JPH04243938A - Method for monitoring carbon coating film of optical fiber - Google Patents

Method for monitoring carbon coating film of optical fiber

Info

Publication number
JPH04243938A
JPH04243938A JP3025697A JP2569791A JPH04243938A JP H04243938 A JPH04243938 A JP H04243938A JP 3025697 A JP3025697 A JP 3025697A JP 2569791 A JP2569791 A JP 2569791A JP H04243938 A JPH04243938 A JP H04243938A
Authority
JP
Japan
Prior art keywords
optical fiber
carbon
coating film
carbon coating
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3025697A
Other languages
Japanese (ja)
Other versions
JP2719050B2 (en
Inventor
Takeshi Shimomichi
毅 下道
Keiji Ohashi
圭二 大橋
Shinji Araki
荒木 真治
Hideo Suzuki
秀雄 鈴木
Yutaka Katsuyama
豊 勝山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Fujikura Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Nippon Telegraph and Telephone Corp filed Critical Fujikura Ltd
Priority to JP3025697A priority Critical patent/JP2719050B2/en
Publication of JPH04243938A publication Critical patent/JPH04243938A/en
Application granted granted Critical
Publication of JP2719050B2 publication Critical patent/JP2719050B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To continuously measure the thickness of a carbon coating film in a non- contacting state by forming the carbon coating film on the surface of a bare optical fiber, scanning the carbon-coated optical fiber with a laser light, and detecting the amount of the transmitted laser light to measure the thickness of the coated carbon film. CONSTITUTION:An optical fiber matrix 2 is melt-spun with a spinning device 3 to produce a bare optical fiber 1. The bare optical fiber 1 is passed through the reaction tube 5 of a chemical gaseous phase growth (hereinafter CVD) reaction oven 4 to form a carbon coating film on the surface of the bare optical fiber 1. In an evaluation device 7, a laser light 12 from a light-generating device 10 is scanned, and the amount of the transmitted laser light 13 is detected with a light-receiving device 11 to measure the thickness of the carbon coated film. The measured value is transmitted into a CVD reaction oven 4 as a control signal, and a heating temperature and a raw material gas are changed to control the formation of the carbon coating film. The carbon coated optical fiber is passed through a resin solution-coating device 14 to coat the fiber with the resin solution, and the coated resin solution is cured to form the carbon coating film and the protecting coating film, thus providing an optical fiber having excellent hydrogen-resistant characteristics.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【 産業上の利用分野】この発明は、表面に炭素被膜が
形成された光ファイバを製造する際などに、炭素被膜の
膜厚を非接触連続的に測定する炭素被膜のモニタ方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for monitoring a carbon film in which the thickness of the carbon film is continuously measured in a non-contact manner during the manufacture of optical fibers having a carbon film formed on the surface thereof.

【0002】0002

【従来の技術】石英系光ファイバは、水素と接触すると
ファイバ内に拡散した水素分子の分子振動に起因する吸
収損失が増大し、さらにドーパントとして含有されてい
るP2O5,GeO2,B2O3などが水素と反応しO
H基としてファイバガラス中に取り込まれるため、OH
基の吸収による伝送損失も増大してしまう問題があった
[Prior Art] When a silica-based optical fiber comes into contact with hydrogen, absorption loss due to the molecular vibration of hydrogen molecules diffused into the fiber increases, and furthermore, P2O5, GeO2, B2O3, etc. contained as dopants react with hydrogen. React O
Since it is incorporated into the fiber glass as an H group, OH
There is also a problem in that transmission loss due to absorption of radicals also increases.

【0003】このような弊害に対処するため、水素吸収
能を有する液状の組成物を光ケーブル内に充填する方法
(特願昭61−2510808号)などが考えられてい
るが、その効果が不十分である上、構造が複雑となって
、経済的にも問題がある。
[0003] In order to deal with such adverse effects, methods such as filling an optical cable with a liquid composition having hydrogen absorption ability (Japanese Patent Application No. 61-2510808) have been considered, but the effect is insufficient. Moreover, the structure is complicated and there are economical problems.

【0004】このような問題を解決するため、最近化学
気相成長法(以下、CVD法と略称する)によって、光
ファイバ表面に炭素被膜を形成し、これによって、光フ
ァイバの耐水素特性を向上させうることが発表されてい
る。この製造方法は、光ファイバ裸線表面にCVD法に
よって炭素被膜を形成した後、紫外線硬化型樹脂や熱硬
化型樹脂によって保護被覆層を形成して光ファイバとす
る方法である。
[0004] In order to solve these problems, a carbon film has recently been formed on the surface of an optical fiber by chemical vapor deposition (hereinafter abbreviated as CVD), thereby improving the hydrogen resistance properties of the optical fiber. It has been announced that it can be done. This manufacturing method is a method in which a carbon film is formed on the surface of a bare optical fiber by a CVD method, and then a protective coating layer is formed using an ultraviolet curable resin or a thermosetting resin to produce an optical fiber.

【0005】ところで、光ファイバ裸線表面に形成され
た炭素被膜の耐水素特性は、その膜質および膜厚によっ
て大きく変化することが知られている。そして従来から
光ファイバ裸線表面に形成された炭素被膜の膜質および
膜厚を測定するには、光ファイバを切断し、その断面を
顕微鏡で観察する方法が用いられている。
By the way, it is known that the hydrogen resistance properties of a carbon film formed on the surface of a bare optical fiber vary greatly depending on the quality and thickness of the film. Conventionally, in order to measure the quality and thickness of a carbon film formed on the surface of a bare optical fiber, a method has been used in which the optical fiber is cut and its cross section is observed using a microscope.

【0006】しかしながら、この測定方法では、光ファ
イバの切断を余儀なくされ、非破壊的に測定を行うこと
ができないばかりでなく、連続測定が不可能であるとい
う不都合があった。
[0006] However, with this measurement method, the optical fiber has to be cut, which not only makes it impossible to perform non-destructive measurements, but also makes it impossible to perform continuous measurements.

【0007】このような問題を解決する方法として、本
発明者らによって、光ファイバの長さ方向に沿って炭素
被膜の電気抵抗値を測定し、この測定値に基づいて炭素
被膜の形成条件を制御する方法が提案されている。とこ
ろが、電気抵抗値を測定するこの方法は非破壊的かつ、
連続的に光ファイバの品質管理を行うという観点にたっ
て提案されたものであるので、その点においては問題が
解決されているものの、光ファイバと測定電極との直接
接触をさけることができず、光ファイバの強度低下のお
それが生じる点、および測定電極の汚れによる測定誤差
が発生する点などにおいて改善の余地があった。
As a method to solve this problem, the present inventors measured the electrical resistance value of the carbon film along the length of the optical fiber, and determined the conditions for forming the carbon film based on this measured value. A method of controlling this has been proposed. However, this method of measuring electrical resistance is non-destructive and
This was proposed from the perspective of continuous quality control of optical fibers, and although the problem has been solved in that respect, it is not possible to avoid direct contact between the optical fiber and the measurement electrode. There is room for improvement in that there is a risk of a decrease in the strength of the optical fiber and that measurement errors occur due to dirt on the measurement electrode.

【0008】そこで、本発明者等はカーボン膜の誘電特
性を利用し、カーボン膜に電磁波を当ててその反射・透
過特性を検出して炭素被膜の膜質を測定する方法を提案
した。
Therefore, the present inventors have proposed a method of measuring the film quality of a carbon film by applying electromagnetic waves to the carbon film and detecting its reflection/transmission characteristics by utilizing the dielectric properties of the carbon film.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、これら
の測定を行う場合の装置系は複雑な演算処理が必要であ
りデータ処理に時間がかかるため、光ファイバを高速で
紡糸する場合に、炭素被膜が付着していないなどの数セ
ンチオーダの不良部分を検出するのは困難である。従っ
て、炭素被膜の誘電特性を利用する方法は炭素被膜の管
理に関しては有効であるものの、高速紡糸を行った場合
の不良部分検出には不十分である。
[Problems to be Solved by the Invention] However, the equipment system used to perform these measurements requires complex arithmetic processing and data processing takes time. It is difficult to detect defective parts on the order of several centimeters, such as those that are not attached. Therefore, although the method of utilizing the dielectric properties of the carbon film is effective for controlling the carbon film, it is insufficient for detecting defective parts when high-speed spinning is performed.

【0010】本発明は前記課題を解決するためになされ
たもので、高速紡糸で製造される炭素被膜の形成された
光ファイバの炭素被膜の膜厚を非接触連続的に測定する
炭素被膜のモニタ方法を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and provides a carbon coating monitor for continuously measuring the thickness of the carbon coating of an optical fiber manufactured by high-speed spinning in a non-contact manner. The purpose is to provide a method.

【0011】[0011]

【課題を解決するための手段】本発明は前記課題を解決
するために、表面に炭素被膜が形成された光ファイバ裸
線にレーザ光を走査し、前記レーザ光の透過光量を検出
することにより前記炭素被膜の膜厚を測定することを特
徴とする光ファイバの炭素被膜のモニタ方法としたもの
である。
[Means for Solving the Problems] In order to solve the above problems, the present invention scans a bare optical fiber having a carbon coating on its surface with a laser beam, and detects the amount of transmitted light of the laser beam. A method for monitoring a carbon coating of an optical fiber, characterized by measuring the thickness of the carbon coating.

【0012】0012

【作用】表面に炭素被膜が形成された光ファイバの裸線
にレーザ光を走査し、このレーザ光の透過光量を検出し
、上記炭素被膜の膜厚を測定する。またその測定値をも
とに炭素被膜の形成条件を制御することにより、均一な
炭素被膜の形成された光ファイバを製造することができ
るものである。
[Operation] A laser beam is scanned over a bare optical fiber having a carbon coating formed on its surface, and the amount of transmitted light of this laser beam is detected to measure the thickness of the carbon coating. Furthermore, by controlling the conditions for forming the carbon film based on the measured values, it is possible to manufacture an optical fiber having a uniform carbon film formed thereon.

【0013】[0013]

【実施例】図1は、光ファイバの製造に好適に用いられ
る装置の一例を示したものである。図1中、符号1は光
ファイバ裸線である。この光ファイバ裸線1は、光ファ
イバ母材2を紡糸装置3内で溶融紡糸したものであり、
この紡糸装置3の下段に設けられたCVD反応炉4内で
、その表面に炭素被膜が形成されるようになっている。 このCVD反応炉4は、内部にて光ファイバ裸線1表面
に炭素被膜を形成する反応管5と、この反応管5を加熱
する発熱体6とからなるものである。またこのCVD反
応炉4の下段には、光ファイバ裸線1表面に形成された
炭素被膜のレーザ光の透過光量を検出し、この測定値か
ら炭素被膜の膜厚を評価する評価装置7が設けられてお
り、上段のCVD反応炉4とこの評価装置7とはコント
ローラ8を介して接続されており、評価装置7で得られ
た結果がCVD反応炉4へフィードバックされるように
なっている。さらに、評価装置7の下段には樹脂液塗布
装置14および硬化装置15とが連続して設けられてお
り、炭素被膜が形成された光ファイバ上に必要に応じて
保護被膜層が形成できるようになっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an example of an apparatus suitably used for manufacturing optical fibers. In FIG. 1, reference numeral 1 indicates a bare optical fiber. This optical fiber bare wire 1 is obtained by melt-spinning an optical fiber preform 2 in a spinning device 3,
A carbon film is formed on the surface of the CVD reactor 4 provided at the lower stage of the spinning device 3. This CVD reactor 4 consists of a reaction tube 5 that forms a carbon film on the surface of the bare optical fiber 1 inside, and a heating element 6 that heats the reaction tube 5. Further, in the lower part of the CVD reactor 4, there is provided an evaluation device 7 that detects the amount of transmitted laser light through the carbon film formed on the surface of the bare optical fiber 1 and evaluates the thickness of the carbon film from this measured value. The upper CVD reactor 4 and this evaluation device 7 are connected via a controller 8, so that the results obtained by the evaluation device 7 are fed back to the CVD reactor 4. Furthermore, a resin liquid coating device 14 and a curing device 15 are successively provided at the lower stage of the evaluation device 7, so that a protective coating layer can be formed as necessary on the optical fiber on which the carbon coating has been formed. It has become.

【0014】このような製造装置を用いて、表面に炭素
被膜が形成された光ファイバを製造するには、以下の工
程による。まず光ファイバ母材2を用意し、これを紡糸
装置3に設置し、溶融紡糸して光ファイバ裸線1とする
。ついでこの光ファイバ裸線1をCVD反応炉4内に挿
通し、光ファイバ裸線1表面にCVD反応により炭素被
膜を形成する。ついでこの炭素被膜の耐水素特性を評価
装置7にて評価する。
[0014] In order to manufacture an optical fiber having a carbon film formed on its surface using such a manufacturing apparatus, the following steps are performed. First, an optical fiber preform 2 is prepared, placed in a spinning device 3, and melt-spun into a bare optical fiber 1. Next, this bare optical fiber 1 is inserted into a CVD reactor 4, and a carbon film is formed on the surface of the bare optical fiber 1 by a CVD reaction. Next, the hydrogen resistance properties of this carbon film are evaluated using an evaluation device 7.

【0015】評価装置7は図1(B)に示すようなもの
で、炭素被膜の形成された光ファイバ裸線9に発光器1
0からレーザ光12を走査し、受光器11で透過レーザ
光13の透過光量を検出し、炭素被膜の膜厚を測定する
The evaluation device 7 is as shown in FIG.
The laser beam 12 is scanned from zero, the amount of transmitted laser beam 13 is detected by the light receiver 11, and the thickness of the carbon film is measured.

【0016】実際に光ファイバを製造するにあたっては
、予め良好な耐水素特性を示すような光ファイバを評価
装置7内に挿通させてそのレーザ光の透過光量と炭素被
膜の膜厚との関係を調べておき、評価装置7内で測定さ
れた透過光量の値を制御信号としてCVD反応炉4内に
送り、この制御信号に基づいて例えば反応管5を加熱す
る発熱体6の加熱温度を変化させたり、反応管5内に供
給する原料ガスの濃度を変更させて、一定の耐水素特性
を示す炭素被膜を形成するように制御する。このように
して一定の耐水素特性を示す炭素被膜が形成された光フ
ァイバを容易に得ることができる。
When actually manufacturing an optical fiber, an optical fiber exhibiting good hydrogen resistance is inserted into the evaluation device 7 in advance, and the relationship between the amount of transmitted laser light and the thickness of the carbon film is determined. The value of the amount of transmitted light measured in the evaluation device 7 is sent to the CVD reactor 4 as a control signal, and based on this control signal, for example, the heating temperature of the heating element 6 that heats the reaction tube 5 is changed. Alternatively, the concentration of the raw material gas supplied into the reaction tube 5 is controlled so as to form a carbon film exhibiting a certain hydrogen resistance property. In this way, it is possible to easily obtain an optical fiber on which a carbon coating exhibiting certain hydrogen resistance characteristics is formed.

【0017】そして炭素被膜が形成された光ファイバを
樹脂液塗布装置14に挿通し、紫外線硬化型樹脂液等を
塗布した後、硬化装置15内にて上記樹脂液を硬化させ
て、炭素被膜と保護被覆層とが形成されて耐水素特性と
機械的強度とに優れた光ファイバを得ることができる。
The optical fiber on which the carbon film has been formed is inserted into the resin liquid coating device 14 and coated with an ultraviolet curable resin liquid, etc., and then the resin liquid is cured in the curing device 15 to form a carbon film. A protective coating layer is formed, and an optical fiber with excellent hydrogen resistance and mechanical strength can be obtained.

【0018】炭素被膜の膜厚を測定するにあたって、炭
素被膜に電磁波を照射し、電磁波の反射・透過量を検出
して炭素被膜の比誘電率を測定する場合、一般的な装置
の最小サンプリングタイムは10msecであるのに対
し、レーザ光を走査し、その透過光量を検出する場合の
サンプリングタイムは1msecである。すなわち、線
速200m/minで紡糸を行った場合、電磁波を使用
する方法では3cm以下の不良部分は検出できないが、
レーザ光を使用する方法では0.3cm程度の不良部分
も検出できる。
[0018] When measuring the film thickness of a carbon film, when measuring the dielectric constant of the carbon film by irradiating the carbon film with electromagnetic waves and detecting the amount of reflection and transmission of the electromagnetic waves, the minimum sampling time of a general device is is 10 msec, whereas the sampling time when scanning a laser beam and detecting the amount of transmitted light is 1 msec. In other words, when spinning at a linear speed of 200 m/min, defects smaller than 3 cm cannot be detected using a method that uses electromagnetic waves;
The method using laser light can detect defective parts as small as 0.3 cm.

【0019】(測定例)  実際に炭素被膜の形成され
た光ファイバ裸線にレーザ光を走査した結果を図2と図
3に示した。
(Measurement Example) The results of actually scanning a bare optical fiber coated with a carbon film with a laser beam are shown in FIGS. 2 and 3.

【0020】光ファイバの紡糸速度は200m/min
で、外径は125μmであった。レーザ光は毎秒200
回の周期で光ファイバの幅方向に横振りさせて照射した
。これは、レーザ光のビーム径を絞ることで検知感度を
高めた上で、光ファイバ紡糸時の微細な線振れ等に対応
し、必要な検知範囲を確保するためである。
[0020] The spinning speed of the optical fiber is 200 m/min.
The outer diameter was 125 μm. Laser light is 200 times per second
The optical fiber was irradiated by horizontally swinging it in the width direction at a period of 3 times. This is to increase the detection sensitivity by narrowing down the beam diameter of the laser beam, and to ensure the necessary detection range in order to cope with minute line vibrations during optical fiber spinning.

【0021】図2にレーザ光走査時の透過光量検出波形
を示す。図中央の山形波形の出力電圧が炭素被膜の膜厚
に対応するもので、透過率の変化はこの出力電圧の大き
さに表れる。ここで、波形の両端は横振りしているレー
ザ光が光ファイバの外側を走査時のもので、透過率は1
00%で出力電圧は高くなる。また、光ファイバは円筒
形状をしているために、光ファイバの両側部を走査時(
図中央の山形波形の両脇)にはレーザ光は受光器外に散
乱され易く、出力電圧は低く表わされている。
FIG. 2 shows a transmitted light amount detection waveform during laser beam scanning. The chevron-shaped output voltage in the center of the figure corresponds to the thickness of the carbon film, and changes in transmittance are reflected in the magnitude of this output voltage. Here, both ends of the waveform are when the horizontally oscillating laser beam scans the outside of the optical fiber, and the transmittance is 1.
At 00%, the output voltage becomes high. Also, since the optical fiber has a cylindrical shape, when scanning both sides of the optical fiber (
On both sides of the chevron-shaped waveform in the center of the figure), the laser light is easily scattered outside the photoreceiver, and the output voltage appears low.

【0022】図3は前記出力電圧と炭素被膜の膜厚の関
係を示したものである。出力電圧が大きいほど膜厚が薄
いことがわかる。
FIG. 3 shows the relationship between the output voltage and the thickness of the carbon film. It can be seen that the larger the output voltage, the thinner the film thickness.

【0023】以上の通り、レーザ光を使用する本発明の
モニタ方法は、炭素被膜の膜厚に敏感な上に、短いスパ
ンの不良部分も検出可能となるため、高速紡糸において
も不良部分の検出が十分可能である。
As described above, the monitoring method of the present invention using laser light is sensitive to the thickness of the carbon film and can also detect defective parts with short spans, so it is possible to detect defective parts even during high-speed spinning. is quite possible.

【0024】さらに、炭素被膜に非接触で測定するため
、電極の汚れ等の影響を受けず、正確な測定ができ、さ
らにまた、製造された光ファイバ表面を汚染する心配が
なく、光ファイバ表面に傷が発生する恐れもなくなった
ので、より機械的強度の高い光ファイバを得ることがで
きるようになる。
Furthermore, since the measurement is performed without contacting the carbon coating, accurate measurement is possible without being affected by dirt on the electrodes, etc. Furthermore, there is no fear of contaminating the surface of the manufactured optical fiber, and the surface of the optical fiber is Since there is no fear of scratches occurring on the fiber, it becomes possible to obtain an optical fiber with higher mechanical strength.

【0025】また、炭素被膜の耐水素特性を非破壊的に
連続測定することができるので、製造される光ファイバ
の品質管理が非常に簡便となる効果がある。
Furthermore, since the hydrogen resistance properties of the carbon coating can be continuously measured in a non-destructive manner, quality control of manufactured optical fibers is greatly simplified.

【0026】さらにまた、本発明のモニタ方法により得
られた測定値を制御信号としてCVD反応炉に送り、こ
れによりCVD反応炉での炭素被膜形成条件を制御すれ
ば、良好な耐水素特性を示す炭素被膜を均一に形成する
ことができる。
Furthermore, if the measured values obtained by the monitoring method of the present invention are sent to the CVD reactor as a control signal and the conditions for forming a carbon film in the CVD reactor are thereby controlled, good hydrogen resistance properties can be exhibited. A carbon film can be formed uniformly.

【0027】尚、図1に示した例にあっては、炭素被膜
を形成する基材として光ファイバ裸線を用いたが、この
発明の炭素被膜のモニタ方法はこれに限定されるもので
はない。
In the example shown in FIG. 1, a bare optical fiber was used as the base material on which the carbon film was formed, but the carbon film monitoring method of the present invention is not limited to this. .

【0028】[0028]

【発明の効果】以上説明したように本発明は、表面に炭
素被膜が形成された光ファイバ裸線にレーザ光を走査し
、このレーザ光の透過光量を検出することにより炭素被
膜の膜厚を測定するものなので、サンプリングタイムが
短く、高速紡糸にも対応できる。また、非接触かつ連続
的に炭素被膜の膜厚を測定することができ、炭素被膜を
損傷させることなく、光ファイバの強度低下の原因とな
ることがなく、測定電極の汚れによる測定誤差も生じる
ことがない。
As explained above, the present invention scans a laser beam on a bare optical fiber having a carbon coating formed on its surface, and detects the amount of transmitted light of this laser beam, thereby measuring the thickness of the carbon coating. Since it is a measurement device, the sampling time is short and it can also be used for high-speed spinning. In addition, the thickness of the carbon coating can be measured non-contact and continuously, without damaging the carbon coating or causing a decrease in the strength of the optical fiber, and measurement errors caused by dirt on the measurement electrode. Never.

【0029】また、この測定値に基づいて炭素被膜の形
成条件を制御することにより、常に一定の耐水素特性を
示す均一な炭素被膜を形成できるようになるとともに、
光ファイバの品質管理を簡便に行うことができる。
Furthermore, by controlling the conditions for forming the carbon film based on this measured value, it becomes possible to form a uniform carbon film that always exhibits constant hydrogen resistance, and
Quality control of optical fibers can be easily performed.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図1(A)は光ファイバの製造装置の一実施例
の概略構成図、図1(B)は評価装置7を表す模式図で
ある。
FIG. 1(A) is a schematic configuration diagram of an embodiment of an optical fiber manufacturing apparatus, and FIG. 1(B) is a schematic diagram showing an evaluation device 7. FIG.

【図2】レーザ光透過光量検出波形図である。FIG. 2 is a waveform diagram for detecting the amount of transmitted laser light.

【図3】出力電圧と膜厚の関係を示す図である。FIG. 3 is a diagram showing the relationship between output voltage and film thickness.

【符号の説明】[Explanation of symbols]

1  光ファイバ裸線 2  光ファイバ母材 3  紡糸装置 4  CVD反応炉 5  反応管 6  発熱体 7  評価装置 8  コントローラ 9  炭素被膜の形成された光ファイバ10  発光器 11  受光器 12  レーザ光 13  透過したレーザ光 1 Bare optical fiber 2 Optical fiber base material 3 Spinning device 4 CVD reactor 5 Reaction tube 6 Heating element 7 Evaluation device 8 Controller 9 Optical fiber with carbon coating 10 Light emitter 11 Photo receiver 12 Laser light 13 Transmitted laser light

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  表面に炭素被膜が形成された光ファイ
バ裸線にレーザ光を走査し、前記レーザ光の透過光量を
検出することにより前記炭素被膜の膜厚を測定すること
を特徴とする光ファイバの炭素被膜のモニタ方法。
1. A light beam characterized in that the film thickness of the carbon coating is measured by scanning a laser beam on a bare optical fiber having a carbon coating formed on the surface and detecting the amount of transmitted light of the laser beam. A method for monitoring carbon coatings on fibers.
JP3025697A 1991-01-25 1991-01-25 Method for monitoring carbon coating of optical fiber Expired - Fee Related JP2719050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3025697A JP2719050B2 (en) 1991-01-25 1991-01-25 Method for monitoring carbon coating of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3025697A JP2719050B2 (en) 1991-01-25 1991-01-25 Method for monitoring carbon coating of optical fiber

Publications (2)

Publication Number Publication Date
JPH04243938A true JPH04243938A (en) 1992-09-01
JP2719050B2 JP2719050B2 (en) 1998-02-25

Family

ID=12172987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3025697A Expired - Fee Related JP2719050B2 (en) 1991-01-25 1991-01-25 Method for monitoring carbon coating of optical fiber

Country Status (1)

Country Link
JP (1) JP2719050B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0687897A1 (en) * 1994-06-14 1995-12-20 Hitachi, Ltd. Method for making specimen and apparatus thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02267140A (en) * 1989-02-27 1990-10-31 American Teleph & Telegr Co <Att> Preparation of optical fiber
JPH0480632A (en) * 1990-07-23 1992-03-13 Nippon Telegr & Teleph Corp <Ntt> Method and device for inspecting carbon-coated optical fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02267140A (en) * 1989-02-27 1990-10-31 American Teleph & Telegr Co <Att> Preparation of optical fiber
JPH0480632A (en) * 1990-07-23 1992-03-13 Nippon Telegr & Teleph Corp <Ntt> Method and device for inspecting carbon-coated optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0687897A1 (en) * 1994-06-14 1995-12-20 Hitachi, Ltd. Method for making specimen and apparatus thereof

Also Published As

Publication number Publication date
JP2719050B2 (en) 1998-02-25

Similar Documents

Publication Publication Date Title
EP0443322B1 (en) Method and apparatus for measuring the thickness of a coating
CA1254280A (en) Apparatus and method for monitoring fiber tension
EP0459441A3 (en) Method and system for inspection of electroconductive film using eddy current and process and system for production of optical fibers using method and system
US5271073A (en) Optical fiber sensor and method of manufacture
JPS62190728A (en) Method and apparatus for monitoring etching end point
JP5116934B2 (en) System and method for determining spin imparted to an optical fiber and mechanical twist of the optical fiber
JPH04243938A (en) Method for monitoring carbon coating film of optical fiber
JPH03107745A (en) Method and device for light scattering measurement
US6937325B2 (en) Method and apparatus for measuring eccentricity in a optical fiber
Presby Geometrical uniformity of plastic coatings on optical fibers
JP3291062B2 (en) Method for producing hermetic coated optical fiber
Severin et al. Fatigue testing procedures of silica optical fibres
Askins et al. Technique for controlling the internal rotation of principal axes in the fabrication of birefringent fibers
JP2893048B2 (en) Carbon coated optical fiber inspection method and apparatus
JP2672909B2 (en) Carbon coated core wire
JPH04323528A (en) Spun string tension measurement method for optical fiber
JP3603368B2 (en) Glass fiber twist detection method
JPH05208850A (en) Carbon-coated optical fiber, its produciton and method for evaluating carbon film
Trouillet et al. Optical fibre refractive index sensor using surface plasmon resonance and a TiO2 coating obtained by sol-gel process
US5617210A (en) Method of detecting whether at least one die is centered about a thread held taught between two fixed points
Watkins Control of fiber manufacturing processes
JP3619792B2 (en) Optical fiber preform refractive index measurement method
JPH0797232A (en) Filament drawing of optical fiber
JPS5815055B2 (en) Inspection method for optical fiber preforms
JP4033977B2 (en) Anomaly detection method and anomaly detection apparatus for coating layer in traveling linear body

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971021

LAPS Cancellation because of no payment of annual fees