JP2617240B2 - Control method of acceleration energy in high frequency quadrupole accelerator - Google Patents

Control method of acceleration energy in high frequency quadrupole accelerator

Info

Publication number
JP2617240B2
JP2617240B2 JP2312452A JP31245290A JP2617240B2 JP 2617240 B2 JP2617240 B2 JP 2617240B2 JP 2312452 A JP2312452 A JP 2312452A JP 31245290 A JP31245290 A JP 31245290A JP 2617240 B2 JP2617240 B2 JP 2617240B2
Authority
JP
Japan
Prior art keywords
energy
acceleration
charged particles
frequency
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2312452A
Other languages
Japanese (ja)
Other versions
JPH04184900A (en
Inventor
芳夫 高見
亮 開本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2312452A priority Critical patent/JP2617240B2/en
Publication of JPH04184900A publication Critical patent/JPH04184900A/en
Application granted granted Critical
Publication of JP2617240B2 publication Critical patent/JP2617240B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は高周波四重極加速器における加速エネルギの
制御方法に関し、特に、例えば半導体へのイオン注入等
に応用するのに適した制御方法に関する。
Description: TECHNICAL FIELD The present invention relates to a control method of acceleration energy in a high-frequency quadrupole accelerator, and particularly to a control method suitable for application to, for example, ion implantation into a semiconductor.

<従来の技術> 高周波四重極加速器(Radio Frequency Quadrupole加
速器、以下、RFQ加速器と称する)は、大電流のイオン
ビームを高透過率のもとに高エネルギに加速し得る能力
を持ち、近年、多くの分野での応用が研究されている。
<Conventional technology> A radio frequency quadrupole accelerator (hereinafter, referred to as an RFQ accelerator) has a capability of accelerating a high-current ion beam to high energy under high transmittance, and in recent years, Applications in many fields are being studied.

第3図はRFQ加速器のうち、4ベーン型RFQ加速器の概
念構造を示す部分断面斜視図である。なお、このほか、
RFQ加速器には4ロッド型RFQ加速器等の変形例がある
が、本質的には技術上の特徴は4ベーン型と同一なの
で、以下は4ベーン型RFQ加速器を例にとって説明を加
える。
FIG. 3 is a partial cross-sectional perspective view showing a conceptual structure of a 4-vane RFQ accelerator among RFQ accelerators. In addition,
Although the RFQ accelerator has modifications such as a four-rod type RFQ accelerator, the technical features are essentially the same as those of the four-vane type, so that the following description will be made by taking the four-vane type RFQ accelerator as an example.

両端がプレート31a,31bで閉止された円筒タンク30内
に4個の電極32a〜32dが(以下、ベーン32a〜32dと称す
る)が固着されており、これらで四重極空胴共振器を形
成している。
Four electrodes 32a to 32d (hereinafter referred to as vanes 32a to 32d) are fixed in a cylindrical tank 30 having both ends closed by plates 31a and 31b, and these form a quadrupole cavity resonator. doing.

ベーン32a〜32dには、それぞれその先端部にタンク30
の軸方向に沿う波形が形成されており、互いに対向する
ベーンはその波形の山と山,谷と谷とが向き合い、か
つ、ベーン32a,32cとベーン32b,32dの波形は180゜の位
相差を持っている。また、各波形の周期は入口から出口
に向かって次第に長くなっている。
Each of the vanes 32a to 32d has a tank 30 at its tip.
The vanes opposing each other have peaks and valleys facing each other, and valleys and valleys face each other. The waveforms of the vanes 32a and 32c and the vanes 32b and 32d have a phase difference of 180 °. have. The period of each waveform gradually increases from the entrance to the exit.

このような構造体に高周波を導入すると、相対向する
ベーンは同相に、隣り合うベーンは逆相に電圧が印加さ
れて共振することになるが、上述した波形の存在によっ
てベーン32a〜32dで囲まれた空間にタンク30の軸心に沿
う加速電界が生成され、ここに入射した荷電粒子ビーム
は収束されつつ所定の加速エネルギのもとに加速され
る。
When a high frequency is introduced into such a structure, opposing vanes are applied with a voltage in the same phase and adjacent vanes are applied with a voltage in the opposite phase and resonate.However, due to the above-described waveform, the vanes are surrounded by vanes 32a to 32d. An accelerating electric field is generated along the axis of the tank 30 in the space defined, and the charged particle beam incident thereon is accelerated under a predetermined acceleration energy while being converged.

ここで、RFQ加速器で加速される粒子の加速エネルギ
を可変とするために、従来では、共振周波数を可変とす
る複雑な構成に換えて、印加すべき高周波電圧を、荷電
粒子の導入スピードとこの高周波電圧の周波数および上
記各電極の波形の周期に基づく共振条件を満足する電圧
値よりも、下方に所定量シフトさせることによって荷電
粒子の加速エネルギを変化させる構成のRFQ加速器が提
案されている(特開平2−27699号公報)。
Here, in order to make the acceleration energy of the particles accelerated by the RFQ accelerator variable, conventionally, instead of a complicated configuration in which the resonance frequency is made variable, the high-frequency voltage to be applied is changed according to the introduction speed of the charged particles. There has been proposed an RFQ accelerator having a configuration in which the acceleration energy of charged particles is changed by shifting a predetermined amount below a voltage value that satisfies a resonance condition based on the frequency of the high-frequency voltage and the cycle of the waveform of each electrode described above ( JP-A-2-27699).

<発明が解決しようとする課題> しかしながら、一般にRFQ加速器では、共振条件を満
足する状態で、入射した荷電粒子は、加速電極であるベ
ーンに形成された波形を構成する山谷部毎に位相が順次
揃えられ、各山谷部毎に所定のエネルギを得て加速され
るが、かかる場合、ベーンの後段の山谷部ほど加速され
る荷電粒子の位相の集束度が高まるため、共振条件を満
足するパラメータのうち、高周波電圧のみ変化させる
と、ベーンの後段の山谷部ほど加速されない粒子が増大
する。
<Problems to be Solved by the Invention> However, generally, in the RFQ accelerator, in a state where the resonance condition is satisfied, the phase of the incident charged particles is sequentially changed for each of the valleys and valleys forming the waveform formed on the vane serving as the acceleration electrode. It is aligned and accelerated by obtaining a predetermined energy for each peak and valley. In such a case, the degree of convergence of the phase of the charged particles accelerated as the peak and valley at the later stage of the vane increases, so that the parameters satisfying the resonance condition When only the high-frequency voltage is changed, particles that are not accelerated increase as much as the peaks and valleys at the later stage of the vane.

すなわち、高周波電圧低下による荷電粒子が加速され
ることへの影響は、ベーンの前段ほど加速に伴う位相の
許容範囲が広いので小さく、後段ほど許容範囲が狭くそ
の影響が大きくなり、高周波電圧を低下させた場合に最
初に得られる荷電粒子の最終加速エネルギは、共振条件
を完全に満足させた場合に得られる最終加速エネルギか
らベーンの最終段の山谷部で付加されるエネルギを引い
たものとなる。
In other words, the effect on the acceleration of charged particles due to the decrease in the high-frequency voltage is small because the allowable range of the phase accompanying the acceleration is wider at the front stage of the vane, and the effect is greater at the latter stage because the allowable range is narrower and the high-frequency voltage decreases In this case, the final acceleration energy of the charged particles obtained first is the final acceleration energy obtained when the resonance condition is completely satisfied minus the energy added at the peak and valley of the last stage of the vane. .

従って、印加すべき高周波電圧を変化させる従来構成
のRFQ加速器では、高周波電圧を低下させた場合に得ら
れる荷電粒子のエネルギは、ベーンの山谷部で付加され
るエネルギ間隔づつ離散的なものとなり、複数ピークの
エネルギを有する粒子が発生することとなるため、所望
とする加速エネルギを有する粒子のみ得ることはできな
い。
Therefore, in the RFQ accelerator of the conventional configuration in which the high-frequency voltage to be applied is changed, the energy of the charged particles obtained when the high-frequency voltage is reduced becomes discrete with the energy interval added at the peak and the valley of the vane. Since particles having energies of a plurality of peaks are generated, only particles having desired acceleration energy cannot be obtained.

本発明の目的は、RFQ加速器の共振周波数を変化させ
ることなく、容易に加速エネルギを変化させることがで
き、しかも、単一ピークの加速エネルギを有する粒子が
得られる制御方法の提供を目的とする。
An object of the present invention is to provide a control method that can easily change the acceleration energy without changing the resonance frequency of the RFQ accelerator and obtain particles having a single-peak acceleration energy. .

<課題を解決するための手段> 本発明のRFQ加速器における加速エネルギの制御方法
の特徴とするところは、4個の電極が配設されてなる空
胴共振器の、その各電極の先端で囲まれた空間内に導入
すべき荷電粒子のスピードを、この空胴共振器の電極に
印加する高周波電圧の周波数と電圧、および、各電極先
端に形成された波形の周期に基づく荷電粒子の連続加速
条件を満足するスピードから、所定量増大させることに
よって、荷電粒子の加速エネルギを変化させることにあ
る。
<Means for Solving the Problems> A feature of the method for controlling acceleration energy in the RFQ accelerator according to the present invention is that a cavity having four electrodes disposed therein is surrounded by the tip of each electrode. The speed of the charged particles to be introduced into the space is determined by the frequency and voltage of the high-frequency voltage applied to the electrodes of this cavity, and the continuous acceleration of the charged particles based on the period of the waveform formed at the tip of each electrode. An object is to change the acceleration energy of the charged particles by increasing a predetermined amount from a speed satisfying the condition.

<作用> 共振周波数および高周波電圧を一定にした状態で、同
一の荷電粒子を入射スピード(エネルギ)を変化させて
RFQ加速器に導入した場合の実験結果を第2図に示す
(なお、ここでは同一の荷電粒子に関して説明する関係
上、以下、入射スピードを入射エネルギと表現する)。
電極の波形の周期、高周波電圧の周波数および電圧によ
って決まるビームの連続加速条件を満足する入射エネル
ギで荷電粒子を導入した場合(第2図(a))に比べ、
入射エネルギを大きくすることで加速エネルギを下方に
シフトすることができた(第2図(b))。
<Operation> With the resonance frequency and the high-frequency voltage kept constant, the same charged particles are changed in incident speed (energy).
FIG. 2 shows the experimental results when introduced into the RFQ accelerator (in the following, the incident speed is referred to as incident energy for the sake of description of the same charged particle).
Compared to the case where charged particles are introduced with incident energy that satisfies the condition of continuous beam acceleration determined by the cycle of the electrode waveform, the frequency of the high-frequency voltage, and the voltage (FIG. 2A),
The acceleration energy could be shifted downward by increasing the incident energy (FIG. 2 (b)).

入射エネルギを変化させることによって、実際に粒子
がどのような作用を受けてエネルギが変化するのかは現
時点においては正確には明らかではない。しかし、RFQ
加速器以外の高周波加速器、例えばドリフトチューブラ
イナック等との比較において下記の推測が成り立つ。
At present, it is not exactly clear at this time how the incident energy is changed by changing the incident energy. But RFQ
In comparison with a high-frequency accelerator other than the accelerator, for example, a drift tube linac, the following assumption is made.

すなわち、ドリフトチューブライナックにおいては、
入射ビームのエネルギを大きくした場合、ビームの連続
加速条件から逸脱して、ビームは発散してしまうことは
事実である。ここで、ドリフトチューブライナックとRF
Q加速器との機能上の大きな差異は、そのビーム収束力
にある。前者ではビーム収束力はドリフトチューブ内に
設置された静電もしくは磁気Qレンズ等によって得ら
れ、ドリフトチューブ外では収束力は働かない。これに
対し後者では、ベーンに誘起された高周波電圧が粒子の
収束と加速を同時に行うので、粒子ビームは空間的に連
続して常に強い収束力を受ける。
That is, in the drift tube linac,
It is a fact that when the energy of the incident beam is increased, the beam diverges from the condition of continuous acceleration of the beam. Where the drift tube linac and RF
The major difference in function from the Q accelerator lies in its beam focusing power. In the former, the beam converging force is obtained by an electrostatic or magnetic Q lens installed in the drift tube, and the converging force does not work outside the drift tube. In the latter case, on the other hand, the high-frequency voltage induced in the vane simultaneously converges and accelerates the particles, so that the particle beam is spatially continuous and always receives a strong convergence force.

従って、RFQ加速では、連続加速の条件を満足できな
いビームも、その強い収束力のため発散することなく最
後まで加速される。しかし、連続加速条件を満足してい
ないが故に、最終的な加速エネルギは設計値よりも低エ
ネルギ側にシフトし、前記した結果が得られるものと推
定される。また、粒子の入射スピードは、加速過程当初
から共振条件を満足するエネルギーと相違するので、本
来の連続加速条件を導入当初から容易に逸脱する。この
ため、高周波電圧を低下させた場合のように加速過程の
後段、すなわち、RFQ加速器後端のベーンの山谷部では
じめて加速条件を逸脱することがほとんどなくなり、単
一ピークの加速エネルギを有する粒子が得られる。
Therefore, in RFQ acceleration, a beam that cannot satisfy the condition of continuous acceleration is accelerated to the end without diverging due to its strong convergence. However, since the continuous acceleration condition is not satisfied, it is estimated that the final acceleration energy shifts to a lower energy side than the design value, and the above-described result is obtained. In addition, since the incident speed of the particles is different from the energy that satisfies the resonance condition from the beginning of the acceleration process, the original continuous acceleration condition easily deviates from the time of introduction. For this reason, unlike the case where the high-frequency voltage is reduced, the acceleration conditions hardly deviate only in the later stage of the acceleration process, that is, at the peak and the valley of the vane at the rear end of the RFQ accelerator. Is obtained.

<実施例> 本発明の実施例を、以下、図面を参照しつつ説明す
る。
<Example> An example of the present invention will be described below with reference to the drawings.

第1図は本発明を適用して粒子の加速エネルギを実測
した実験装置のレイアウトを示すブロック図である。
FIG. 1 is a block diagram showing a layout of an experimental apparatus for actually measuring the acceleration energy of particles by applying the present invention.

イオン源1は原料を電離してイオンを生成する。この
イオン源1は、DC電源2により正電位を与えられてお
り、イオン原1の内部で生成された正イオンは、より低
い電位である引き出し電極3に向かって加速される。
The ion source 1 ionizes a raw material to generate ions. The ion source 1 is provided with a positive potential by a DC power supply 2, and positive ions generated inside the ion source 1 are accelerated toward a lower potential extraction electrode 3.

このようにして引き出されたイオンの中には、目的と
する正イオン以外のものが含まれているので、分析マグ
ネット4によって分析し、目的とするイオンのみを入射
ビームBinとしてRFQ加速器5内に導入する。
Since the ions extracted in this manner include those other than the target positive ions, they are analyzed by the analysis magnet 4 and only the target ions are converted into the incident beam Bin in the RFQ accelerator 5. To be introduced.

空胴共振器であるRFQ加速器5内には、高周波電源6
によって高周波電圧が加えられ、入射ビームBinを加速
する電場が形成されている。
The RFQ accelerator 5, which is a cavity resonator, includes a high-frequency power source 6
By the high frequency voltage is applied, an electric field to accelerate the incident beam B in is formed.

RFQ加速器5で加速されて出射したビーム、つまり出
射ビームBoutは、次段の分析マグネット7によってエネ
ルギ分析され、ファラデーカップ8に入る。
The beam accelerated and emitted by the RFQ accelerator 5, that is, the emitted beam B out is subjected to energy analysis by the analysis magnet 7 at the next stage, and enters the Faraday cup 8.

ファラデーカップ8には電流計9が接続されており、
ビーム電流を測定できるようになっている。
An ammeter 9 is connected to the Faraday cup 8,
The beam current can be measured.

そして、入射ビームBinのエネルギは、DC電源2がイ
オン源1に与える電位を変化させることによって、変更
し得るように構成されている。
Then, the energy of the incident beam B in the, DC power supply 2 by changing the potential applied to the ion source 1, and is configured so as to change.

以上の装置によって、11B+イオンの加速実験を行っ
た。なお、原料ガスとしてBF3を使用し、イオン源1に
よりイオン化された11B+イオンのみを分析マグネット4
によってRFQ加速器5内に導いた。
With the above apparatus, an acceleration experiment of 11 B + ions was performed. Note that BF 3 was used as a source gas, and only 11 B + ions ionized by the ion source 1 were analyzed by the magnet 4.
Guided into the RFQ accelerator 5.

ここで、RFQ加速器5に印加したRFパワーは18kWであ
り、その連続加速条件を満足するビームの入射エネルギ
は66keVである。
Here, the RF power applied to the RFQ accelerator 5 is 18 kW, and the incident energy of the beam satisfying the continuous acceleration condition is 66 keV.

実験では、ビームBinの入射エネルギとして、連続加
速条件を満足する入射エネルギ66keVと、それよりも高
い85keVとに設定し、他の条件は全く同一とした。
In the experiment, as the incident energy of the beam B in, and incident energy 66keV satisfying the continuous acceleration condition is set to a higher than 85 keV, other conditions were exactly the same.

第2図に以上の実験結果を示す。 FIG. 2 shows the results of the above experiment.

この第2図(a),(b)はいずれも出射ビームBout
のエネルギスペクトルを表すグラフで、縦軸がファラデ
ーカップ8に入射したビーム電流、横軸は分析マグネッ
ト7の電流(ビームのエネルギに対応)である。すなわ
ち、実験では、分析マグネット7の電流を連続的に変化
させつつ、ファラデーカップ8に入射するビームの電流
を測定した。
2 (a) and 2 (b) show the outgoing beam B out
In the graph, the vertical axis represents the beam current incident on the Faraday cup 8, and the horizontal axis represents the current of the analysis magnet 7 (corresponding to the energy of the beam). That is, in the experiment, the current of the beam incident on the Faraday cup 8 was measured while continuously changing the current of the analysis magnet 7.

第2図(a)はビームBinの入射エネルギを66keVとし
た場合で、同図(b)は85keVとした場合を示してい
る。
Figure 2 (a) is a case of a 66keV the incident energy of the beam B in, FIG. (B) shows the case of a 85 keV.

この図から明らかなように、入射ビームBinのRFQ加速
器5への入射エネルギを連続加速条件を満足する値より
も大きくすることにより、ビームの加速エネルギが下方
にシフトすると共に単一エネルギピークを有するビーム
電流が得られることが判明した。なお、単一ピークのエ
ネルギを有する加速粒子が得られたのは、粒子の入射ス
ピードが、加速過程当初から共振条件を満足するエネル
ギーと相違するので、本来の連続加速条件を加速器への
侵入当初から容易に逸脱し、高周波電圧を低下させた場
合のように加速過程の後段、すなわち、RFQ加速器のベ
ーンの後端の山谷部で初めて加速条件を逸脱する場合が
ほとんどなくなるためと推定される。
As is apparent from this figure, to be larger than the value that satisfies the continuous accelerated conditions incident energy to RFQ accelerator 5 in the incident beam B in, a single energy peak with an acceleration energy of the beam is shifted downward It has been found that a beam current having the same can be obtained. Accelerated particles having single peak energy were obtained because the incident speed of the particles was different from the energy that satisfies the resonance conditions from the beginning of the acceleration process. It is presumed that the acceleration condition hardly deviates for the first time at the later stage of the acceleration process as in the case where the high-frequency voltage is lowered, that is, at the mountain valley at the rear end of the vane of the RFQ accelerator.

<発明の効果> 以上説明したように、本発明によれば、RFQ加速器へ
の荷電粒子の入射スピードを変化させるだけで荷電粒子
の加速エネルギを変化させることができ、しかも、単一
ピークのエネルギを有する加速粒子が得られる。
<Effects of the Invention> As described above, according to the present invention, the acceleration energy of charged particles can be changed only by changing the incident speed of the charged particles to the RFQ accelerator, and the energy of a single peak can be changed. Is obtained.

このことは、例えば半導体へのイオン注入等の高エネ
ルギ大電流でしかもエネルギ可変性が要求されるイオン
ビーム応用分野へのRFQ加速器の適用の可能性を大きく
拡げ、この応用分野に革新的な進歩をもたらすものと期
待される。
This greatly expands the possibilities of applying RFQ accelerators to ion beam applications that require high energy, large current, and energy variability, such as ion implantation into semiconductors. It is expected to bring.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明を適用して粒子の加速エネルギを実測し
た実験装置のレイアウトを示すブロック図、 第2図はその実験結果を示すグラフ、 第3図はRFQ加速器の概念構造を示す部分断面図であ
る。 1……イオン源 2……DC電源 3……引き出し電極 4……分析マグネット 5……RFQ加速器 6……高周波電源 7……分析マグネット 8……ファラデーカップ 9……電流計
FIG. 1 is a block diagram showing a layout of an experimental apparatus for actually measuring the acceleration energy of particles by applying the present invention, FIG. 2 is a graph showing the experimental results, and FIG. 3 is a partial cross section showing a conceptual structure of an RFQ accelerator. FIG. DESCRIPTION OF SYMBOLS 1 ... Ion source 2 ... DC power supply 3 ... Leader electrode 4 ... Analysis magnet 5 ... RFQ accelerator 6 ... High frequency power supply 7 ... Analysis magnet 8 ... Faraday cup 9 ... Ammeter

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】円筒タンク内にそのタンクの軸方向に沿う
波形が先端部に形成された4個の電極が配設されてなる
空胴共振器に、所定周波数の高周波電圧を印加して共振
させた状態で、上記電極の先端で囲まれた空間内に所定
スピードのもとに荷電粒子を導くことによって、その荷
電粒子を加速する装置において、 上記空間内に導入すべき荷電粒子のスピードを、当該空
胴共振器に印加する高周波電圧の周波数と電圧、およ
び、上記各電極の波形の周期に基づく荷電粒子の連続加
速条件を満足するスピードから、所定量増大させること
によって、荷電粒子の加速エネルギを変化させることを
特徴とする高周波四重極加速器における加速エネルギの
制御方法。
1. A high-frequency voltage of a predetermined frequency is applied to a cavity in which a cylindrical electrode is provided with four electrodes each having a waveform along the axial direction of the tank at the tip thereof. In the state in which the charged particles are guided at a predetermined speed into the space surrounded by the tip of the electrode in the state where the charged particles are accelerated, the speed of the charged particles to be introduced into the space is reduced. The frequency and voltage of the high-frequency voltage applied to the cavity resonator, and the speed that satisfies the condition for continuously accelerating the charged particles based on the period of the waveform of each electrode, are increased by a predetermined amount to accelerate the charged particles. A method for controlling acceleration energy in a high-frequency quadrupole accelerator characterized by changing energy.
JP2312452A 1990-11-16 1990-11-16 Control method of acceleration energy in high frequency quadrupole accelerator Expired - Lifetime JP2617240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2312452A JP2617240B2 (en) 1990-11-16 1990-11-16 Control method of acceleration energy in high frequency quadrupole accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2312452A JP2617240B2 (en) 1990-11-16 1990-11-16 Control method of acceleration energy in high frequency quadrupole accelerator

Publications (2)

Publication Number Publication Date
JPH04184900A JPH04184900A (en) 1992-07-01
JP2617240B2 true JP2617240B2 (en) 1997-06-04

Family

ID=18029367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2312452A Expired - Lifetime JP2617240B2 (en) 1990-11-16 1990-11-16 Control method of acceleration energy in high frequency quadrupole accelerator

Country Status (1)

Country Link
JP (1) JP2617240B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012048166A2 (en) * 2010-10-06 2012-04-12 Lawrence Livermore National Security, Llc Particle beam couplingsystem and method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5801488A (en) * 1996-02-29 1998-09-01 Nissin Electric Co., Ltd. Variable energy radio-frequency type charged particle accelerator
DE102010021963A1 (en) * 2010-05-28 2011-12-01 Siemens Aktiengesellschaft Electrostatic particle injector for HF particle accelerator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697640B2 (en) * 1988-07-15 1994-11-30 株式会社島津製作所 Acceleration energy control method in high frequency quadrupole accelerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012048166A2 (en) * 2010-10-06 2012-04-12 Lawrence Livermore National Security, Llc Particle beam couplingsystem and method
WO2012048166A3 (en) * 2010-10-06 2012-07-05 Lawrence Livermore National Security, Llc Particle beam couplingsystem and method

Also Published As

Publication number Publication date
JPH04184900A (en) 1992-07-01

Similar Documents

Publication Publication Date Title
US4667111A (en) Accelerator for ion implantation
Peters Negative ion sources for high energy accelerators
US4801847A (en) Charged particle accelerator using quadrupole electrodes
KR100863084B1 (en) Ion accelaration method and apparatus in an ion implantation system
Xie et al. Two‐frequency plasma heating in a high charge state electron cyclotron resonance ion source
KR20240015141A (en) Compact high energy ion implantation system and apparatus and method for producing high energy ion beam
Wutte et al. Emittance measurements for high charge state ion beams extracted from the AECR-U ion source
CN111630940A (en) Accelerator and accelerator system
JP2617240B2 (en) Control method of acceleration energy in high frequency quadrupole accelerator
JP3168903B2 (en) High-frequency accelerator and method of using the same
Seidel Injection and extraction in cyclotrons
Dubniuk et al. Radiation complex on the basis of helium ions linac
JPH0697640B2 (en) Acceleration energy control method in high frequency quadrupole accelerator
JP3168776B2 (en) High-frequency charged particle accelerator
Sundquist et al. A high-yield pulsing system using the TORVIS negative ion source
JP2569812B2 (en) High energy ion implanter
CN114501768B (en) Accelerator charged particle beam current compression device and method
JPH0823067B2 (en) Ion implanter
CN114540777B (en) Ion implantation method combined with magnetron sputtering
JPS60121655A (en) High voltage ion driving device
JP2858188B2 (en) Beam energy control method for high frequency linear accelerator
Aiba et al. Resonance crossing experiment at a proof of principle fixed field alternating gradient accelerator
Glavish Recent Advances in Polarized Ion Sources
Tishkin et al. New concept of the main part of multicharged ions linear accelerator on the combined RF focusing basis
JP2613351B2 (en) Ion implantation equipment