JPH03244171A - Bioelement - Google Patents

Bioelement

Info

Publication number
JPH03244171A
JPH03244171A JP2039787A JP3978790A JPH03244171A JP H03244171 A JPH03244171 A JP H03244171A JP 2039787 A JP2039787 A JP 2039787A JP 3978790 A JP3978790 A JP 3978790A JP H03244171 A JPH03244171 A JP H03244171A
Authority
JP
Japan
Prior art keywords
oscillation
aqueous solution
reduced
external pressure
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2039787A
Other languages
Japanese (ja)
Inventor
Minoru Saito
稔 斎藤
Takeshi Koyano
武 小谷野
Hiroo Miyamoto
裕生 宮本
Katsumasa Umibe
海部 勝晶
Masakazu Kato
雅一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2039787A priority Critical patent/JPH03244171A/en
Publication of JPH03244171A publication Critical patent/JPH03244171A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To dispense with an external pressure in the self-oscillation of an artificial film by a method wherein the pH of the salt solution on a low- concentration side among salt solutions, between which the excitative artificial film, which has adsorbed a fatty material having an oleyl group is interposed, is set at a specified value or lower. CONSTITUTION:An artificial film 11 is supported in a state that it is in contact to both of 100mMKCl of an aqueous solution 15a housed in an electrolytic cell 13a and 5mMKCl of an aqueous solution 15b housed in an electrolytic cell 13b. HCl is added to the aqueous solution 15b in this cell 13b and the self- oscillation of a potential in the case where the pH of the aqueous solution 15b is changed is measured. Whereupon, as the pH is decreased, an oscillation starting pressure is steeply reduced and when the pH reaches a pH4, the pressure becomes unnecessary. Moreover, when the pH is reduced, a DC current is also reduced gradually and becomes unnecessary in a pH2.5 or lower. In the pH2.5 or lower, the oscillation is generated without applying the external pressure and the DC current and this oscillation frequency is increased as the pH is reduced and is changed into a distorted waveform in a pH1 or lower.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、生物の神経細胞における情報発現や伝達機
能を模倣し、また種々の認識を行うことが可能な興奮性
人工膜を用いたバイオ素子に関する。
[Detailed Description of the Invention] (Field of Industrial Application) This invention is a biological technology using an excitable artificial membrane that can imitate the information expression and transmission functions of biological nerve cells and perform various types of recognition. Regarding elements.

(従来の技術) 従来のコンピュータにおける素子は、主にシリコン半導
体素子等の無機系材料によって構成されており、その処
理機能はフォノ・ノイマン(VanN e u m a
 n n )方式によって直列型の論理演算を実行する
ものであった。この方式は、正確な論理演算を行うこと
ができるが、例えば高等生物の脳が得意とするパターン
認識に必要な多数の情報処理を同時に並行して行うこと
が困難であるという欠点を有していた。
(Prior Art) Elements in conventional computers are mainly composed of inorganic materials such as silicon semiconductor elements, and their processing functions are based on phono-neuman (VanNeuman) technology.
n n ) method to execute serial logical operations. Although this method can perform accurate logical operations, it has the drawback that, for example, it is difficult to simultaneously perform the large amount of information processing required for pattern recognition, which the brains of higher organisms are good at. Ta.

一方、近年生体の認識機能に関する研究が急速に進んで
おり、例えば上述の脳を構成する複数の神経細胞にニュ
ーロン)が、生体の学習や記憶に伴なって、互いの結合
関係を適宜に変化させ、所謂、可塑性を有することが明
らかになりつつ有る。
On the other hand, research on the cognitive functions of living organisms has progressed rapidly in recent years. It is becoming clear that these materials have so-called plasticity.

しかしながら、脳に見い出されるようなパターン認識や
学習・記憶といった機能が、どのような原理に基づいて
実行され、さらには、どのような構成成分で営まれてい
るのかについては未だ不明点が多く、多数の研究者によ
ってそれらの解明が進められている。
However, there are still many unknowns about the principles on which functions such as pattern recognition, learning, and memory found in the brain are carried out, as well as the constituent components involved. Many researchers are working to elucidate these issues.

一般に生物は、外界からの種々の刺激を知覚器官で受は
入れ、ニューロンや複数のニューロン間を接合するシナ
プスを介してこれらを脳に伝達し多数のニューロンで構
成される脳で情報認識を行っている。このような認識機
能の一例につき説明する。
In general, living things receive various stimuli from the outside world through their sensory organs, transmit these to the brain via neurons and synapses connecting multiple neurons, and the brain, which is made up of many neurons, processes the information. ing. An example of such a recognition function will be explained.

まず、外界からの刺激(情報)は電気的な信号に変換さ
れ神経インパルスが発生する。この神経インパルスがニ
ューロンを構成する軸索の末端に到達すると、神経伝達
物質と称される小胞中に内包された化学物質が放出され
る。このような神経伝達物質としてアセチルコリン等や
、広義ではカルシウムイオン(Ca’)等のイオンも知
られており、細胞外に放出された神経伝達物質は、例え
ば隣接する細胞の形質膜に存在する受容体を介して細胞
内に取り込まれ新たな神経インパルスを誘起する。
First, stimulation (information) from the outside world is converted into an electrical signal and a nerve impulse is generated. When this nerve impulse reaches the end of the axon that makes up a neuron, chemicals contained in vesicles called neurotransmitters are released. As such neurotransmitters, acetylcholine, etc., and ions such as calcium ions (Ca') in a broader sense are also known, and neurotransmitters released outside the cell are, for example, activated by receptors present in the plasma membrane of adjacent cells. It is taken into cells through the body and induces new nerve impulses.

さらに、かかる神経インパルスを受けたシナプス前膜か
らは、上述と同様に神経伝達物質の放出が生じ、隣接す
る他のシナプス後膜まで拡散し、受容体を介した取り込
み、神経インパルスの誘起が行われる。このような神経
インパルスを介した一連の情報伝達は興奮と称され、複
数のシナプスを経て脳に達すると考えられている。
Furthermore, neurotransmitters are released from the presynaptic membrane that receives such nerve impulses in the same way as described above, and diffuse to other adjacent postsynaptic membranes, where they are taken up through receptors and induce nerve impulses. be exposed. This series of information transmission via nerve impulses is called excitation, and is thought to reach the brain via multiple synapses.

このような生体系を模倣し、並列的な情報処理を行うに
当り、前述した形質膜を構成する脂質を利用して、機能
素子を実現しようとする試みがある。
In imitating such biological systems and performing parallel information processing, there have been attempts to realize functional elements using the aforementioned lipids that constitute the plasma membrane.

例えば、「合成脂質膜における相転移と自励発振現象j
 (都甲 潔他、膜(MEMBRANE) 、 12(
1)。
For example, "Phase transition and self-oscillation phenomena in synthetic lipid membranes"
(Kyoshi Toko et al., MEMBRANE, 12 (
1).

P、12〜21.1987年)に開示されるように、多
孔質膜に脂質を吸着させた興奮性人工膜(以下、単に人
工膜と称する場合も有る。)を用い、この人工膜が自動
発振する現象が知られている。
P., 12-21, 1987), an excitable artificial membrane (hereinafter sometimes simply referred to as an artificial membrane) in which lipids are adsorbed to a porous membrane is used, and this artificial membrane is automatically activated. The phenomenon of oscillation is known.

以下、上述の自動発振現象につき簡単に説明する。数(
ハ)程度の孔径を有する多孔質膜に、合成脂質であるジ
オレイルホスフェートを吸着させて人工膜を作製する。
The automatic oscillation phenomenon described above will be briefly explained below. number(
C) An artificial membrane is prepared by adsorbing dioleyl phosphate, which is a synthetic lipid, onto a porous membrane having a pore size of approximately

このような人工膜の一方の面を高塩濃度の電解液に接触
させ、かつ他方の面を低塩濃度の電解液に接触させた状
態とする。かかる状態に置かれた人工膜は、数分〜数十
分の周期で、これら電解液の間に所定の電位差を生し、
電気的インパルスが発生する。このような周期の自動発
振は長周期発振と称される。
One surface of such an artificial membrane is brought into contact with an electrolytic solution with a high salt concentration, and the other surface is brought into contact with an electrolytic solution with a low salt concentration. The artificial membrane placed in such a state generates a predetermined potential difference between these electrolytes over a period of several minutes to several tens of minutes,
An electrical impulse is generated. Automatic oscillation with such a period is called long-period oscillation.

次に、上述した塩濃度差(イオン濃度勾配)に加えて、
人工膜に直流電流を印加し、しかも当該膜に所定の圧力
を加えることにより、短周期発振と称される数秒周期程
度の自動発振が観測される。
Next, in addition to the salt concentration difference (ion concentration gradient) mentioned above,
By applying a direct current to the artificial membrane and also applying a predetermined pressure to the membrane, automatic oscillation with a period of several seconds, called short-period oscillation, is observed.

この短周期発振は、上述の直流電流値を変化させること
によって、電気的インパルスの発振周期を制御すること
ができる。
In this short-period oscillation, the oscillation period of the electrical impulse can be controlled by changing the above-mentioned DC current value.

上述の自動発振のメカニズムは、例えば油滴状態から多
重膜への変化のような、脂質の相転移に伴なうものと考
えられている。このような興奮性人工膜を用いることに
より、ニューロンやシナプスの機能を模倣したバイオ素
子を構成することが可能である。
The mechanism of automatic oscillation described above is thought to be associated with a phase transition of lipids, such as a change from an oil droplet state to a multilayer film. By using such excitable artificial membranes, it is possible to construct biodevices that mimic the functions of neurons and synapses.

上述の如き人工膜を利用したバイオ素子として、この出
願に係る発明者等は、特願昭63−96851号及び特
願昭63−192116号によるものを提案し、例えば
バイオコンピューターや種々のセンサ等への応用が期待
されている。
The inventors of this application have proposed a biodevice utilizing the above-mentioned artificial membrane, as disclosed in Japanese Patent Application No. 63-96851 and Japanese Patent Application No. 63-192116. It is expected that it will be applied to

(発明が解決しようとする課題) しかしながら、上述した従来のバイオ素子においては、
周期を変えて短周期を発振させ各種情報処理目的に適合
させようとする場合、前述の塩濃度差に加えて、直流電
流及び外的な圧力を付加しなければならないという問題
点があった。
(Problem to be solved by the invention) However, in the conventional biodevice described above,
When changing the period to oscillate a short period to suit various information processing purposes, there is a problem in that in addition to the salt concentration difference mentioned above, direct current and external pressure must be added.

この発明の目的は、かかる問題点に鑑み、検討を行った
結果、短周期の自動発振を行わせるに当って必要であっ
た外的圧力を不要とし、さらに直流電流を低減あるいは
不要とすることが可能なバイオ素子を提供することにあ
る。
The purpose of this invention is to eliminate the need for external pressure necessary to perform short-period automatic oscillation and further reduce or eliminate the need for direct current. The objective is to provide a biodevice that can.

(課題を解決するための手段) 本発明は、オレイル基をもつ脂質を吸着させてなる興奮
性人工膜を挾む低濃度側の塩溶液のpl+を4以下に設
定し、これにより、人工膜の自動発振にあたって外的圧
力を不要とし、さらに直流電流を低減あるいは不要とな
るようにしたものである。
(Means for Solving the Problems) The present invention sets the pl+ of the salt solution on the low concentration side between the excitable artificial membranes formed by adsorbing lipids having oleyl groups to 4 or less, and thereby, the artificial membrane This eliminates the need for external pressure for automatic oscillation, and further reduces or eliminates the need for direct current.

(作 用) この発明は、上記のように興奮性人工膜の両側塩濃度の
低濃度側pHが4以下であり、その低塩濃度側の溶液中
のH゛が増加すると、該低塩濃度溶液側から高塩濃度溶
液側へのH゛の拡散が生ずる。その結果として電気的中
性条件を保つための自動発振を行わせるに必要な高塩濃
度溶液側から低塩濃度溶液側への陽イオンの流れが促進
されることになる。
(Function) As described above, the pH of the low concentration side of the excitable artificial membrane on both sides of the salt concentration is 4 or less, and when H in the solution on the low salt concentration side increases, the low salt concentration Diffusion of H occurs from the solution side to the high salt concentration solution side. As a result, the flow of cations from the high salt concentration solution side to the low salt concentration solution side is promoted, which is necessary for automatic oscillation to maintain electrically neutral conditions.

(実施例) 以下、図面を参照して、この発明の実施例を詳細に説明
する。
(Embodiments) Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

用いるオレイル基をもつ脂質であるジオレイルホスフェ
ート(DOPH)は、オレイルアルコール(関東化学■
製)とオキシ塩化リン(関東化学■製)とを常法の合成
手段によって反応させ、得られた合成物質を加水分解す
ることによって得た。
The lipid with an oleyl group used, dioleyl phosphate (DOPH), is oleyl alcohol (Kanto Kagaku ■
(manufactured by Kanto Kagaku ■) and phosphorus oxychloride (manufactured by Kanto Kagaku ■) by a conventional synthesis method, and the resulting synthetic substance was hydrolyzed.

得られたDOP)lをベンゼンに浴温させ、この溶液中
に、8(am)の孔径を有するセルロース・エステル製
の多孔質膜(商品名、ミリポアフィルタ−ミリポア社製
を浸漬させた。このようにして、DOPI+4■/cI
II(乾燥重量)の吸着量で多孔質膜に吸着させて人工
膜を作製した。
The obtained DOP) was bathed in benzene, and a cellulose ester porous membrane (trade name, Millipore filter, manufactured by Millipore) having a pore size of 8 (am) was immersed in this solution. In this way, DOPI+4■/cI
An artificial membrane was prepared by adsorbing it onto a porous membrane at an adsorption amount of II (dry weight).

第1図に示すように、上記人工膜11ば、第1電解槽1
3aに収容された1 00 mMKfJ水溶液15a、
及び第2の電解槽13bに収容された5mMKcf水溶
液15bの双方に接する状態で支持される。
As shown in FIG. 1, the artificial membrane 11, the first electrolytic cell 1
100 mM KfJ aqueous solution 15a contained in 3a,
and a 5mM Kcf aqueous solution 15b housed in the second electrolytic cell 13b.

上記KC1水溶液15a及び15bには、夫々銀塩化銀
(Ag−Agcz)電極17aあるいは17bがそれぞ
れ浸漬設置される。そして高濃度側MCI水溶液15a
中に浸漬された電極17aは、直流電源19の陽極側に
接続され、又低濃度側KC4水溶液15b中の電極17
bは同陰極側に接続されている。さらに、上記人工膜1
1に加わる電位差の時間変化を測定して記録するため、
高インピーダンス電位計と、X−Yレコーダとからなる
測定器21を設け、その銀−塩化銀電極23a、及び2
3bを上述したKCI水溶液15a、15bのそれぞれ
に浸漬させる。
Silver-silver chloride (Ag-Agcz) electrodes 17a or 17b are immersed in the KC1 aqueous solutions 15a and 15b, respectively. And high concentration side MCI aqueous solution 15a
The electrode 17a immersed therein is connected to the anode side of the DC power source 19, and the electrode 17a immersed in the KC4 aqueous solution 15b on the low concentration side is connected to the anode side of the DC power source 19.
b is connected to the same cathode side. Furthermore, the above artificial membrane 1
In order to measure and record the time change of the potential difference applied to 1,
A measuring device 21 consisting of a high impedance electrometer and an X-Y recorder is provided, and its silver-silver chloride electrodes 23a and 2
3b is immersed in each of the above-mentioned KCI aqueous solutions 15a and 15b.

又前記第1電解槽13aにはマノメーター25が配設さ
れ矢印aを付して示す外的圧力を上記人工膜11に対し
て加えることが可能な構成としである。
Further, a manometer 25 is disposed in the first electrolytic cell 13a, and is configured to be able to apply an external pressure indicated by an arrow a to the artificial membrane 11.

電解槽13b中の5mMKC4水溶液にHCIを添加し
pl+を変化させた場合の電位の自動発振を測定した。
Automatic oscillation of the potential was measured when HCI was added to the 5mM KC4 aqueous solution in the electrolytic cell 13b and pl+ was changed.

第2図は、5mMK(J水溶液のpHと、自動発振を生
ずるのに必要な外的圧力及び直流電流との関係を示す。
FIG. 2 shows the relationship between the pH of a 5mM K(J aqueous solution and the external pressure and direct current required to produce automatic oscillation).

なお上記測定においては、純水を用いた場合のMCI水
溶液(pH5,8)より開始し、当初直流電流は0.5
μAに固定しておき、外的圧力が不要となった後、直流
電流を徐々に低減させた。
In addition, in the above measurement, when using pure water, starting with an MCI aqueous solution (pH 5,8), the initial DC current was 0.5.
It was kept fixed at μA, and the DC current was gradually reduced after external pressure was no longer needed.

第2図の結果から明らかなように、pHの減少にしたが
って発振開始圧力は急激に低減されpH4に到って不要
となった。さらにpHを低下させると、直流電流も徐々
に低減されpH2,5において不要となった。pH2,
5以下では、外的圧力及び直流電流の印加なしに発振が
生し、その周波数はpnを下げるにしたがって増加し、
pH1以下では乱れた波形へと変化した。
As is clear from the results in FIG. 2, the oscillation initiation pressure was rapidly reduced as the pH decreased and became unnecessary when the pH reached 4. When the pH was further lowered, the direct current was also gradually reduced and became unnecessary at pH 2 and 5. pH2,
5 or less, oscillation occurs without the application of external pressure or direct current, and the frequency increases as pn is lowered.
At pH 1 or lower, the waveform changed to a disordered one.

第3図にはpH2,5とplllにおける発振波形を示
した。なお、この図において縦軸は5mMKC/水溶液
側を水溶上側た膜電位であるが、pH5,8の場合(H
C/を添加しない場合)とは符号が逆転している。
FIG. 3 shows the oscillation waveforms at pH 2, 5 and pll. In this figure, the vertical axis is the membrane potential with the 5mMKC/aqueous solution side facing the aqueous solution side, but in the case of pH 5 and 8 (H
The sign is reversed from that in the case where C/ is not added.

なおこの符号の逆転はpn 3.5を境にして起こった
Note that this sign reversal occurred at pn 3.5.

上記の実施例における各種の条件はこの発明の範囲内で
任意好適な変更及び変形が行い得る。例えば上記pH変
化にあたり、HCIに代え、他のH2S04C1(3C
OOH等を用いても同様の効果が見られた。
Various conditions in the above-mentioned embodiments may be arbitrarily modified and modified within the scope of the present invention. For example, for the above pH change, instead of HCI, other H2S04C1 (3C
A similar effect was observed using OOH and the like.

又用いるオレイル基をもつ脂質については、上記ジオレ
イルホスフェートの外に、モノオレイン又はトリオレイ
ンが使用され上述と同様の効果が得られる。
Regarding the lipid having an oleyl group to be used, monoolein or triolein may be used in addition to the above-mentioned dioleyl phosphate, and the same effects as described above can be obtained.

(発明の効果) 以上詳細に説明したように、本発明はオレイル基をもつ
合成脂質、例えばジオレイルホスフェートを吸着させて
成る人工膜の接する低濃度側溶液のpHを4以下とする
ことにより、該人工膜に対する自動発振を行わせるに必
要であった外的圧力を不要とし、さらに直流電流を低減
あるいは不要とすることが可能となるので工業的利用効
果の大きいバイオ素子として有用である。
(Effects of the Invention) As explained above in detail, the present invention provides the following advantages: By adjusting the pH of the low concentration solution in contact with the artificial membrane made of adsorbing a synthetic lipid having an oleyl group, such as dioleyl phosphate, to 4 or less, Since the external pressure required to cause the artificial membrane to oscillate automatically is not required, and direct current can be reduced or eliminated, it is useful as a biodevice with great industrial effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明一実施例のバイオ素子の自動発振説明図
、第2図は同特性説明図、第3図は同波形図である。 11・・・人工膜、13a、13b・・・電解槽、15
 a、  15 b−KCI水溶液、17a、17b。 23a  23b・・・電極、a・・・圧力。
FIG. 1 is an explanatory diagram of automatic oscillation of a biodevice according to an embodiment of the present invention, FIG. 2 is an explanatory diagram of the same characteristics, and FIG. 3 is a diagram of the same waveforms. 11... Artificial membrane, 13a, 13b... Electrolytic cell, 15
a, 15 b-KCI aqueous solution, 17a, 17b. 23a 23b... Electrode, a... Pressure.

Claims (2)

【特許請求の範囲】[Claims] (1)オレイル基をもつ脂質を吸着させてなる興奮性人
工膜を挾む低濃度側の塩溶液のpHを4以下に設定した
ことを特徴とするバイオ素子。
(1) A biodevice characterized in that the pH of the low-concentration salt solution sandwiching the excitable artificial membrane formed by adsorbing a lipid having an oleyl group is set to 4 or less.
(2)前記脂質は、ジオレイルホスフェート、モノオレ
インまたは、トリオレインとすることを特徴とする請求
項1に記載のバイオ素子。
(2) The bioelement according to claim 1, wherein the lipid is dioleyl phosphate, monoolein, or triolein.
JP2039787A 1990-02-22 1990-02-22 Bioelement Pending JPH03244171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2039787A JPH03244171A (en) 1990-02-22 1990-02-22 Bioelement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2039787A JPH03244171A (en) 1990-02-22 1990-02-22 Bioelement

Publications (1)

Publication Number Publication Date
JPH03244171A true JPH03244171A (en) 1991-10-30

Family

ID=12562655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2039787A Pending JPH03244171A (en) 1990-02-22 1990-02-22 Bioelement

Country Status (1)

Country Link
JP (1) JPH03244171A (en)

Similar Documents

Publication Publication Date Title
Mazia et al. Turning on of activities in unfertilized sea urchin eggs: correlation with changes of the surface.
Licht et al. Direct measurements of the physical diffusion of redox active species: microelectrochemical experiments and their simulation
Pilla Mechanisms of electrochemical phenomena in tissue repair and growth
JPH03244171A (en) Bioelement
KONISHI Fresh-water fish chemoreceptors responsive to dilute solutions of electrolytes
Yamada et al. Electron transfer at a planar bilayer lipid membrane incorporated with 7, 7, 8, 8-tetracyanoquinodimethane studied by ac impedance spectroscopy
Poignard et al. Different approaches used in modeling of cell membrane electroporation
Hyde Differences in electrical potential in developing eggs
JP2566625B2 (en) Bio element
JP2523181B2 (en) Light-responsive artificial exciter membrane
Ottova-Leitmannova Advances in planar lipid bilayers and liposomes
JP2980950B2 (en) Bio element
JPH03127881A (en) Exciting artificial film for bio-element
Reynaud Polarography as a tool in the investigation of interfacial behaviour of nucleic acids
JP3194995B2 (en) Light-responsive excitable artificial membrane and method for producing the same
JP2950549B2 (en) Bio element
Kinosita Jr et al. Submicrosecond imaging under a pulsed-laser fluorescence microscope
JP3194973B2 (en) Light-responsive excitable artificial membrane and manufacturing method thereof
JPH0320625A (en) Optical-response artificial exciting film
JP2793403B2 (en) Chemical substance recognition method, recognition information storage method, and chemical substance sensing system
Baker et al. Lipid and salt effects on carbocyanine dye-induced photo-voltages in bilayer membranes
JPH04364298A (en) Bioelement
JPH02221852A (en) Excitatory artificial membrane for bioelement and production thereof
Racusen et al. Modifications of extracellular electric and ionic gradients preceding the transition from tip growth to isodiametric expansion in the apical cell of the fern gametophyte
JPH02221853A (en) Excitatory artificial membrane for bioelement