JPH0324484B2 - - Google Patents

Info

Publication number
JPH0324484B2
JPH0324484B2 JP15009082A JP15009082A JPH0324484B2 JP H0324484 B2 JPH0324484 B2 JP H0324484B2 JP 15009082 A JP15009082 A JP 15009082A JP 15009082 A JP15009082 A JP 15009082A JP H0324484 B2 JPH0324484 B2 JP H0324484B2
Authority
JP
Japan
Prior art keywords
chloride
catalyst
present
transition metal
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15009082A
Other languages
Japanese (ja)
Other versions
JPS5941309A (en
Inventor
Tadashi Asanuma
Shinryu Uchikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP15009082A priority Critical patent/JPS5941309A/en
Publication of JPS5941309A publication Critical patent/JPS5941309A/en
Publication of JPH0324484B2 publication Critical patent/JPH0324484B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は担体型遷移金属触媒と有機アルミニウ
ム及び立体規則向上剤からなる触媒を用いて重合
する方法に於て、改良された重合方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved polymerization method using a supported transition metal catalyst, an organoaluminium, and a stereoregularity improver.

α−オレフインの重合触媒として担体型遷移金
属、有機アルミニウム、有機酸エステルからなる
触媒を用いる方法については、特公昭39−12105
号公報で提案されてから多くの改良触媒が提案さ
れており、触媒活性及び得られた重合体の立体規
則性ともに大幅に改良されている。しかしながら
エチレンの重合触媒に比較して活性が不充分であ
り、触媒残査をまつたく除去することなく或は特
別の処理を行うことなく製品化することが困難で
あり、又立体規則性向上剤なしでは得られるポリ
マーの立体規則性が不充分であり、結果的に立体
規則性向上剤が製品中に残り、臭気等の問題があ
るため、触媒活性の改良或は重合方法の改良が望
まれる。
Regarding the method of using a catalyst consisting of a supported transition metal, organoaluminium, and organic acid ester as a polymerization catalyst for α-olefin, Japanese Patent Publication No. 39-12105
Since the proposal in the above publication, many improved catalysts have been proposed, and both the catalytic activity and the stereoregularity of the resulting polymers have been significantly improved. However, the activity is insufficient compared to ethylene polymerization catalysts, and it is difficult to commercialize products without thoroughly removing catalyst residue or performing special treatment. Without it, the stereoregularity of the polymer obtained is insufficient, and as a result, the stereoregularity improver remains in the product, causing problems such as odor, so it is desired to improve the catalyst activity or the polymerization method. .

本発明者らは種々の検討を行つた結果、同一の
担体型遷移金属触媒を用いても、特定の有機アル
ミニウムの組み合せによつて担体型遷移金属触媒
当りの取れ高が大きく、しかも立体規則性向上剤
の使用量が少なくとも、高い立体規則性を有する
ポリ−α−オレフインを与えることを見い出し本
発明を完成した。
As a result of various studies, the present inventors found that even when using the same carrier-type transition metal catalyst, the yield per carrier-type transition metal catalyst is large depending on the combination of specific organoaluminiums, and that stereoregularity The present invention was completed based on the discovery that poly-α-olefins having high stereoregularity can be obtained by using at least the amount of the improver.

即ち本発明は高い活性で高い立体規則性のポリ
−α−オレフインを製造する方法を提供すること
にある。
That is, the object of the present invention is to provide a method for producing a poly-α-olefin with high activity and high stereoregularity.

本発明はジハロゲン化マグネシウムに担持され
た四ハロゲン化チタン触媒とジアルキルアルミニ
ウムクロライド、有機酸エステル、及びトリアル
キルアルミニウムからなる触媒を用いてα−オレ
フインを重合する方法に於て、ジアルキルアルミ
ニウムクロライドとしてジエチルアルミニウムク
ロライドとC3以上のジアルキルアルミニウムク
ロライドを併用することを特徴とする重合方法に
関する。
The present invention relates to a method for polymerizing α-olefin using a titanium tetrahalide catalyst supported on magnesium dihalide, a dialkylaluminum chloride, an organic acid ester, and a trialkylaluminium, in which diethyl The present invention relates to a polymerization method characterized by using aluminum chloride and a C 3 or higher dialkyl aluminum chloride in combination.

本発明で用いるハロゲン化マグネシウムに担持
されたハロゲン化チタン触媒成分の製造法につい
ては格別の限定はなく、得られた触媒が高活性で
高立体規則性のポリ−α−オレフインを与えるも
のであれば良い。例えばジハロゲン化マグネシウ
ム、中でも好ましくは塩化マグネシウムとC−O
又はC−N結合を含有する化合物との複合体を製
造し、次いで四塩化チタンと加熱接触処理するこ
とによつて得られる。
There are no particular limitations on the method for producing the titanium halide catalyst component supported on magnesium halide used in the present invention, and any method may be used as long as the resulting catalyst provides a highly active and highly stereoregular poly-α-olefin. Good. For example, magnesium dihalide, preferably magnesium chloride and C-O
Alternatively, it can be obtained by producing a composite with a compound containing a C--N bond, and then subjecting it to a heat contact treatment with titanium tetrachloride.

この塩化マグネシウムとC−O又はC−N結合
を含有する化合物との複合体は通常塩化マグネシ
ウムとC−O又はC−N結合を含有する化合物を
共粉砕する方法、液状の塩化マグネシウムとC−
O又はC−N結合を含有する化合物の混合溶液か
ら適当な沈殿剤を用いて得る方法等が用いられ、
SiO2、Al2O3、AlCl3などの固体化合物を共存さ
せることも可能である。
This composite of magnesium chloride and a compound containing a C-O or C-N bond is usually prepared by co-pulverizing magnesium chloride and a compound containing a C-O or C-N bond, or by co-pulverizing magnesium chloride and a compound containing a C-O or C-N bond.
A method of obtaining it from a mixed solution of a compound containing an O or C-N bond using an appropriate precipitant, etc. is used,
It is also possible to coexist solid compounds such as SiO 2 , Al 2 O 3 and AlCl 3 .

本発明で用いる有機酸エステルとしては酢酸エ
ステル等の脂肪族カルボン酸エステル類、安息香
酸エステル等の芳香族カルボン酸エステル類、オ
ルソ安息香酸エステル等のオルソカルボン酸エス
テル類、が挙げられるが特に芳香族カルボン酸エ
ステルが好ましく用いられる。
Examples of organic acid esters used in the present invention include aliphatic carboxylic esters such as acetate, aromatic carboxylic esters such as benzoic ester, and orthocarboxylic esters such as orthobenzoic ester. Group carboxylic acid esters are preferably used.

本発明で用いるジアルキルアルミニウムクロラ
イドとしては、ジエチルアルミニウムとC3以上
のジアルキルアルミニウムの混合物或は併用で用
いられ、具体的にはジプロピルアルミニウムクロ
ライド、ジブチルアルミニウムクロライド、ジヘ
キシルアルミニウムクロライド等が挙げられる。
The dialkylaluminum chloride used in the present invention is a mixture or a combination of diethylaluminum and dialkylaluminium having C3 or more, and specific examples thereof include dipropylaluminum chloride, dibutylaluminum chloride, dihexylaluminum chloride, and the like.

本発明に於て上記各成分の使用量は用いる化合
物及び重合条件によつて異るが、通常は担体付遷
移金属触媒中のTi1モル当りジアルキルアルミニ
ウムクロライドは1〜1000モル、立体規則性向上
剤は1〜500モル、トリアルキルアルミニウムは
1〜2000モル用いられる。
In the present invention, the amount of each of the above components used varies depending on the compound used and the polymerization conditions, but usually 1 to 1000 mol of dialkylaluminum chloride and stereoregularity improver per 1 mol of Ti in the supported transition metal catalyst. is used in an amount of 1 to 500 mol, and trialkylaluminium is used in an amount of 1 to 2000 mol.

本発明の特色は、ジアルキルアルミニウムクロ
ライドとしてジエチルアルミニウムクロライドと
C3以上のアルキル残基を有するジアルキルアル
ミニウムクロライドを併用することにあり、この
ことにより比較的少ない立体規則性向上剤との併
用で高活性で高立体規則性のポリ−α−オレフイ
ンが得られる。ジエチルアルミニウムクロライド
とC3以上のアルキル残基を有するジアルキルア
ルミニウムの併用方法については格別の限定を要
しないで、予め混合しておくのが好ましい。ジエ
チルアルミニウムクロライドとC3以上のアルキ
ル残基を有するジアルキルアルミニウムクロライ
ドの使用割合は好ましくは9/1〜1/9、特に好まし
くは8/2〜3/7である。
The feature of the present invention is that diethyl aluminum chloride is used as the dialkyl aluminum chloride.
The purpose is to use a dialkylaluminum chloride having an alkyl residue of C 3 or more in combination, and by this, a highly active and highly stereoregular poly-α-olefin can be obtained with a relatively small amount of stereoregularity improver. . There are no particular limitations on the method of using diethylaluminum chloride and dialkyl aluminum having an alkyl residue of C3 or more in combination, but it is preferable to mix them in advance. The ratio of diethylaluminum chloride to dialkylaluminum chloride having an alkyl residue of C3 or more is preferably 9/1 to 1/9, particularly preferably 8/2 to 3/7.

上記の方法によつて、プロピレン、ブテン−
1、ペンテン−1等のα−オレフインの単独重合
或はエチレンを共重合することによつて立体規則
性のポリ−α−オレフインを触媒当り高収率で与
えることができ工業的に価値がある。
By the above method, propylene, butene-
1. By homopolymerizing α-olefins such as pentene-1 or copolymerizing them with ethylene, stereoregular poly-α-olefins can be obtained in high yield per catalyst, which is industrially valuable. .

以下に実施例を挙げさらに具体的に説明する。 A more specific explanation will be given below with reference to Examples.

実施例及び比較例 (A) 担体型遷移金属触媒の製造 直径12mmの鋼球80個の入つた内容積600mlの
粉砕用ポツトを2コ装備した振動ミルを用意す
る。このポツト中に窒素雰囲気下でポツト1コ
当り塩化マグネシウム20g、オルソ酢酸エチル
2ml、1.2−ジクロロエタン4mlを加え40時間
粉砕した。300ml丸底フラスコに上記粉砕処理
物20g、四塩化チタン100mlを加え80℃で2時
間撹拌した後デカンテーシヨンによつて上澄液
を除去した。次にn−ヘプタン200mlを加え室
温で15分間撹拌した後デカンテーシヨンによつ
て上澄液を除去する洗浄操作を7回繰り返し、
次いでさらにn−ヘプタン200mlを追加して担
体型遷移金属触媒スラリー(A)とした。このスラ
リーを1部サンプリングしてTiを測定したと
ころ担体型遷移金属触媒1g当り1.78wt%含有
していた。
Examples and Comparative Examples (A) Production of supported transition metal catalyst A vibratory mill equipped with two grinding pots each having an internal volume of 600 ml and containing 80 steel balls with a diameter of 12 mm was prepared. 20 g of magnesium chloride, 2 ml of ethyl orthoacetate, and 4 ml of 1,2-dichloroethane were added to each pot under a nitrogen atmosphere and pulverized for 40 hours. 20 g of the above pulverized product and 100 ml of titanium tetrachloride were added to a 300 ml round bottom flask, and the mixture was stirred at 80° C. for 2 hours, and then the supernatant liquid was removed by decantation. Next, 200 ml of n-heptane was added, stirred at room temperature for 15 minutes, and the washing operation was repeated 7 times to remove the supernatant liquid by decantation.
Next, 200 ml of n-heptane was further added to prepare a carrier-type transition metal catalyst slurry (A). When a portion of this slurry was sampled and Ti was measured, it was found to contain 1.78 wt% per gram of carrier-type transition metal catalyst.

(B) 重合 n−ヘプタン50ml中に上記担体型遷移金属触
媒30mgと、表−1に示す量の助触媒を混合し触
媒スラリーとし、充分に乾燥し窒素で置換した
内容積5のSUS−32製オートクレーブ中に
装入し、次いで液状のプロピレン1.5Kgを装入
した。次に水素を1.6Nl装入し温水でオートク
レーブを加熱することによつて内温を75℃まで
昇温し、75℃で3時間重合した。
(B) Polymerization 30 mg of the above supported transition metal catalyst and the amount of co-catalyst shown in Table 1 were mixed in 50 ml of n-heptane to make a catalyst slurry, thoroughly dried and purged with nitrogen to make SUS-32 with an internal volume of 5. The autoclave was then charged with 1.5 kg of liquid propylene. Next, 1.6Nl of hydrogen was charged and the autoclave was heated with hot water to raise the internal temperature to 75°C, and polymerization was carried out at 75°C for 3 hours.

重合終了後未反応のプロピレンを排出し白色
のポリプロピレンを得た。得られたポリプロピ
レンは減圧乾燥して秤量しポリプロピレンの取
れ高とし、1時間当りのポリプロピレンの取れ
高を算出し活性とした。又、ポリプロピレンパ
ウダーの沸騰n−ヘプタン抽出残分の割合、
(以下パウダーと略記)及びかさ比重及び極
限粘度数(135℃テトラリン溶液で測定)を測
定した。これらの結果は表−1にまとめて示
す。
After the polymerization was completed, unreacted propylene was discharged to obtain white polypropylene. The obtained polypropylene was dried under reduced pressure and weighed to determine the yield of polypropylene, and the yield of polypropylene per hour was calculated and determined as the activity. In addition, the proportion of boiling n-heptane extraction residue of polypropylene powder,
(hereinafter abbreviated as powder), bulk specific gravity, and limiting viscosity (measured with a tetralin solution at 135°C) were measured. These results are summarized in Table-1.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の触媒の調整工程を表すフローチ
ヤート図を示す。
The drawing shows a flowchart representing the preparation process of the catalyst of the present invention.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 ジハロゲン化マグネシウムに担持された四ハ
ロゲン化チタン触媒とジアルキルアルミニウムク
ロライド、有機酸エステル、およびトリアルキル
アルミニウムからなる触媒を用いてα−オレフイ
ンを重合する方法に於いて、ジアルキルアルミニ
ウムクロライドとしてジエチルアルミニウムクロ
ライドとC3以上のジアルキルアルミニウムクロ
ライドを併用することを特徴とする重合方法。
1. In a method of polymerizing α-olefin using a titanium tetrahalide catalyst supported on magnesium dihalide, a dialkylaluminum chloride, an organic acid ester, and a trialkylaluminum catalyst, diethylaluminum chloride is used as the dialkylaluminum chloride. A polymerization method characterized by using a C 3 or higher dialkyl aluminum chloride in combination.
JP15009082A 1982-08-31 1982-08-31 Polymerization of alpha-olefin Granted JPS5941309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15009082A JPS5941309A (en) 1982-08-31 1982-08-31 Polymerization of alpha-olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15009082A JPS5941309A (en) 1982-08-31 1982-08-31 Polymerization of alpha-olefin

Publications (2)

Publication Number Publication Date
JPS5941309A JPS5941309A (en) 1984-03-07
JPH0324484B2 true JPH0324484B2 (en) 1991-04-03

Family

ID=15489288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15009082A Granted JPS5941309A (en) 1982-08-31 1982-08-31 Polymerization of alpha-olefin

Country Status (1)

Country Link
JP (1) JPS5941309A (en)

Also Published As

Publication number Publication date
JPS5941309A (en) 1984-03-07

Similar Documents

Publication Publication Date Title
SU1457813A3 (en) Method of producing polypropylene
WO1987006945A1 (en) Catalyst for polymerizing olefins
JPS6338363B2 (en)
US3979372A (en) Preparation of titanium trichloride polymerization catalyst component
JPH0324484B2 (en)
JPH02215809A (en) Preparation of catalyst component for olefin polymerization and production of olefin
JPH0145484B2 (en)
JPH0150323B2 (en)
JPS591405B2 (en) α-olefin polymerization method
JPS5812889B2 (en) Polyethylene material
JP2895189B2 (en) α-Olefin polymerization method
JPH0149163B2 (en)
JPS5835522B2 (en) Stereoregular polymerization method of α↓-olefin
JPH0780940B2 (en) Method for polymerizing α-olefin
JPS5812886B2 (en) polyolefin innoseizohouhou
JPS58213005A (en) Polymerization of alpha-olefin
JPS6354723B2 (en)
JPH0830088B2 (en) Catalyst for olefin polymerization
JPH0425284B2 (en)
JPS58117206A (en) Production of catalytic component for olefin polymerization
JPS5856362B2 (en) Production method of titanium trichloride catalyst
JPH0347644B2 (en)
JPH0575765B2 (en)
JPH0311284B2 (en)
JPS60149606A (en) Polymerization of alpha-olefin