JPH0324440B2 - - Google Patents

Info

Publication number
JPH0324440B2
JPH0324440B2 JP61247116A JP24711686A JPH0324440B2 JP H0324440 B2 JPH0324440 B2 JP H0324440B2 JP 61247116 A JP61247116 A JP 61247116A JP 24711686 A JP24711686 A JP 24711686A JP H0324440 B2 JPH0324440 B2 JP H0324440B2
Authority
JP
Japan
Prior art keywords
silicon carbide
carbon
carbide whiskers
silicon
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61247116A
Other languages
Japanese (ja)
Other versions
JPS63103897A (en
Inventor
Yoshiro Kaji
Katsunori Shimazaki
Kozo Saeki
Keita Yura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Kobe Steel Ltd
Original Assignee
Kanebo Ltd
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd, Kobe Steel Ltd filed Critical Kanebo Ltd
Priority to JP61247116A priority Critical patent/JPS63103897A/en
Publication of JPS63103897A publication Critical patent/JPS63103897A/en
Publication of JPH0324440B2 publication Critical patent/JPH0324440B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/005Growth of whiskers or needles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は、炭化ケむ玠りむスカヌの補造方法に
関し、詳しくは、䞍玔物ずしおの二酞化ケむ玠の
含有量を著しく䜎枛させた高玔床炭化ケむ玠りむ
スカヌの補造方法に関する。 埓来の技術 炭化ケむ玠りむスカヌは、その倧きい匷床のた
めに、䟋えば、匷化材ずしお皮々の甚途が期埅さ
れおいる。 このような炭化ケむ玠りむスカヌは、䞀般的に
は、ケむ玠含有原料ず炭玠含有原料ずを非酞化性
雰囲気䞋又は氎玠ガス等の還元性雰囲気䞋で1200
℃以䞊の枩床に加熱するこずによ぀お補造され
る。かかる方法によ぀お補造される炭化ケむ玠り
むスカヌは、未反応炭玠又は炭玠含有原料の分解
によ぀お生じた炭玠を䞍玔物ずしお含むので、ケ
む玠含有原料ず炭玠含有原料ずの加熱反応埌、䟋
えば、特公昭52−28758号公報や特公昭53−
113300公報に蚘茉されおいるように、通垞、反応
生成物を加熱しお、炭玠を燃焌させるこずによ぀
お、これを陀去しおいる。 しかし、このように、反応生成物を加熱しお、
未反応炭玠を燃焌陀去する方法によれば、反応生
成物に混圚する未反応二酞化ケむ玠や、反応途䞭
で副生した金属ケむ玠の酞化に由来する二酞化ケ
む玠のほか、未反応炭玠の燃焌陀去に際しお、炭
化ケむ玠りむスカヌ自䜓が䞀郚酞化されお二酞化
ケむ玠を生成し、これが反応生成物ずしおの炭化
ケむ玠りむスカヌ䞭に含たれるこずになるので、
䞍玔物ずしおの二酞化ケむ玠量が増倧する問題が
ある。 他方、本発明者らは、既に、粉末状のケむ玠含
有原料を予め所定圢状に成圢し、これを氎玠雰囲
気䞋に粉末状炭玠含有原料ず共に高枩に加熱する
こずによ぀お、䞊蚘成圢䜓からケむ玠化合物が遞
択的に気化し、炭玠ず反応しお、屈曲のない盎線
状であ぀お、䞔぀、長い繊維長ず高いアスペクト
比を有する炭化ケむ玠りむスカヌを高収率高生産
性にお埗るこずができるこずを芋出しおいる。 この方法によれば、ケむ玠含有原料ずしお、䞊
蚘のように、所定圢状に成圢した原料を甚いるた
めに、未反応の二酞化ケむ玠は、生成する炭化ケ
む玠りむスカヌに混入しない。しかしながら、䞊
述したように、生成する炭化ケむ玠りむスカヌに
混圚する炭玠を陀去するために、反応生成物を加
熱し、未反応炭玠を燃焌させるので、埗られる炭
化ケむ玠りむスカヌには、尚、炭化ケむ玠の酞化
に基づく䞍玔物ずしおの二酞化ケむ玠が少量含た
れ、曎に、炭化ケむ玠りむスカヌ生成時における
副反応によ぀お生成する金属ケむ玠の酞化に由来
する二酞化ケむ玠も含たれる。 発明が解決しようずする問題点 そこで、本発明者らは、未反応炭玠の燃焌陀去
工皋における炭化ケむ玠りむスカヌの酞化に぀い
お、曎に鋭意研究した結果、未反応炭玠の燃焌陀
去工皋における炭化ケむ玠りむスカヌの酞化は、
特に、炭化ケむ玠りむスカヌに混圚する未反応炭
玠量による圱響が倧きいこずを芋出した。即ち、
未反応炭玠の燃焌時の発熱によ぀お、これに近接
する炭化ケむ玠りむスカヌに局郚的に高枩を生ぜ
しめるために、炭化ケむ玠りむスカヌの酞化が促
進されるのである。 そこで、本発明者らは、未反応炭玠の燃焌に基
づく炭化ケむ玠りむスカヌの酞化を防ぐために鋭
意研究した結果、未反応炭玠を燃焌陀去するため
に炉内に䟛絊する酞玠量を制埡し、未反応炭玠を
䞍完党燃焌させるこずによ぀お、未反応炭玠の燃
焌時の発熱を䜎枛しお、その近傍の炭化ケむ玠り
むスカヌの酞化を効果的に抑制し、かくしお、䞍
玔物ずしおの二酞化ケむ玠量を著しく䜎枛した高
玔床炭化ケむ玠りむスカヌを補造し埗るこずを芋
出しお、本発明に至぀たものである。 埓぀お、本発明は、䞍玔物ずしおの二酞化ケむ
玠量を著しく䜎枛した高玔床炭化ケむ玠りむスカ
ヌの補造方法を提䟛するこずを目的ずする。 問題点を解決するための手段 本発明による高玔床炭化ケむ玠りむスカヌの補
造方法は、固䜓状のケむ玠含有原料ず炭玠含有原
料ずを加熱反応させお、炭化ケむ玠りむスカヌを
補造する方法においお、䞊蚘ケむ玠含有原料を予
め所定圢状に成圢しおなる成圢䜓ず粉末状炭玠原
料ずを氎玠ガス雰囲気䞋に所定の反応枩床に加熱
しお、未反応炭玠を含む炭化ケむ玠りむスカヌを
生成させ、次いで、炉枩を600℃以䞊、900℃以䞋
の枩床ずするず共に、未反応炭玠1g圓たりに察
しお炉内に䟛絊する空気量を30〜200ml分ずし
お、䞊蚘未反応炭玠を燃焌させお陀去するこずを
特城ずする。 以䞋に本発明による方法を詳现に説明する。 本発明においお甚いるケむ玠含有成圢䜓は、二
酞化ケむ玠を含有する任意の材料を必芁に応じお
有機質バむンダヌず共に混緎し、適宜の手段、䟋
えば、抌出成圢、プレス成圢、造粒等の手段にお
成圢し、焌成しお、板、棒、管、筒、球、線状及
びこれらの組み合わせずしおの圢状を有する成圢
䜓に成圢し、焌成するこずによ぀お埗るこずがで
きる。ここに、ケむ玠含有材料ずしおは、特に制
限されるものではないが、䜎廉なケむ石、銀砂、
ロり石、粘土等を甚いるこずが有利である。 特に、本発明においおは、䞊蚘ケむ玠含有成圢
䜓の圢状は、管状や箱型等の容噚状であるずき、
反応容噚ずしお甚いるこずができるので奜たし
い。即ち、䞀般に、固䜓のケむ玠含有原料ず粉末
状炭玠含有原料ずを加熱反応させお、炭化ケむ玠
りむスカヌを補造する方法においおは、これら原
料を反応容噚内に充填し、加熱手段を備えた反応
管内、䟋えば、電気炉内に挿入しお、所定の枩床
に加熱するが、䞊蚘ケむ玠含有成圢䜓が容噚状で
あるずきは、成圢䜓は反応混合物を収容する反応
容噚であるず同時に、反応原料でもあるので、反
応炉における加熱によ぀お、成圢䜓からケむ玠化
合物が遞択的に気化し、炭玠単䜓又は炭玠含有原
料から気化した炭玠化合物ず反応しお、炭化ケむ
玠りむスカヌが生成し、析出するので、炭化ケむ
玠りむスカヌを成圢䜓から容易に分離するこずが
できる。 しかし、二酞化ケむ玠含有成圢䜓は、䟋えば、
任意圢状の断面を有する板状や棒状であ぀おもよ
い。かかる成圢䜓を甚いる堎合は、成圢䜓はその
他の所芁の反応原料ず共に適宜の反応容噚、䟋え
ば、アルミナや黒鉛からなる容噚に充填されお、
反応炉内で加熱される。 本発明においおは、特に良奜な収率にお炭化ケ
む玠りむスカヌを埗るためには、ケむ玠含有成圢
䜓は、二酞化ケむ玠を30重量以䞊含有するこず
が奜たしい。 このように、本発明の方法によれば、ケむ玠含
有原料をその成圢䜓ずしお甚いるずき、この成圢
䜓から遞択的にケむ玠化合物が気化し、炭玠ず反
応しお、炭化ケむ玠りむスカヌを生成するので、
䞍玔物が数以䞋の高玔床の炭化ケむ玠りむスカ
ヌを埗るこずができる。しかも、生成する炭化ケ
む玠りむスカヌは、成圢䜓から分離するこずが非
垞に容易であるので、生産性が高い。 粉末状炭玠含有原料ずしおは、カヌボンブラツ
クや粉末掻性炭等を甚いるこずができるが、これ
ら炭玠原料は、埮粉であ぀お、嵩高いほど反応性
が高いので、特にカヌボンブラツクが奜たしい。 本発明の方法においおは、反応觊媒を甚いるこ
ずが奜たしい。反応觊媒ずしおは、鉄、ニツケ
ル、コバルト、又はこれらの化合物、䟋えば、酞
化物、硝酞塩、塩化物、硫酞塩、炭酞塩等が粉末
又は氎溶液ずしお炭玠原料に混合されお甚いられ
る。酞化鉄及び塩化鉄は、本発明においお特に奜
たしく甚いるこずができる觊媒である。 曎に、本発明においおは、反応を促進するず共
に、高玔床で䞔぀アスペクト比が高く、曎に、嵩
密床の小さい炭化ケむ玠りむスカヌを埗るため
に、反応促進剀が甚いられる。このような反応促
進剀ずしおは、アルカリ金属又はアルカリ土類金
属のハロゲン化物、特に、塩化物又はフツ化物を
奜適に甚いるこずができる。埓぀お、具䜓䟋ずし
お、塩化リチりム、塩化ナトリりム、塩化カリり
ム、塩化カルシりム、塩化マグネシりム、フツ化
リチりム、フツ化ナトリりム、フツ化カリりム等
を挙げるこずができる。これらのなかでも特に奜
たしい反応促進剀は、塩化ナトリりム、塩化カリ
りム、フツ化ナトリりム及びフツ化カリりムであ
る。 本発明の方法においおは、䞊蚘ケむ玠含有成圢
䜓ず粉末状炭玠原料ずを氎玠ガス雰囲気䞋に所定
の反応枩床に加熱するこずによ぀お、炭化ケむ玠
りむスカヌを埗る。ここに、氎玠ガス雰囲気ず
は、氎玠ガスのみの堎合だけでなく、20容量以
䞊の氎玠を含有し、残郚が非酞化性䞍掻性ガスで
ある雰囲気をも含むものずする。 本発明の方法においお、反応枩床は少なくずも
1400℃以䞊であり、通垞、奜たしくは1500〜1700
℃の範囲である。反応枩床が1400℃よりも䜎いず
きは、炭化ケむ玠りむスカヌの生成が䞍十分であ
り、未反応のケむ玠含有原料の残留が倚い。䞀
方、䜙りに高枩ずしおも、収率の向䞊や䞍玔物の
䜎枛の効果が飜和するず共に、補造費甚の䞊昇を
招く。埓぀お、反応枩床の䞊限は、通垞、1700℃
皋床が奜たしい。加熱手段は任意であるが、電気
加熱が䜿甚しやすい。 反応時間は30分乃至10時間であり、通垞、〜
時間皋床で十分である。反応時間が䜙りに短い
ずきは、未反応原料が倚量に残留し、䞀方、䜙り
に長時間反応させおも、炭化ケむ玠りむスカヌの
収量の増加が僅かであるので、生産性及び熱゚ネ
ルギヌ費甚の芳点からみお、䜕ら利点がない。 本発明の方法においおは、前蚘したように、所
定の枩床で炭化ケむ玠りむスカヌを生成させた
埌、加熱を停止し、反応生成物を反応管から取り
出し、次いで、この反応生成物をマツフル炉内に
お炉枩を600℃以䞊、900℃以䞋の枩床ずするず共
に、炉内に䟛絊する酞玠量、延いおは空気量を未
反応炭玠量に察しお所定量以䞋ずしお、䞊蚘未反
応炭玠を燃焌消华するこずによ぀お、䞍玔物ずし
おの二酞化ケむ玠量を著しく䜎枛した炭化ケむ玠
りむスカヌを埗るこずができる。 以䞋、この未反応炭玠の陀去に぀いお詳现に説
明する。 先ず、フツ酞凊理によ぀お完党に二酞化ケむ玠
を陀去した炭化ケむ玠りむスカヌを電気炉炉心
管はムラむト補で内埄43mm、長さ1000mmに充填
し、空気雰囲気䞋送颚量300ml分、皮々の枩
床にお加熱焌成したずきの炭化ケむ玠りむスカヌ
の酞化率を第図に瀺す。この結果から炉枩が
700℃以䞋であるずき、炭玠の䞍存圚䞋、炭化ケ
む玠りむスカヌ単独では殆ど酞化が起こらない。
しかし、炉内枩床が玄1000℃以䞊の堎合は、炭玠
が存圚しなくずも、空気酞化によ぀お、二酞化ケ
む玠が倚量に生成する。 次に、フツ酞凊理によ぀お完党に二酞化ケむ玠
を陀去した炭化ケむ玠りむスカヌを炭玠カヌボ
ンブラツクの存圚䞋に䞊蚘ず同じ条件䞋に焌成
した。炭化ケむ玠りむスカヌに察する共存炭玠の
重量比ず炭化ケむ玠りむスカヌの酞化率ずの関係
を第図に瀺す。この結果から、共存炭玠量が倚
いずき、特に、高枩加熱によ぀お、炭化ケむ玠り
むスカヌの酞化が著しく促進されるこずが明らか
である。即ち、共存炭玠量が倚いずきは、その燃
焌時の著しい発熱のために、局郚的な枩床䞊昇が
生じお、その近傍の炭化ケむ玠りむスカヌの酞化
が促進される。 䞊蚘した結果から、高玔床炭化ケむ玠りむスカ
ヌを補造するためには、加熱反応埌の反応生成物
から未反応炭玠を燃焌陀去する工皋においお、未
反応炭玠の燃焌時の発熱をできる限り䜎い枩床に
抑えるこずが望たしいこずが理解される。 䞀般に、炭化ケむ玠りむスカヌ䞭の未反応炭玠
の燃焌は、䞻ずしお(1)匏の反応によるほか、(2)匏
の反応も寄䞎する。 O2→CO294.1Kcalmol (1) 2O2→CO26.4Kcalmol (2) 䞊蚘(1)匏による未反応炭玠の燃焌は倧量の発熱
を䌎うのに察しお、䞊蚘(2)匏によれば、発熱量
は、(1)匏の堎合に比べお著しく少ない。(2)匏によ
る未反応炭玠の䞍完党燃焌は、炉内雰囲気の酞玠
量が䞍十分であるずきに起こる。 本発明の方法は、炭化ケむ玠りむスカヌに混圚
する未反応炭玠を炉内で加熱燃焌させるに際し
お、炉内に䟛絊する空気量を未反応炭玠量に察し
お所定量以䞋ずしお、䞊蚘(2)匏の反応を起こさ
せ、これによ぀お未反応炭玠の燃焌時の発熱量を
䜎枛し、局郚的な高枩が発生するのを防ぎ、かく
しお、炭化ケむ玠りむスカヌの酞化を抑えるもの
である。 本発明に埓぀お、未反応炭玠の燃焌埌の炭化ケ
む玠りむスカヌ䞭の二酞化ケむ玠含有量を以
䞋に抑えるには、炉枩を600℃以䞊で900℃以䞋ず
するず共に、未反応炭玠1g圓たりの炉内の䟛絊
空気量が200ml分以䞋ずなるように空気を炉内
に䟛絊し぀぀、未反応炭玠を燃焌させるこずが必
芁である。 炉枩を900℃以䞊ずするずきは、炭化ケむ玠り
むスカヌが未反応炭玠を含たなくずも、炭化ケむ
玠りむスカヌの酞化率がを越える。他方、炉
内ぞの空気の䟛絊量が未反応炭玠1g圓たり200
ml分を越えるずきは、前蚘(2)匏の反応よりも(1)
匏の反応が優先し、炭化ケむ玠りむスカヌの酞化
を抑制するこずが困難ずなる。 他方、炉内ぞの空気の䟛絊量を未反応炭玠1g
圓たり30ml分よりも少なくするずきは、未反応
炭玠の燃焌に著しく長時間を必芁ずするこずずな
り、熱゚ネルギヌ費甚を考慮すれば、特に、30
ml分よりも少なくする利点がない。 発明の効果 以䞊のように、本発明の方法によれば、固䜓状
のケむ玠含有原料ず炭玠含有原料ずを加熱反応さ
せお、炭化ケむ玠りむスカヌを補造する方法にお
いお、䞊蚘ケむ玠含有原料を予め所定圢状に成圢
しおなる成圢䜓ず粉末状炭玠原料ずを氎玠ガス雰
囲気䞋に所定の反応枩床に加熱しお、未反応炭玠
を含む炭化ケむ玠りむスカヌを生成させた埌、こ
の炭化ケむ玠りむスカヌに混圚する未反応炭玠を
炉内においお燃焌陀去するに際しお、炉内枩床を
600℃以䞊、900℃以䞋にするず共に、炉内に未反
応炭玠量に察しお所定量以䞋の空気を䟛絊し、未
反応炭玠を䞍完党燃焌させお、未反応炭玠の燃焌
による発熱量を䜎く抑えるので、その結果、䞍玔
物ずしおの二酞化ケむ玠量の著しく䜎枛された高
玔床の炭化ケむ玠りむスカヌを補造するこずがで
きる。 以䞋に実斜䟋ず共に比范䟋を挙げお本発明を説
明するが、本発明はこれら実斜䟋によ぀お䜕ら制
限されるものではない。 実斜䟋 反応容噚を兌ねるケむ玠含有成圢䜓ずしお二酞
化ケむ玠49重量を含有する倖埄25mm、内埄20mm
及び長さ100mmのムラむト質管状反応容噚を甚い
た。 カヌボンブラツク粉末50郚、反応觊媒ずしおの
埮粉状酞化鉄0.2郚及び反応促進剀ずしおの塩化
ナトリりム粉末詊薬玚17郚をボヌルミルに
お時間攪拌しお均䞀な混合物ずなし、この混合
物を䞊蚘反応容噚内に2g充填し、これを電気炉
に挿入した。 この電気炉内に窒玠ガスを炉心管単䜍断面積
cm2圓りml分の流量にお時間導入した埌、
℃分の昇枩速床にお炉の䞭心郚枩床が1530℃
になるたで加熱した。この昇枩過皋においお、炉
枩が1000℃に達しお埌、電気炉ぞの窒玠ガスの導
入を停止し、次いで、氎玠ガスをml分の流量
にお電気炉内に導入し぀぀、炉内枩床を1530℃に
高め、この枩床に時間保持した。この埌、埐々
に炉内枩床を降枩させながら、氎玠ガスの導入を
停止し、次いで、炉内雰囲気を窒玠ガスに切り換
えおから、内容物を取り出しお、黒緑色で軜量の
嵩高い塊を反応生成物ずしお埗た。 このようにしお埗られた未反応炭玠を含む炭化
ケむ玠りむスカヌを石英ガラス補ボヌトに入れ、
電気炉炉心管はムラむト補で、内埄43mm、長さ
1000mmに充填し、未反応炭玠1g圓たり
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for producing silicon carbide whiskers, and more particularly, to a method for producing high-purity silicon carbide whiskers in which the content of silicon dioxide as an impurity is significantly reduced. BACKGROUND OF THE INVENTION Due to their high strength, silicon carbide whiskers are expected to find a variety of uses, for example as reinforcing materials. Such silicon carbide whiskers are generally produced by combining a silicon-containing raw material and a carbon-containing raw material under a non-oxidizing atmosphere or a reducing atmosphere such as hydrogen gas for 1200 min.
Produced by heating to a temperature of ℃ or above. Silicon carbide whiskers produced by such a method contain unreacted carbon or carbon generated by decomposition of a carbon-containing raw material as impurities. Publication No. 52-28758 and Special Publication No. 53-
As described in Publication No. 113300, carbon is typically removed by heating the reaction product to burn off the carbon. However, in this way, by heating the reaction product,
According to the method of burning and removing unreacted carbon, in addition to unreacted silicon dioxide mixed in the reaction product and silicon dioxide derived from the oxidation of metal silicon that is produced as a by-product during the reaction, when burning and removing unreacted carbon, The silicon carbide whiskers themselves are partially oxidized to produce silicon dioxide, which is contained in the silicon carbide whiskers as a reaction product.
There is a problem that the amount of silicon dioxide as an impurity increases. On the other hand, the present inventors have already molded a powdered silicon-containing raw material into a predetermined shape and heated it together with a powdered carbon-containing raw material in a hydrogen atmosphere to a high temperature, thereby removing silicon from the molded body. The compound selectively vaporizes and reacts with carbon to obtain silicon carbide whiskers that are straight without bending, have a long fiber length, and a high aspect ratio with high yield and high productivity. are finding. According to this method, since a raw material molded into a predetermined shape is used as the silicon-containing raw material as described above, unreacted silicon dioxide does not mix into the silicon carbide whiskers produced. However, as mentioned above, in order to remove carbon mixed in the generated silicon carbide whiskers, the reaction product is heated and unreacted carbon is burned, so the resulting silicon carbide whiskers still contain silicon carbide. A small amount of silicon dioxide is contained as an oxidation-based impurity, and silicon dioxide derived from the oxidation of metallic silicon produced by a side reaction during the formation of silicon carbide whiskers is also contained. Problems to be Solved by the Invention The inventors of the present invention conducted further intensive research on the oxidation of silicon carbide whiskers in the process of burning off unreacted carbon, and found that the oxidation of silicon carbide whiskers in the process of burning off unreacted carbon. teeth,
In particular, it was found that the influence of the amount of unreacted carbon mixed in the silicon carbide whiskers was large. That is,
The oxidation of the silicon carbide whiskers is promoted because the heat generated during combustion of the unreacted carbon generates a localized high temperature in the silicon carbide whiskers in the vicinity thereof. Therefore, as a result of intensive research in order to prevent the oxidation of silicon carbide whiskers due to the combustion of unreacted carbon, the present inventors decided to control the amount of oxygen supplied to the furnace in order to burn off the unreacted carbon, and to By incompletely burning carbon, the heat generated during combustion of unreacted carbon is reduced, effectively suppressing the oxidation of silicon carbide whiskers in the vicinity, and thus significantly reducing the amount of silicon dioxide as an impurity. The present invention was achieved by discovering that it is possible to produce high-purity silicon carbide whiskers. Therefore, an object of the present invention is to provide a method for producing high-purity silicon carbide whiskers in which the amount of silicon dioxide as an impurity is significantly reduced. Means for Solving the Problems The method for producing high-purity silicon carbide whiskers according to the present invention is a method for producing silicon carbide whiskers by heating and reacting a solid silicon-containing raw material and a carbon-containing raw material. A molded body obtained by forming raw materials into a predetermined shape in advance and a powdered carbon raw material are heated to a predetermined reaction temperature in a hydrogen gas atmosphere to generate silicon carbide whiskers containing unreacted carbon, and then the furnace temperature is lowered. It is characterized by burning and removing the unreacted carbon at a temperature of 600°C or higher and 900°C or lower, and at a rate of 30 to 200 ml/min of air supplied into the furnace per gram of unreacted carbon. do. The method according to the invention will be explained in detail below. The silicon-containing molded article used in the present invention is prepared by kneading any material containing silicon dioxide with an organic binder as necessary, and molding it by an appropriate means such as extrusion molding, press molding, granulation, etc. It can be obtained by firing, molding into a molded body having a shape of a plate, rod, tube, tube, sphere, line, or a combination thereof, and firing. Here, silicon-containing materials include, but are not particularly limited to, inexpensive silica, silver sand,
It is advantageous to use waxite, clay, etc. In particular, in the present invention, when the shape of the silicon-containing molded body is a container shape such as a tubular shape or a box shape,
This is preferable because it can be used as a reaction vessel. That is, in general, in a method for producing silicon carbide whiskers by heating and reacting a solid silicon-containing raw material and a powdery carbon-containing raw material, these raw materials are filled into a reaction vessel, and the reaction tube equipped with a heating means is heated. For example, it is inserted into an electric furnace and heated to a predetermined temperature, but if the silicon-containing molded body is in the shape of a container, the molded body is not only a reaction vessel containing the reaction mixture but also a reaction raw material. Therefore, by heating in the reactor, the silicon compound is selectively vaporized from the molded body, and reacts with carbon itself or the carbon compound vaporized from the carbon-containing raw material to generate and precipitate silicon carbide whiskers, resulting in carbonization. Silicon whiskers can be easily separated from the molded body. However, silicon dioxide-containing molded bodies, for example,
It may be plate-shaped or rod-shaped with an arbitrary cross section. When such a molded body is used, the molded body is packed together with other necessary reaction raw materials into an appropriate reaction container, for example, a container made of alumina or graphite.
Heated in a reactor. In the present invention, in order to obtain silicon carbide whiskers with a particularly good yield, the silicon-containing molded article preferably contains 30% by weight or more of silicon dioxide. As described above, according to the method of the present invention, when a silicon-containing raw material is used as a molded body, the silicon compound is selectively vaporized from the molded body and reacts with carbon to produce silicon carbide whiskers.
High purity silicon carbide whiskers containing impurities of several percent or less can be obtained. Moreover, the produced silicon carbide whiskers are very easy to separate from the molded body, resulting in high productivity. As the powdered carbon-containing raw material, carbon black, powdered activated carbon, etc. can be used, but carbon black is particularly preferred since these carbon raw materials are fine powders and the higher the bulk, the higher the reactivity. In the method of the present invention, it is preferred to use a reaction catalyst. As the reaction catalyst, iron, nickel, cobalt, or compounds thereof, such as oxides, nitrates, chlorides, sulfates, carbonates, etc., are used as a powder or an aqueous solution mixed with the carbon raw material. Iron oxide and iron chloride are catalysts that can be particularly preferably used in the present invention. Furthermore, in the present invention, a reaction accelerator is used in order to accelerate the reaction and obtain silicon carbide whiskers with high purity, high aspect ratio, and low bulk density. As such a reaction accelerator, an alkali metal or alkaline earth metal halide, particularly a chloride or a fluoride, can be suitably used. Therefore, specific examples include lithium chloride, sodium chloride, potassium chloride, calcium chloride, magnesium chloride, lithium fluoride, sodium fluoride, potassium fluoride, and the like. Among these, particularly preferred reaction accelerators are sodium chloride, potassium chloride, sodium fluoride, and potassium fluoride. In the method of the present invention, silicon carbide whiskers are obtained by heating the silicon-containing compact and powdered carbon raw material to a predetermined reaction temperature in a hydrogen gas atmosphere. Here, the hydrogen gas atmosphere includes not only hydrogen gas but also an atmosphere containing 20% by volume or more of hydrogen, with the remainder being a non-oxidizing inert gas. In the method of the invention, the reaction temperature is at least
1400℃ or higher, usually preferably 1500-1700
℃ range. When the reaction temperature is lower than 1400°C, silicon carbide whiskers are insufficiently produced and a large amount of unreacted silicon-containing raw material remains. On the other hand, if the temperature is too high, the effects of improving the yield and reducing impurities will be saturated, and the production cost will increase. Therefore, the upper limit of reaction temperature is usually 1700℃
degree is preferred. Although the heating means is arbitrary, electric heating is easy to use. The reaction time is 30 minutes to 10 hours, usually 2 to 10 hours.
About 6 hours is sufficient. If the reaction time is too short, a large amount of unreacted raw materials will remain; on the other hand, if the reaction is too long, the yield of silicon carbide whiskers will increase only slightly, so it is difficult to reduce the productivity and thermal energy costs. , there is no advantage. In the method of the present invention, as described above, after silicon carbide whiskers are generated at a predetermined temperature, heating is stopped, the reaction product is taken out from the reaction tube, and then this reaction product is placed in a Matsufuru furnace. The unreacted carbon is burnt out by setting the furnace temperature to 600°C or higher and 900°C or lower, and by controlling the amount of oxygen and, by extension, the amount of air supplied into the furnace to a predetermined amount or less relative to the amount of unreacted carbon. By doing so, it is possible to obtain silicon carbide whiskers in which the amount of silicon dioxide as an impurity is significantly reduced. The removal of this unreacted carbon will be explained in detail below. First, silicon carbide whiskers from which silicon dioxide has been completely removed by hydrofluoric acid treatment are filled into an electric furnace (the furnace tube is made of mullite with an inner diameter of 43 mm and a length of 1000 mm), and heated under an air atmosphere (blow rate of 300 ml/min). FIG. 1 shows the oxidation rate of silicon carbide whiskers when heated and fired at various temperatures. From this result, the furnace temperature
At temperatures below 700°C, silicon carbide whiskers alone are hardly oxidized in the absence of carbon.
However, when the temperature inside the furnace is about 1000°C or higher, a large amount of silicon dioxide is produced by air oxidation even if no carbon is present. Next, silicon carbide whiskers from which silicon dioxide had been completely removed by hydrofluoric acid treatment were fired under the same conditions as above in the presence of carbon (carbon black). FIG. 2 shows the relationship between the weight ratio of coexisting carbon to silicon carbide whiskers and the oxidation rate of silicon carbide whiskers. From this result, it is clear that when the amount of coexisting carbon is large, the oxidation of silicon carbide whiskers is significantly promoted, especially by high-temperature heating. That is, when the amount of coexisting carbon is large, a local temperature rise occurs due to significant heat generation during combustion, and oxidation of silicon carbide whiskers in the vicinity is promoted. From the above results, in order to produce high-purity silicon carbide whiskers, it is necessary to suppress the heat generated during combustion of unreacted carbon to the lowest possible temperature in the process of burning off unreacted carbon from the reaction product after heating reaction. It is understood that this is desirable. In general, the combustion of unreacted carbon in silicon carbide whiskers is mainly caused by the reaction of equation (1), but also the reaction of equation (2) also contributes. C+O 2 →CO 2 +94.1Kcal/mol (1) C+1/2O 2 →CO+26.4Kcal/mol (2) The combustion of unreacted carbon according to equation (1) above generates a large amount of heat, whereas the above ( According to equation 2), the amount of heat generated is significantly smaller than that of equation (1). Incomplete combustion of unreacted carbon according to equation (2) occurs when the amount of oxygen in the furnace atmosphere is insufficient. In the method of the present invention, when heating and burning unreacted carbon mixed in silicon carbide whiskers in a furnace, the amount of air supplied to the furnace is set to a predetermined amount or less with respect to the amount of unreacted carbon, and the formula (2) above is satisfied. This causes a reaction to occur, thereby reducing the amount of heat generated during combustion of unreacted carbon, preventing the generation of localized high temperatures, and thus suppressing oxidation of silicon carbide whiskers. According to the present invention, in order to suppress the silicon dioxide content in the silicon carbide whiskers after combustion of unreacted carbon to 5% or less, the furnace temperature is set to 600°C or higher and 900°C or lower, and per gram of unreacted carbon. It is necessary to burn unreacted carbon while supplying air into the furnace so that the amount of air supplied into the furnace is 200 ml/min or less. When the furnace temperature is 900° C. or higher, the oxidation rate of the silicon carbide whiskers exceeds 5% even if the silicon carbide whiskers do not contain unreacted carbon. On the other hand, the amount of air supplied into the furnace is 200% per gram of unreacted carbon.
When the reaction rate exceeds ml/min, (1)
The reaction of the formula takes precedence, making it difficult to suppress the oxidation of silicon carbide whiskers. On the other hand, the amount of air supplied into the furnace is reduced to 1g of unreacted carbon.
If the rate is less than 30 ml/min, it will take a significantly longer time to burn the unreacted carbon, especially if the thermal energy cost is taken into account.
There is no advantage to going below ml/min. Effects of the Invention As described above, according to the method of the present invention, in the method of producing silicon carbide whiskers by heating and reacting a solid silicon-containing raw material and a carbon-containing raw material, the silicon-containing raw material is preliminarily shaped into a predetermined shape. After heating the molded body formed by molding and the powdered carbon raw material to a predetermined reaction temperature in a hydrogen gas atmosphere to generate silicon carbide whiskers containing unreacted carbon, the unreacted material mixed in the silicon carbide whiskers is When burning and removing reactive carbon in the furnace, the temperature inside the furnace is
At the same time as keeping the temperature above 600℃ and below 900℃, supplying air within the specified amount to the amount of unreacted carbon in the furnace, incomplete combustion of unreacted carbon, and lowering the amount of heat generated by combustion of unreacted carbon. As a result, it is possible to produce high purity silicon carbide whiskers in which the amount of silicon dioxide as an impurity is significantly reduced. The present invention will be explained below by giving Examples and Comparative Examples, but the present invention is not limited to these Examples in any way. Example Silicon-containing molded body that also serves as a reaction vessel, containing 49% by weight of silicon dioxide, outer diameter 25 mm, inner diameter 20 mm
A mullite tubular reaction vessel with a length of 100 mm was used. 50 parts of carbon black powder, 0.2 parts of finely powdered iron oxide as a reaction catalyst, and 17 parts of sodium chloride powder (grade 1 reagent) as a reaction promoter were stirred in a ball mill for 1 hour to form a homogeneous mixture. 2g was filled into the reaction vessel, and this was inserted into an electric furnace. After introducing nitrogen gas into this electric furnace at a flow rate of 5 ml/min per unit cross-sectional area (cm 2 ) of the furnace tube for 1 hour,
The temperature at the center of the furnace reaches 1530℃ at a heating rate of 5℃/min.
heated until. In this heating process, after the furnace temperature reaches 1000℃, the introduction of nitrogen gas into the electric furnace is stopped, and then hydrogen gas is introduced into the electric furnace at a flow rate of 5 ml/min. The temperature was increased to 1530°C and held at this temperature for 4 hours. After this, the introduction of hydrogen gas was stopped while gradually lowering the temperature inside the furnace, and then the atmosphere inside the furnace was switched to nitrogen gas, and the contents were taken out and the black-green, lightweight, bulky mass was reacted. Obtained as product. The silicon carbide whiskers containing unreacted carbon thus obtained were placed in a quartz glass boat.
Electric furnace (furnace tube is made of mullite, inner diameter 43 mm, length
1000mm) per gram of unreacted carbon

【衚】 に炉内に䟛絊する空気量を衚に瀺すように制埡し
぀぀、空気を炉内に流し、未反応炭玠を所定時間
燃焌させお、炭化ケむ玠りむスカヌを埗た。 この炭化ケむ玠りむスカヌはβ型であ぀お、分
岐や折れ曲がりのない圢状を有しおおり、これに
含たれる二酞化ケむ玠の量は衚に瀺すずおりであ
぀た。たた、繊維埄、繊維長及びアスペクト比
は、それぞれ玄0.5ÎŒm、50〜400ÎŒm及び100〜800
であ぀た。 比范䟋 炉内ぞの䟛絊空気量を倉えた以倖は、䞊蚘実斜
䟋ず同様にしお、未反応炭玠を燃焌陀去した。結
果を衚に瀺すように、炉内ぞの䟛絊空気量が過倧
であるために、炭化ケむ玠りむスカヌ䞭の二酞化
炭玠量はいずれもを越えおいる。
[Table] Air was flowed into the furnace while controlling the amount of air supplied to the furnace as shown in the table, and unreacted carbon was burned for a predetermined period of time to obtain silicon carbide whiskers. The silicon carbide whiskers were β-type and had a shape without branches or bends, and the amount of silicon dioxide contained therein was as shown in the table. In addition, the fiber diameter, fiber length, and aspect ratio are approximately 0.5 Όm, 50 to 400 Όm, and 100 to 800 Όm, respectively.
It was hot. Comparative Example Unreacted carbon was burned and removed in the same manner as in the above example except that the amount of air supplied into the furnace was changed. As shown in the table, the amount of carbon dioxide in the silicon carbide whiskers exceeded 5% in all cases because the amount of air supplied into the furnace was excessive.

【図面の簡単な説明】[Brief explanation of the drawing]

第図は、二酞化ケむ玠を含たない炭化ケむ玠
りむスカヌを空気雰囲気䞋で時間加熱したずき
の加熱枩床ず炭化ケむ玠りむスカヌの酞化率ずの
関係を瀺すグラフ、第図は、二酞化ケむ玠を含
たない炭玠を含む炭化ケむ玠りむスカヌを炭玠の
存圚䞋に空気雰囲気䞋で700℃又は1000℃に加熱
したずきの䞊蚘炭玠量ず炭化ケむ玠りむスカヌの
酞化率ずの関係を瀺すグラフである。
Figure 1 is a graph showing the relationship between the heating temperature and the oxidation rate of silicon carbide whiskers that do not contain silicon dioxide when silicon carbide whiskers that do not contain silicon dioxide are heated for 3 hours in an air atmosphere. It is a graph showing the relationship between the amount of carbon and the oxidation rate of silicon carbide whiskers when silicon carbide whiskers containing carbon are heated to 700° C. or 1000° C. in an air atmosphere in the presence of carbon.

Claims (1)

【特蚱請求の範囲】[Claims]  固䜓状のケむ玠含有原料ず炭玠含有原料ずを
加熱反応させお、炭化ケむ玠りむスカヌを補造す
る方法においお、䞊蚘ケむ玠含有原料を予め所定
圢状に成圢しおなる成圢䜓ず粉末状炭玠原料ずを
氎玠ガス雰囲気䞋に所定の反応枩床に加熱しお、
未反応炭玠を含む炭化ケむ玠りむスカヌを生成さ
せ、次いで、炉枩を600℃以䞊で900℃以䞋の枩床
ずするず共に、未反応炭玠1g圓たりに炉内に䟛
絊する空気量を30〜200ml分ずしお、䞊蚘未反
応炭玠を燃焌させお陀去するこずを特城ずする高
玔床炭化ケむ玠りむスカヌの補造方法。
1. In a method for producing silicon carbide whiskers by heat-reacting a solid silicon-containing raw material and a carbon-containing raw material, a molded body obtained by previously molding the silicon-containing raw material into a predetermined shape and a powdery carbon raw material are heated with hydrogen. Heating to a predetermined reaction temperature in a gas atmosphere,
Silicon carbide whiskers containing unreacted carbon are generated, and then the furnace temperature is set to 600°C or higher and 900°C or lower, and the amount of air supplied to the furnace per 1g of unreacted carbon is 30 to 200ml/min. , a method for producing high-purity silicon carbide whiskers, which comprises burning and removing the unreacted carbon.
JP61247116A 1986-10-17 1986-10-17 Production of silicon carbide whisker of high-quality Granted JPS63103897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61247116A JPS63103897A (en) 1986-10-17 1986-10-17 Production of silicon carbide whisker of high-quality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61247116A JPS63103897A (en) 1986-10-17 1986-10-17 Production of silicon carbide whisker of high-quality

Publications (2)

Publication Number Publication Date
JPS63103897A JPS63103897A (en) 1988-05-09
JPH0324440B2 true JPH0324440B2 (en) 1991-04-03

Family

ID=17158672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61247116A Granted JPS63103897A (en) 1986-10-17 1986-10-17 Production of silicon carbide whisker of high-quality

Country Status (1)

Country Link
JP (1) JPS63103897A (en)

Also Published As

Publication number Publication date
JPS63103897A (en) 1988-05-09

Similar Documents

Publication Publication Date Title
JPH05507056A (en) Method for producing non-agglomerated single crystals of aluminum nitride
US4619905A (en) Process for the synthesis of silicon nitride
US5006490A (en) Method for the formation of refractory products from and disposal of asbestos
JPH0353279B2 (en)
JPS5913442B2 (en) Manufacturing method of high purity type silicon nitride
US4755365A (en) Method of producing high purity zirconia powder from zircon powder
JPH0324440B2 (en)
EP0272773B1 (en) Process for production silicon carbide whiskers
JPS6111886B2 (en)
JPS6122000A (en) Preparation of silicon carbide whisker
JPS62260797A (en) Production of high-purity silicon carbide whisker
JPS6227316A (en) Production of fine power of high purity silicon carbide
JPS63103896A (en) Production of silicon carbide whisker of high-quality
JPS63103898A (en) Production of silicon carbide whisker of high-quality
JP2563874B2 (en) Continuous method for producing silicon nitride by carbonitriding and silicon nitride obtained thereby
CZ294161B6 (en) Powder mixture of chemicals for forming a refractory composition
JPH10203818A (en) Granulated low-oxygen silicone, its production and production of silicon nitride
JPS62260798A (en) Production of silicon carbide whisker
JPS60141698A (en) Manufacture of silicon carbide whisker
JPH0353280B2 (en)
JPS6348840B2 (en)
JPS6025384B2 (en) Manufacturing method of high-density magnesia sintered body
JPH03353B2 (en)
JPH0337167A (en) Production of ceramic foamed material
JPS6272600A (en) Production of silicon carbide whisker