / cm (FIG. 4A), the time change of the ion velocity and position in the direction perpendicular to the electrode (x-axis direction) is shown in FIG. 4 (b) and (c). At t = 0, the velocity of the ion having the initial velocity of 0 is as shown in FIG. The moving distance of the ions is obtained by integrating (b), and the ions drift in the x-axis direction while oscillating. Thus, ions are directed to and extracted from the plasma surface. In this calculation, if a uniform electric field of 100 V / cm exists in the plasma, the ions can move a distance of 3 cm in 7 μs. This speed is about one order of magnitude higher than the speed of ions when the electrostatic field is completely shielded by the plasma, so that the ion extraction efficiency by the high-frequency electric field can be improved by about one order.
【0018】以上、磁場が存在する際の高周波電界によ
るイオン引出し法について述べたが、磁場を利用しなく
てもプラズマ中に同様の電界を生成できれば、イオン引
出しは可能である。The ion extraction method using a high-frequency electric field in the presence of a magnetic field has been described above. However, if a similar electric field can be generated in plasma without using a magnetic field, ion extraction is possible.
【0019】また、プラズマに印加する高周波電界の初
期位相を図4に示した値よりπだけずらすと、イオンの
加速方向はx軸の負の方向になるので、イオンの引出し
方向を逆にできる。また、プラズマを放電やレ−ザによ
りパルス的に生成するときは、プラズマ生成のタイミン
グと高周波電界の位相を、イオン引出し方向を考えて制
御する必要がある。この時、高周波電界により誘起され
るプラズマ中の電界の形成時間が長くイオン引出し効率
が低くなるときは、あらかじめ低密度のプラズマを生成
してこれに高周波電界を弱く印加してプラズマ内に電界
を浸透させておき、次に高密度プラズマを生成すると同
時に高周波電界の強度をあげて、プラズマ内の電界形成
時間を短縮することが考えられる。When the initial phase of the high-frequency electric field applied to the plasma is shifted by π from the value shown in FIG. 4, the ion acceleration direction becomes the negative direction of the x-axis, so that the ion extraction direction can be reversed. . When the plasma is generated in a pulsed manner by a discharge or a laser, it is necessary to control the timing of the plasma generation and the phase of the high-frequency electric field in consideration of the ion extraction direction. At this time, when the formation time of the electric field in the plasma induced by the high-frequency electric field is long and the ion extraction efficiency is low, a low-density plasma is generated in advance, and a high-frequency electric field is weakly applied thereto, and the electric field is generated in the plasma. It is conceivable to generate the high-density plasma and to increase the intensity of the high-frequency electric field at the same time as reducing the electric field forming time in the plasma.
【0020】次に本発明の2番目の実施例を図5で説明
する。この実施例では、プラズマからのイオン引出し用
電極2を分割してプラズマをはさむように設置する。位
相調整器8で各電極に印加する高周波電界の位相に差を
つけて、電極に平行方向の高周波電界の波長を制御す
る。これにより、電極に平行方向のプラズマ中の電界分
布を制御して、電極にたいするイオン引出し方向、引出
し時間及び引出し効率を制御する。Next, a second embodiment of the present invention will be described with reference to FIG. In this embodiment, the electrode 2 for extracting ions from the plasma is divided so as to sandwich the plasma. The phase of the high-frequency electric field applied to each electrode is made different by the phase adjuster 8 to control the wavelength of the high-frequency electric field in the direction parallel to the electrodes. Thus, the electric field distribution in the plasma in the direction parallel to the electrode is controlled to control the ion extraction direction, extraction time, and extraction efficiency for the electrode.
【0021】イオン引出しに伴って、プラズマの密度、
温度、形状等のプラズマパラメ−タが変化するために、
共鳴周波数がドリフトする可能性がある。この場合には
イオン回収に伴う共鳴周波数の変化に伴って、高周波電
界の周波数を高速で掃引(チャ−ピング)する必要があ
る。この時、周波数の掃引はイオン電流をモニタ−し
てこれが最大になるように周波数を変化させる帰還制御
型の掃引法あらかじめイオン引出しにともなった周波
数の変化を予想して、これに対応する周波数変化ができ
るプログラム式任意波形発生器による掃引法が可能であ
る。With the extraction of the ions, the density of the plasma,
Because plasma parameters such as temperature and shape change,
The resonance frequency can drift. In this case, it is necessary to sweep (chirp) the frequency of the high-frequency electric field at a high speed along with the change in the resonance frequency accompanying the ion recovery. At this time, the frequency sweep is a feedback control type sweeping method in which the ion current is monitored and the frequency is changed so that the current is maximized. The frequency change accompanying the ion extraction is predicted in advance, and the corresponding frequency change is performed. A sweep method using a programmable arbitrary waveform generator that can perform the above method is possible.
【0022】高周波電界を有効にプラズマに印加するた
めに、高周波発振器とプラズマとの間にインピ−ダンス
整合器を設置する必要がある。高周波電界の周波数を掃
引するときには、この整合器の同調も高速でチュ−ニン
グする必要がある。インピ−ダンス整合器は、コンデン
サ−とコイルで構成されており、インピ−ダンスの整合
はこれらの値を調整して実施する。イオン引出しの時間
がms以下のときには、これらの値を変化させるのに機
械的な調整法では難しい。このための方法として、コイ
ルのリアクタンスを高速で制御する方法が考えられる。
これは、磁性体に2つのコイルを巻いた構造をもち、そ
の1つに流す電流を制御して磁性体内の磁束を制御、他
方を整合器用のコイルとして用いる。したがって、整合
器からの高周波電力の反射パワ−をモニタ−して、これ
が最小になるようにコイル1に流す電流を制御すれば、
高速でインピ−ダンスの整合がとれる。インピ−ダンス
整合器調整法には、抵抗回路を整合回路出力に並列につ
け加えることによって整合のQ値を下げ、共鳴周波数の
変化範囲以上に同調周波数領域を広げる方法もある。In order to effectively apply a high-frequency electric field to the plasma, it is necessary to provide an impedance matching device between the high-frequency oscillator and the plasma. When sweeping the frequency of the high frequency electric field, it is necessary to tune this matching device at a high speed. The impedance matching device is composed of a capacitor and a coil, and the impedance matching is performed by adjusting these values. When the ion extraction time is less than ms, it is difficult to change these values by a mechanical adjustment method. As a method for this, a method of controlling the reactance of the coil at a high speed can be considered.
This has a structure in which two coils are wound around a magnetic body, the current flowing through one of them is controlled to control the magnetic flux in the magnetic body, and the other is used as a coil for a matching device. Therefore, by monitoring the reflected power of the high-frequency power from the matching device and controlling the current flowing through the coil 1 so as to minimize the reflected power,
The impedance can be matched at high speed. As an impedance matching device adjustment method, there is a method of lowering the Q value of matching by adding a resistance circuit in parallel with the output of the matching circuit, and extending the tuning frequency region beyond the change range of the resonance frequency.
【0023】3番目の実施例として、静電界に高周波電
界を印加してイオン引出しをする方法を示す。この方法
では、高周波電界でプラズマ内からイオンを引出し、こ
れをプラズマ表面で静電界により追加速して電極に入射
させるため、イオン電流とイオン運動エネルギ−を独立
に制御できる特徴をもつ。このため、プラズマを用いた
物質表面加工や粒子打ち込みが可能となる。また、この
方法で、高周波電界によるイオン引出しができなくなる
までプラズマが低密度になったときに、静電界でイオン
の引出しを続行させることも可能である。As a third embodiment, a method of extracting ions by applying a high-frequency electric field to an electrostatic field will be described. In this method, ions are extracted from the plasma by a high-frequency electric field, and the ions are added to the electrodes at an additional speed on the plasma surface by an electrostatic field, so that the ion current and the ion kinetic energy can be controlled independently. Therefore, material surface processing and particle implantation using plasma can be performed. Further, by this method, it is possible to continue the extraction of the ions by the electrostatic field when the plasma becomes low density until the extraction of the ions by the high-frequency electric field becomes impossible.
【0024】[0024]
【発明の効果】本発明によれば、静電界印加ではイオン
引出し効率が低下するような高密度プラズマからでも短
時間でイオンをひきだせ、また、引出し時の運動エネル
ギ−も制御可能な手段を提供できる。According to the present invention, there is provided means for extracting ions in a short time even from a high-density plasma in which the ion extraction efficiency is reduced by applying an electrostatic field, and for controlling the kinetic energy at the time of extraction. it can.
【図1】本発明をイオン回収電極に平行な磁場を利用し
て実施した場合の摸式図を示す。FIG. 1 shows a schematic diagram when the present invention is implemented using a magnetic field parallel to an ion collection electrode.
【図2】図1に示した装置でプラズマに高周波電界を印
加した時のプラズマの比誘電率の周波数依存を示す。2 shows the frequency dependence of the relative dielectric constant of plasma when a high-frequency electric field is applied to the plasma in the apparatus shown in FIG.
【図3】プラズマに共鳴する高周波電界を印加したとき
の、プラズマ中での電界強度の時間変化の摸式図を示
す。FIG. 3 is a schematic diagram showing a time change of an electric field intensity in plasma when a high-frequency electric field that resonates with plasma is applied.
【図4】プラズマ中で一様な高周波電界が発生した際の
プラズマイオンの運動の時間変化を摸式的に示す。FIG. 4 schematically shows a temporal change in the motion of plasma ions when a uniform high-frequency electric field is generated in plasma.
【図5】高周波電極を分割し、各電極に位相の異なる高
周波電界を印加する場合の装置の摸式図を示す。FIG. 5 is a schematic diagram of an apparatus in which a high-frequency electrode is divided and high-frequency electric fields having different phases are applied to each electrode.
1…プラズマ、2…イオン引出し電極、3…磁場、4…
高周波電源システム、5…高周波電界、6…高周波電
源、7…電力分配器、8…位相調整器、9…整合器、1
0…高周波ケ−ブル。1 ... plasma, 2 ... ion extraction electrode, 3 ... magnetic field, 4 ...
High frequency power supply system, 5 high frequency electric field, 6 high frequency power supply, 7 power distributor, 8 phase adjuster, 9 matching device, 1
0: High frequency cable.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田 英俊 茨城県日立市森山町1168番地 株式会社 日立製作所 エネルギ−研究所内 (72)発明者 鈴木 一道 茨城県日立市森山町1168番地 株式会社 日立製作所 エネルギ−研究所内 (72)発明者 松井 哲也 茨城県日立市森山町1168番地 株式会社 日立製作所 エネルギ−研究所内 (72)発明者 西尾 良司 茨城県日立市森山町1168番地 株式会社 日立製作所 エネルギ−研究所内 (56)参考文献 特開 平4−15921(JP,A) 特開 平3−152923(JP,A) 特開 平4−137530(JP,A) 特開 昭62−125626(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01J 27/00 - 27/26 H01J 37/08 H05H 1/22 H05H 1/54 H05H 7/08 H05H 15/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hidetoshi Okada 1168 Moriyamacho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd. Energy Research Laboratory (72) Inventor Kazumichi Suzuki 1168 Moriyamacho, Hitachi City, Ibaraki Prefecture Energy, Hitachi, Ltd -Inside the research laboratory (72) Inventor Tetsuya Matsui 1168 Moriyama-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi Energy Co., Ltd. (72) Inventor Ryoji Nishio 1168 Moriyama-cho, Hitachi City, Hitachi City, Hitachi Energy Co., Ltd. ( 56) References JP-A-4-15921 (JP, A) JP-A-3-152923 (JP, A) JP-A-4-137530 (JP, A) JP-A-62-125626 (JP, A) (58) ) Surveyed field (Int.Cl. 6 , DB name) H01J 27/00-27/26 H01J 37/08 H05H 1/22 H05H 1/54 H05H 7/08 H05H 15/00
Claims (9)
いて、プラズマが持つ固有の振動の周波数である共鳴周
波数に一致させた高周波電界をプラズマに印加すること
により、プラズマ全域に電界を浸透させて、イオンをプ
ラズマ外部にドリフトさせ引出すことを特徴とするイオ
ン引出し方法。In a process of extracting ions from a plasma, a high-frequency electric field that matches a resonance frequency, which is a frequency of an inherent vibration of the plasma, is applied to the plasma, so that the electric field penetrates the entire plasma and the ions are absorbed. An ion extraction method characterized in that the ion is extracted by drifting out of the plasma.
界を印加する際に、磁界を印加することを特徴としたイ
オン引出し方法。2. The ion extraction method according to claim 1, wherein a magnetic field is applied when applying a high frequency electric field having a resonance frequency.
さんで設置した電極の長さ及び間隔を変えることにより
共鳴周波数を制御することを特徴とするイオン引出し方
法。3. The ion extraction method according to claim 1, wherein the resonance frequency is controlled by changing the length and the interval of the electrodes placed between the plasmas.
さんで設置した電極を分割して、各電極に印加する高周
波電界の位相に差を持たせる事を特徴としたイオン引出
し方法。4. The ion extraction method according to claim 1, wherein the electrodes placed between the plasmas are divided so that the phases of the high-frequency electric fields applied to the electrodes have a difference.
プラズマの変化による共鳴周波数の変化に同期して高周
波電界周波数を変化させることを特徴としたイオン引出
し方法。5. The method according to claim 1, wherein
An ion extraction method characterized by changing a high-frequency electric field frequency in synchronization with a change in resonance frequency due to a change in plasma.
プラズマの変化による共鳴周波数の変化幅以上の同調範
囲を持つ高周波電源回路を用いた事を特徴としたイオン
引出し方法。6. The method according to claim 1, wherein:
An ion extraction method characterized by using a high-frequency power supply circuit having a tuning range equal to or larger than a change width of a resonance frequency due to a change in plasma.
静電界に高周波電界を印加したことを特徴としたイオン
引出し方法。7. The method according to claim 1, wherein
An ion extraction method characterized by applying a high-frequency electric field to an electrostatic field.
パルス的に高周波電界を印加し、また高周波電界の初期
位相を調整することでイオンの引き出し方向及び時間を
制御する事を特徴としたイオン引出し方法。8. The method according to claim 1, wherein
An ion extraction method characterized by controlling the direction and time of extracting ions by applying a high-frequency electric field in a pulsed manner and adjusting the initial phase of the high-frequency electric field.
高周波電界の周波数,位相及び電界強度を調整して、プ
ラズマからの引き出し速度を制御する事を特徴とするイ
オン引き出し方法。9. The method according to claim 1, wherein:
Adjust the frequency, phase, and electric field strength of the high-frequency electric field to
An ion withdrawal method characterized by controlling the withdrawal speed from plasma .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3107081A JP2915164B2 (en) | 1991-05-13 | 1991-05-13 | Ion extraction method from plasma by high frequency electric field |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3107081A JP2915164B2 (en) | 1991-05-13 | 1991-05-13 | Ion extraction method from plasma by high frequency electric field |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04334847A JPH04334847A (en) | 1992-11-20 |
JP2915164B2 true JP2915164B2 (en) | 1999-07-05 |
Family
ID=14450003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3107081A Expired - Fee Related JP2915164B2 (en) | 1991-05-13 | 1991-05-13 | Ion extraction method from plasma by high frequency electric field |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2915164B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62125626A (en) * | 1985-11-27 | 1987-06-06 | Hitachi Ltd | Dry etching apparatus |
JPH03152923A (en) * | 1989-11-10 | 1991-06-28 | Oki Electric Ind Co Ltd | Etching device |
JPH0415921A (en) * | 1990-05-09 | 1992-01-21 | Sumitomo Metal Ind Ltd | Method and apparatus for activating plasma |
JP3240565B2 (en) * | 1990-09-27 | 2001-12-17 | 松下電器産業株式会社 | Dry etching method |
-
1991
- 1991-05-13 JP JP3107081A patent/JP2915164B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04334847A (en) | 1992-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE48317E1 (en) | Interrupted particle source | |
US4727293A (en) | Plasma generating apparatus using magnets and method | |
CN104663003B (en) | Synchrocyclotron beam trajectory and RF driving synchrocyclotrons | |
US5504341A (en) | Producing RF electric fields suitable for accelerating atomic and molecular ions in an ion implantation system | |
JPH02116128A (en) | Reactive ion etching system | |
JPH04193329A (en) | Apparatus for ion recovery | |
US4859909A (en) | Process and apparatus for igniting an ultra-high frequency ion source | |
Chen | Excitation of large amplitude plasma waves | |
JP2915164B2 (en) | Ion extraction method from plasma by high frequency electric field | |
US4899084A (en) | Particle accelerator employing transient space charge potentials | |
Osovets | Dynamic methods of confinement and stabilization of hot plasma | |
US4345329A (en) | Free-electron laser provided with a device for producing a pulsed magnetic field with periodic spatial variations | |
Carter et al. | Plasma production using radiofrequency fields near or below the ion cyclotron range of frequencies | |
Askinazi et al. | The spectrum of ion cyclotron emission from neutral beam injection heated plasma on the TUMAN-3M tokamak | |
Serlin et al. | External modulation of intense relativistic electron beams with spatial and velocity inhomogeneities | |
Goward et al. | The design of electron synchrotrons | |
Bekhovskaya et al. | The use of a high-current electron beam in plasma relativistic microwave oscillators | |
JP2564424B2 (en) | Ion recovery device | |
Krementsov et al. | Excitation of electromagnetic waves in a plasma in a homogeneous magnetic field by a strong-current relativistic electron beam | |
JPH0817117B2 (en) | Ion beam reducer | |
Yang et al. | A new X-band coaxial transit-time oscillator | |
Celona | Microwave coupling to ECR and alternative heating methods | |
Tarasov et al. | On the role of runaway electrons in stimulating the RF breakdown and plasma formation in torsatrons Uragan-3M, Uragan-2M | |
Sun et al. | Hybrid simulation of the plasma characteristics in a dual‐frequency dual‐antenna inductively coupled plasma discharge | |
Voronkov et al. | Restriction of radiation pulse duration in microwave generators using microsecond REB |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |