JPH03245005A - Measuring method for film thickness - Google Patents
Measuring method for film thicknessInfo
- Publication number
- JPH03245005A JPH03245005A JP4096290A JP4096290A JPH03245005A JP H03245005 A JPH03245005 A JP H03245005A JP 4096290 A JP4096290 A JP 4096290A JP 4096290 A JP4096290 A JP 4096290A JP H03245005 A JPH03245005 A JP H03245005A
- Authority
- JP
- Japan
- Prior art keywords
- film thickness
- fiber
- optical fiber
- light
- coated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 13
- 239000010408 film Substances 0.000 claims abstract description 43
- 239000013307 optical fiber Substances 0.000 claims abstract description 23
- 239000010409 thin film Substances 0.000 claims abstract description 11
- 239000002932 luster Substances 0.000 claims description 7
- 238000000691 measurement method Methods 0.000 claims description 6
- 230000001678 irradiating effect Effects 0.000 claims 1
- 239000000835 fiber Substances 0.000 abstract description 20
- 239000011248 coating agent Substances 0.000 abstract description 17
- 238000000576 coating method Methods 0.000 abstract description 17
- 230000004907 flux Effects 0.000 abstract description 3
- 239000002296 pyrolytic carbon Substances 0.000 abstract description 3
- 239000003365 glass fiber Substances 0.000 abstract description 2
- 229910052799 carbon Inorganic materials 0.000 description 25
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 24
- 238000005259 measurement Methods 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 239000002994 raw material Substances 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は膜厚測定方法に関し、詳しくは光フアイバ外周
に被覆した金属光沢を有する薄膜の膜厚測定方法に関す
る。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring film thickness, and more particularly to a method for measuring the thickness of a thin film with metallic luster coated on the outer periphery of an optical fiber.
[従来の技術3
石英系光ファイバでは引張り応力を付加した状態で放置
しておくと、長時間後に破断するという欠点(疲労と呼
ばれる)がある。[Prior Art 3] A quartz-based optical fiber has a drawback (called fatigue) that if it is left under tensile stress, it will break after a long period of time (called fatigue).
この疲労防止のために、コアイノくの表面エネルギーを
常に大きい状態に保つことで傷の成長を防ぐ方法がある
。具体的には、例えば第2図に示すようにドープトシリ
カからなるコア21とシリカからなるクラッド22を有
するファイバ20の外周に、水分の透過しにくいパイロ
リチ、クカーボン(Pyrolytic carbo
n、熱分解炭素とも呼ばれる)膜23(以下カーボン膜
と呼ぶ)をCVD法により被覆した被覆ファイバ24と
し、光ファイバの表面への水分の吸着を防ぐものである
。このカーボン膜のように、基板(この場合は光ファイ
バ)に密着し、かつ気体が透過しにくい膜をハーメチッ
ク被覆という。To prevent this fatigue, there is a method to prevent the growth of scratches by keeping the surface energy of the core in a high state at all times. Specifically, as shown in FIG. 2, for example, the outer periphery of a fiber 20 having a core 21 made of doped silica and a cladding 22 made of silica is coated with pyrolytic carbon, which is difficult for moisture to pass through.
A coated fiber 24 is coated with a film 23 (hereinafter referred to as carbon film) (also referred to as pyrolytic carbon) by the CVD method to prevent moisture from adsorbing onto the surface of the optical fiber. A film like this carbon film that adheres closely to the substrate (in this case, the optical fiber) and is difficult for gas to pass through is called a hermetic coating.
この方法によるファイバ24は、カーボン膜23が水分
を透過しにくいという好ましい性質を持っている。この
性質は膜厚により大きく変わることが知られている。し
かし、H7や水分の不透過性を重要視して膜厚を厚くす
ると、製造時反応管に付着する副生成物が多くなり、こ
れと裸ファイバが接触するため、初期強度が低下し、長
時間製造を続けられないという問題点があった。The fiber 24 produced by this method has the desirable property that the carbon film 23 is hardly permeable to moisture. It is known that this property varies greatly depending on the film thickness. However, if the film thickness is made thicker with emphasis placed on impermeability to H7 and water, more by-products will adhere to the reaction tube during manufacturing, and the bare fibers will come into contact with this, resulting in a decrease in initial strength and longer length. There was a problem in that it was not possible to continue manufacturing for hours.
従ってカーボン膜被覆厚は製造時適切な厚みとなるよう
に制御される必要がある。しかし、ファイバの実用上好
ましいと考えられるカーボン被覆厚200〜1000人
程度の膜厚を測定するためには、FE−8EM、AES
という複雑な手法が必要とされ、製造中に簡単にチエツ
クできる手段が望まれてもいた。Therefore, the coating thickness of the carbon film must be controlled to an appropriate thickness during manufacturing. However, in order to measure the carbon coating thickness of 200 to 1000, which is considered to be practically preferable for fibers, FE-8EM, AES
This required a complicated method, and there was a desire for a means that could be easily checked during manufacturing.
01 □m以下のカーボン被覆咬厚を非破壊で計測する
手段として、本発明者等は既に平成1年特許願第180
157Mとして出願の明細書で、電気抵抗値を計111
1することによりカーボン膜厚を測定する方法を提案し
ている。これは、例えば第4図(a)に示すように、パ
イロリチノクカーボン被覆を施したファイバ41を例え
ばリノ青銅等の金属製ガイド42及び43を接点として
抵抗値を測定する(44は接点てない単なるガイド)、
或は第4図(b)に示すように、タイス46.47中の
例えば水銀等の液体金属45を接点として抵抗値を測定
する、という方法である。As a means for non-destructively measuring the carbon coating thickness of 01 □m or less, the present inventors have already published patent application No. 180 of 1999.
In the specification of the application as 157M, the electrical resistance value is 111 in total.
We propose a method for measuring carbon film thickness by 1. For example, as shown in FIG. 4(a), the resistance value is measured by using a fiber 41 coated with pyrolithic carbon with metal guides 42 and 43 made of lino bronze as contact points (44 is a contact point). not just a guide),
Alternatively, as shown in FIG. 4(b), the resistance value is measured using a liquid metal 45 such as mercury in the tie 46, 47 as a contact point.
[発明が解決しようとする課題]
しかし、上記した電気抵抗値の測定による方法は、接触
測定法であるため、測定によりファイバの機械強度劣化
の危険性も考慮する必要があり、非接触で測定できる方
法の開発が望まれていた。[Problems to be Solved by the Invention] However, since the method of measuring the electrical resistance value described above is a contact measurement method, it is necessary to consider the risk of deterioration of the mechanical strength of the fiber due to the measurement. It was hoped that a method could be developed.
このような現状に鑑み、本発明の目的は光フアイバ外周
に被覆したカーボン薄膜等の金属光沢を有する被覆膜の
膜厚を、非接触でしかも正確に測定でき、光フアイバ製
造工程おいてオンラインで測定できる新規な膜厚測定方
法を提供するところにある。In view of the current situation, the purpose of the present invention is to enable non-contact and accurate measurement of the thickness of coating films with metallic luster, such as carbon thin films coated on the outer periphery of optical fibers, and to enable online measurement in the optical fiber manufacturing process. The objective is to provide a new method for measuring film thickness.
[課題を解決するための手段]
本発明は、被覆光ファイバのP&覆膜厚を光学的手段に
より非接触で測定することにより、上記目的を達成する
ものである。[Means for Solving the Problems] The present invention achieves the above object by measuring the P&coating thickness of a coated optical fiber in a non-contact manner by optical means.
すなわち、本発明は光フアイバ外周を被覆する金属光沢
を有する薄膜の膜厚をホリ定する方法において、当該層
膜被覆光ファイバの表面に光束をp召躬し、該薄膜で反
射される光の強度を測定することにより膜厚を求めるこ
とを特徴とする膜厚測定方法を提供する。That is, the present invention provides a method for determining the thickness of a thin film with metallic luster that coats the outer periphery of an optical fiber. Provided is a film thickness measuring method characterized by determining film thickness by measuring intensity.
以下、図面を参照して具体的に説明すると、第1図(a
)は本発明の測定系18の概略説明図であり、同図にお
いて例えばHe−Neレーザー等の光源10からの出射
光Piはレンズ(1)11. レンズ(2)12によ
り拡大され、ガラスファイバ20にバイロリチックカー
ボン膜23を被覆した光ファイバ24に入射する。該被
覆光ファイバ24からの反射光Prは、レンズ(3)1
3 によって検出器14上に結像し、そのパワー(強
度)が例えばSiフォトダイオード15等によって検出
され、増幅器16をへて電圧計17により電圧変動とし
て測定される。Hereinafter, a detailed explanation will be given with reference to the drawings.
) is a schematic explanatory diagram of the measurement system 18 of the present invention, in which the emitted light Pi from the light source 10, such as a He-Ne laser, is transmitted through the lens (1) 11. The light is magnified by the lens (2) 12 and enters the optical fiber 24, which is a glass fiber 20 coated with a birolytic carbon film 23. The reflected light Pr from the coated optical fiber 24 is reflected by the lens (3) 1
3 forms an image on a detector 14, and its power (intensity) is detected by, for example, a Si photodiode 15, passes through an amplifier 16, and is measured as a voltage fluctuation by a voltmeter 17.
本発明の測定系18は、光フアイバ製造工程に使用する
場合、第3図に示すようにプリフォーム1を線引炉2で
溶融・加熱して線引きした裸光ファイバ20にカーボン
被覆23を形成するバイロリチックコーティング反応管
3と、該カーボン被覆ファイバ24外周に樹脂を塗布す
るためのダイス4の間に置かれる。この位置を通過する
ファイバ24は現在の製法においては、1mm弱の振動
が避けられない。従って、光ファイバ24か1mm程度
振動しても反射光の強度変動が無視できるよう、レンズ
(2)12を通過した後の光束は、5mmφ〜]Qmm
φであることが望ましい。また、ファイバが1mm程度
振動しても像が受光面より出ないよう、光学系を遺ふ必
要がある。なお、第3図において4はヒーター、6は樹
脂硬化手段、7は巻取機を示す。When the measurement system 18 of the present invention is used in an optical fiber manufacturing process, a carbon coating 23 is formed on a bare optical fiber 20 drawn by melting and heating a preform 1 in a drawing furnace 2, as shown in FIG. The carbon-coated fiber 24 is placed between a bilolithic coating reaction tube 3 and a die 4 for coating the outer periphery of the carbon-coated fiber 24 with resin. In the current manufacturing method, the fiber 24 passing through this position cannot avoid vibration of less than 1 mm. Therefore, even if the optical fiber 24 vibrates by about 1 mm, the intensity fluctuation of the reflected light can be ignored, so that the luminous flux after passing through the lens (2) 12 is 5 mmφ~]Qmm.
It is desirable that it is φ. Furthermore, it is necessary to provide an optical system so that even if the fiber vibrates by about 1 mm, the image does not come out from the light receiving surface. In addition, in FIG. 3, 4 is a heater, 6 is a resin curing means, and 7 is a winder.
光源10−被覆ファイバ24−検出器14がなす角度は
鋭角であるほうが、膜厚変化に対する散乱光強度変化が
大きくなるため、10〜90’とすることが好ましい。The angle formed by the light source 10 - coated fiber 24 - detector 14 is preferably 10 to 90' because the more acute the angle, the greater the change in scattered light intensity with respect to the change in film thickness.
[作用]
本発明者等は、本発明の研究途上、次のような検討を行
った。[Function] During the course of research into the present invention, the present inventors conducted the following studies.
■ 第1図(b)に示すようにスライドガラス19上に
バイロリチックカーボン23を膜厚200人、400人
、600人となるよう堆積したサンプルを作成した。(2) As shown in FIG. 1(b), samples were prepared in which birolytic carbon 23 was deposited on a slide glass 19 to a film thickness of 200, 400, and 600 layers.
■上記の3種のサンプルと、パイロリチックカ−ボンを
堆積されていないスライドガラスについて、第1図(b
)に示すように強度Piの光を入射角300で入射して
、透過光Pt、反射光Prの強度を測定し、透過率(P
L/ P i)及び反射率(Pr/Pi)を求めた。■ Figure 1 (b
), light of intensity Pi is incident at an incident angle of 300, the intensity of transmitted light Pt and reflected light Pr is measured, and the transmittance (P
L/Pi) and reflectance (Pr/Pi) were determined.
結果は下表のようになった。The results were as shown in the table below.
表
すなわち、膜厚と反射光強度に相関関係が成立している
。この実験から膜厚測定の手段として、透過率のみなら
ず反射率もつかえることが判った。In other words, there is a correlation between the film thickness and the intensity of reflected light. This experiment revealed that not only transmittance but also reflectance can be used as a means of measuring film thickness.
光ファイバのような細径のサンプルに対して、透過光の
測定は、光フアイバ周辺を31!i過して直接検出器に
入射する光があるため困難である。一方、本発明のよう
な反射光測定では、上記困難はないため、容易かつ正確
に測定できる。For small-diameter samples such as optical fibers, the measurement of transmitted light requires 31! This is difficult because some light passes through the rays and enters the detector directly. On the other hand, reflected light measurement according to the present invention does not have the above-mentioned difficulties, and therefore can be easily and accurately measured.
具体的には薄膜で反射される反射光強度と膜厚の相関曲
線(標準曲線)を予め求めておき、これから膜厚を求め
ることができる。Specifically, a correlation curve (standard curve) between the intensity of reflected light reflected by a thin film and the film thickness is determined in advance, and the film thickness can be determined from this curve.
本発明の測定方法は、カーボン膜のみならず、その低光
ファイバの表面に設けた金属光沢を有するハーメチック
コート、例えばAl1. In、 Au。The measurement method of the present invention is applicable not only to a carbon film but also to a hermetic coat with metallic luster provided on the surface of the low optical fiber, such as Al1. In, Au.
Ti、 AL Sn等の被覆膜厚測定にも同様に有効
である。It is similarly effective for measuring the coating film thickness of Ti, AL Sn, etc.
本発明により測定可能な膜厚範囲は、理論的には「被覆
の誘電率1と「光源の波長」の関係から「電磁波が膜中
へ侵入する深さ」によって測定可能深さが決まることに
よる。(膜厚く侵入深さ)の時、反射光強度が膜厚に応
じて変化する。本発明者等の実験によれば、C,A12
. In、 Au、 Ti。The film thickness range that can be measured by the present invention is determined by the fact that the measurable depth is theoretically determined by the depth at which electromagnetic waves penetrate into the film based on the relationship between the dielectric constant of the coating (1) and the wavelength of the light source. . (film thickness and penetration depth), the reflected light intensity changes depending on the film thickness. According to the experiments of the present inventors, C, A12
.. In, Au, Ti.
Ag、Sn等の材質にはあまり関係無く、使用する光源
の波長の概ね1/3 の膜厚範囲まで測定可能テアル。Regardless of the material such as Ag or Sn, it is possible to measure up to a film thickness range of approximately 1/3 of the wavelength of the light source used.
例えば、光源としてHe−Neレーザ(波長633nm
)を使用すると、いずれの材質の膜でも全て200nm
まで測定できた。For example, a He-Ne laser (wavelength 633 nm) is used as a light source.
), all films made of any material will have a thickness of 200 nm.
I was able to measure up to
本発明に用いる光源としては、上記したHeNeレーザ
の他、例えばHe−Cdレーザ、Arレーザ、LED
赤色、ハロゲンランプ、タングステンランプ等を使用
できる。In addition to the above-mentioned HeNe laser, light sources used in the present invention include, for example, He-Cd laser, Ar laser, and LED.
Red lamps, halogen lamps, tungsten lamps, etc. can be used.
「実施例]
実施例
第3図の配置で本発明の反射光強度による膜厚測定を実
施した。カーボンフートの膜厚は原料濃度によって調節
し、電気抵抗値から推定した。本実施例で使用した光源
はHe−N eレーザー、波長0.633 am [2
mW、日本電気(株)製、GLG−5300] 、入射
光の光束10mmφ、光源ファイバー検出器[Siフォ
トダイオード、(株)アトパンテスト製、TQ8210
パワーメータ]のなす角度は30’である。第1図(d
)に示すようにカーボン被覆の原料流量を変化させたと
ころ、カーボン膜厚は32 n m、 28 n m
、 23 n m。"Example" Film thickness measurement was carried out using the reflected light intensity of the present invention in the arrangement shown in Example Figure 3.The film thickness of the carbon foot was adjusted according to the raw material concentration and estimated from the electrical resistance value.Used in this example The light source was a He-N e laser with a wavelength of 0.633 am [2
mW, manufactured by NEC Corporation, GLG-5300], luminous flux of incident light 10 mmφ, light source fiber detector [Si photodiode, manufactured by Atoppan Test Co., Ltd., TQ8210
power meter] is 30'. Figure 1 (d
), when the raw material flow rate for carbon coating was changed, the carbon film thickness was 32 nm and 28 nm.
, 23 nm.
14nm、Snm、Qnmであり、検出器に照射された
光のパワー(n W )と対応する出力(m V )は
第1図(d)のようになった。カーボン膜厚(nm)と
反則光パワー(電圧・mV)の関係を求めると、第1図
(c)のようになった。同図より、反射光強度により膜
厚測定が可能であること、さらに1mm程度の位置振動
がある線引きライン中でも本発明により測定可能である
ことが解る。14 nm, S nm, and Q nm, and the power (n W ) of the light irradiated on the detector and the corresponding output (m V ) were as shown in FIG. 1(d). When the relationship between the carbon film thickness (nm) and the repulsive light power (voltage/mV) was determined, it was as shown in FIG. 1(c). From the same figure, it can be seen that the film thickness can be measured based on the intensity of reflected light, and that the present invention can also be used to measure even a drawing line with a positional vibration of about 1 mm.
以上は、カーボン被覆の膜厚測定を例として説明したが
、本発明の測定方法は、その他の光ファイバの表面に設
けた金属光沢を有するハーメチックコートの被覆膜厚測
定にも同様に有効であった。The above description has been made using the measurement of the thickness of a carbon coating as an example, but the measurement method of the present invention is equally effective for measuring the thickness of a hermetic coat with metallic luster provided on the surface of other optical fibers. there were.
[発明の効果]
本発明は光学系を利用することで、ファイバの被覆膜厚
を非接触で測定可能とし、測定による光ファイバの強度
劣化の危険性を解消できた。[Effects of the Invention] By using an optical system, the present invention makes it possible to measure the coating film thickness of a fiber in a non-contact manner, and eliminates the risk of deterioration in the strength of the optical fiber due to measurement.
また、製造時オンラインで被覆膜厚の測定を可能とした
ので、得られた測定結果を直ちに被覆条件にフィードバ
ックして、例えば原料供給量を調整する等して製造を続
けてゆくことで、適正な被覆光ファイバを製造できる。In addition, since it is now possible to measure the coating film thickness online during manufacturing, the measurement results obtained can be immediately fed back to the coating conditions and continue manufacturing by, for example, adjusting the amount of raw material supplied. Appropriate coated optical fibers can be manufactured.
本発明は特にカーボン被覆ファイバその他の金属光沢を
有するハーメチック被覆ファイバに適用して有利な方法
である。The present invention is particularly advantageous when applied to carbon-coated fibers and other hermetically coated fibers with metallic luster.
第1図(a)〜(c)は本発明の測定方法を説明する概
略図であって、同図(a)は本発明の構成を示す図、同
図(b)は本発明の研究途上の実験を説明する図、同図
(c)は本発明の実施例により得られたカーボン薄膜膜
厚と反射光強度の関係を示す図、同図(d)は本発明の
実施例において原料ガス条件を変化させて種々の膜厚(
電気抵抗値から推定)のカーボン膜を形成しつつインラ
インで反射光強度を測定した結果を経時的に示した図表
である。
第2図は薄膜被覆を有する光ファイバの断面図、第3図
は本発明を製造工程に適用する場合のライン図、第4図
(a)及び(b)は従来の測定法の概略説明図てあ゛る
。
図中、1.プリフォーム、2.線引炉、31反応管、4
:ヒーター 5.ダイス、6:樹脂硬化手段、7:巻取
機、IO9光源、11〜13;レンズ、14.検出器、
16.増幅器、17.電正計、204.ファイバ 23
.パイロリチノクカーボン膜、24:カーボン被覆ファ
イバを示す。FIGS. 1(a) to 1(c) are schematic diagrams for explaining the measurement method of the present invention, in which FIG. 1(a) shows the configuration of the present invention, and FIG. (c) is a diagram showing the relationship between the carbon thin film thickness and reflected light intensity obtained in the example of the present invention, and (d) is a diagram explaining the experiment of the raw material gas in the example of the present invention. Various film thicknesses (
3 is a chart showing the results of in-line measurement of reflected light intensity over time while forming a carbon film (estimated from electrical resistance value). Figure 2 is a cross-sectional view of an optical fiber with a thin film coating, Figure 3 is a line diagram when the present invention is applied to the manufacturing process, and Figures 4 (a) and (b) are schematic explanatory diagrams of the conventional measurement method. It's so hot. In the figure, 1. Preform, 2. Drawing furnace, 31 reaction tubes, 4
: Heater 5. Dice, 6: Resin curing means, 7: Winder, IO9 light source, 11-13; Lens, 14. Detector,
16. amplifier, 17. Electrometer, 204. fiber 23
.. Pyrolithinok carbon film, 24: carbon coated fiber.
Claims (1)
の膜厚を測定する方法において、当該薄膜被覆光ファイ
バの表面に光束を照射し、該薄膜で反射される光の強度
を測定することにより膜厚を求めることを特徴とする膜
厚測定方法。(1) A method for measuring the thickness of a thin film with metallic luster that coats the outer periphery of an optical fiber, by irradiating the surface of the thin film-coated optical fiber with a light beam and measuring the intensity of the light reflected by the thin film. A film thickness measurement method characterized by determining film thickness.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4096290A JPH03245005A (en) | 1990-02-23 | 1990-02-23 | Measuring method for film thickness |
CA002034162A CA2034162A1 (en) | 1990-02-23 | 1991-01-15 | Method and apparatus for measuring the thickness of a coating |
EP91100472A EP0443322B1 (en) | 1990-02-23 | 1991-01-16 | Method and apparatus for measuring the thickness of a coating |
DE69103783T DE69103783T2 (en) | 1990-02-23 | 1991-01-16 | Method and device for measuring the thickness of a layer. |
US07/641,784 US5208645A (en) | 1990-02-23 | 1991-01-16 | Method and apparatus for optically measuring the thickness of a coating |
AU69439/91A AU639970B2 (en) | 1990-02-23 | 1991-01-16 | Method and apparatus for optically measuring the thickness of a coating |
KR1019910001079A KR910021571A (en) | 1990-02-23 | 1991-01-23 | Coating thickness measuring method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4096290A JPH03245005A (en) | 1990-02-23 | 1990-02-23 | Measuring method for film thickness |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03245005A true JPH03245005A (en) | 1991-10-31 |
Family
ID=12595112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4096290A Pending JPH03245005A (en) | 1990-02-23 | 1990-02-23 | Measuring method for film thickness |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03245005A (en) |
-
1990
- 1990-02-23 JP JP4096290A patent/JPH03245005A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0443322B1 (en) | Method and apparatus for measuring the thickness of a coating | |
WO2009096633A1 (en) | Method for measuring thickness | |
JPH0678892B2 (en) | Film thickness measuring instrument | |
JPS62190728A (en) | Method and apparatus for monitoring etching end point | |
JPH02267140A (en) | Preparation of optical fiber | |
CA2390283A1 (en) | Method to determine the identity of a material in an object | |
JPH03245005A (en) | Measuring method for film thickness | |
JP2003161605A (en) | Film thickness measuring device and method | |
KR20050042470A (en) | In-line process and device for measuring the characteristics of a surface coating on a metallugical product | |
JP4774246B2 (en) | Non-contact optical measurement method and apparatus for thermal glass body thickness using light dispersion | |
JPH04130746A (en) | Radiation thermometer and method for wafer temperature measurement | |
JP2003131090A (en) | Method and apparatus for coating optical fiber | |
Hartikainen | Fast photothermal measurement system for inspection of weak adhesion defects | |
JPH04363612A (en) | Method and device for measuring coating thickness, and manufacture of optical fiber using same | |
US6476906B1 (en) | Apparatus for measuring stress in a thin film and method of manufacturing a probe used therefor | |
JPH01114727A (en) | Radiation temperature measuring instrument | |
Katagiri et al. | Direct core observation method using thermal radiation of silica fibers with dopants | |
JPH0387605A (en) | Method and device for measuring film thickness | |
Spousta et al. | In situ measurements of surface homogeneity of optical parameters of weakly absorbing thin films | |
CN112903632B (en) | Method for improving measurement accuracy of nonlinear optical coefficient of thin-film material | |
JPH0680444A (en) | Production of optical fiber core filament | |
Severin | In-situ film thickness monitoring in CVD and other thin film deposition processes | |
JPH04243938A (en) | Method for monitoring carbon coating film of optical fiber | |
Martin et al. | Optical measurement of UV absorption in dielectric coatings | |
AU2002217163A1 (en) | On-line tension measurement in an optical fibre |