JPH03127881A - Exciting artificial film for bio-element - Google Patents

Exciting artificial film for bio-element

Info

Publication number
JPH03127881A
JPH03127881A JP1265043A JP26504389A JPH03127881A JP H03127881 A JPH03127881 A JP H03127881A JP 1265043 A JP1265043 A JP 1265043A JP 26504389 A JP26504389 A JP 26504389A JP H03127881 A JPH03127881 A JP H03127881A
Authority
JP
Japan
Prior art keywords
film
oscillation
cholesterol
artificial membrane
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1265043A
Other languages
Japanese (ja)
Inventor
Minoru Saito
稔 斎藤
Hiroo Miyamoto
裕生 宮本
Katsuaki Umibe
海部 勝晶
Masakazu Kato
雅一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP1265043A priority Critical patent/JPH03127881A/en
Publication of JPH03127881A publication Critical patent/JPH03127881A/en
Pending legal-status Critical Current

Links

Landscapes

  • Steroid Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To realize the title artificial film capable of self-exciting oscillation for a short time period meeting the requirements for reduced or cancelled external pressure by a method wherein the said film is composed of a porous film on which mixed lipid comprising dioleilphosphate and specific amount of cholesterol is adsorbed. CONSTITUTION:The title artificial film is composed of dioleilphosphate represented by the structural formula I and cholesterol represented by the structural formula II as well as a porous film on which mixed lipid in additive content exceeding 1wt.% and not exceeding 40w.t% is adsorbed. That is, the said film is composed of the porous film on which the mixed lipid comprising dioleilphosphate and cholesterol is adsorbed. Through these procedures, the title exciting artificial film for bio-element capable of notably decreasing the external pressure required for self-exciting oscillation for a short time period compared with that of any conventional films can be formed.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、生物の神経細胞等における情報発現や伝達
機能を模倣し、種々の認識を行うためのセンサー等のバ
イオ素子に利用可能なバイオ素子用興奮性人工膜に関す
る。
Detailed Description of the Invention (Field of Industrial Application) This invention imitates the information expression and transmission functions of biological nerve cells, etc., and is applicable to biological devices such as sensors for various recognition purposes. This invention relates to an excitable artificial membrane for devices.

(従来の技術) 従来のコンピューターは、主としてシリコン半導体等の
無機系材料によって構成されており、その処理機能はフ
ォノ・ノイマン方式によって直列型論理演算を実行する
ものであった。この方式は、正確な論理演算を行うのに
適しているが、例えば高等生物の脳が得意とするパター
ン認識に必要な、多数の情報処理を同時に並行して行う
ことは困難である。
(Prior Art) A conventional computer is mainly constructed of inorganic materials such as silicon semiconductors, and its processing function is to execute serial logical operations using the Phono-Neumann method. Although this method is suitable for performing accurate logical operations, it is difficult to simultaneously perform a large number of information processes in parallel, which is necessary for pattern recognition, which is the specialty of the brains of higher organisms, for example.

近年、生体の各種情報認識機能に関する研究が急速に進
んでおり、例えば脳を構成する複数の神経細胞にューロ
ン)は、生体の学習や記憶に伴なって、互いの結合関係
を適宜に変化させ、いわゆる可逆性を有することが明ら
かになりつつある。
In recent years, research on the various information recognition functions of living organisms has progressed rapidly. For example, the multiple neurons that make up the brain change their connection relationships with each other as the living body learns and remembers. , it is becoming clear that it has so-called reversibility.

しかしながら、脳に見られるパターン認識や学習・記憶
といった機能がどのような原理に基づいて行われ、又ど
のような構成成分が関与して営まれているのか等につい
ては必らずしも詳らかではなく多数の研究者によってそ
れらの解明が進められている。
However, it is not always clear what principles the brain's functions such as pattern recognition, learning, and memory are based on, and what components are involved. A large number of researchers are currently working to elucidate these issues.

生物は、外界からの種々の刺激を知覚器官で受は入れ、
ニューロンや複数のニューロン間を接合するシナプスを
介して脳に伝達し、多数のニューロンで構成される脳で
情報認識を行っていると云われている。
Living things receive various stimuli from the outside world with their sensory organs,
It is said that information is transmitted to the brain via neurons and synapses that connect multiple neurons, and information is recognized in the brain, which is made up of many neurons.

このような認識機能の一例につき以下説明する。An example of such a recognition function will be described below.

まず外界刺激(情報)は電気的な信号に変換され、神経
インパルスが発生する。この神経インパルスがニューロ
ンを構成する軸索の末端に到達すると、神経伝達物質と
称される小胞中に内包された化学物質が放出される。か
かる神経伝達物質としてアセチルコリン等、広義にはカ
ルシウム等のイオン(Ca”)も知られており、細胞外
に放出された神経伝達物質は、例えば隣接する細胞の形
質膜に存在する受容体を介して細胞内に取り込まれ、新
たな神経インパルスを誘起する。
First, external stimuli (information) are converted into electrical signals, generating nerve impulses. When this nerve impulse reaches the end of the axon that makes up a neuron, chemicals contained in vesicles called neurotransmitters are released. Such neurotransmitters include acetylcholine and, in a broader sense, ions such as calcium (Ca"). Neurotransmitters released outside the cell are transmitted through receptors present in the plasma membrane of adjacent cells, for example. It is taken up into cells and induces new nerve impulses.

次に神経インパルスを受けたシナプス前膜から、上述と
同様に神経伝達物質の放出が生し、隣接する他のシナプ
ス後膜まで拡散し、受容体を介してその取り込み、及び
神経インパルスの誘起が行われる。このような神経イン
パルスを介した一連の情報伝達が興奮であり、複数のシ
ナプスを経て脳に達すると考えられている。
Next, neurotransmitters are released from the presynaptic membrane that receives the nerve impulse, as described above, and diffuse to other adjacent postsynaptic membranes, where they are taken up via receptors and triggered by nerve impulses. It will be done. Excitation is a series of information transmission via such nerve impulses, and is thought to reach the brain via multiple synapses.

かかる生体系機能を模倣して並列的な情報処理を行うに
当り、前記細胞形質膜を構成する脂質を利用して機能素
子を実現しようとする試みがある。
In order to perform parallel information processing by imitating such biological system functions, there have been attempts to realize functional elements using the lipids that constitute the cell plasma membrane.

例えば文献r合成脂質膜における相転移と自励発振現象
」 (都甲潔他、膜(MEMBRANE) 、12 (
ILP、12〜21.1987年)に開示されるように
、多孔質膜に脂質を吸着させた興奮性人工膜(以下、単
に人工膜とも称する)を用いて居り、この人工膜が自動
発振する現象が知られている。
For example, in the literature ``Phase transition and self-oscillation phenomena in synthetic lipid membranes'' (Kiyoshi Toko et al., MEMBRANE, 12 (
As disclosed in ILP, 12-21 (1987), an excitable artificial membrane (hereinafter simply referred to as an artificial membrane) in which lipids are adsorbed to a porous membrane is used, and this artificial membrane automatically oscillates. The phenomenon is known.

ここで上記自動発振現象につき簡単に説明する。Here, the above-mentioned automatic oscillation phenomenon will be briefly explained.

先づ数四程度の孔径を有する多孔質膜に、合成脂質であ
るジオレイルホスフェートを吸着させて人工膜を作製す
る。このような人工膜の一方の面を高塩濃度の電解液に
接触させ、かつ他面を低塩濃度に接触させた状態とする
。かかる状態に置かれた人工膜は、数分あるいは数十分
の周期でこれらの電解液の間に所定の電位差を生じ電気
的インパルスが発生する。このような周期の自動発振は
長周期発振と称される。
First, an artificial membrane is prepared by adsorbing dioleyl phosphate, a synthetic lipid, onto a porous membrane with a pore size of about four sizes. One side of such an artificial membrane is brought into contact with an electrolytic solution with a high salt concentration, and the other side is brought into contact with a low salt concentration. In the artificial membrane placed in such a state, a predetermined potential difference is generated between these electrolytes at a period of several minutes or tens of minutes, and an electrical impulse is generated. Automatic oscillation with such a period is called long-period oscillation.

また、上述した塩濃度差(イオン濃度勾配)に加え、人
工膜に直流電流を印加し、しかも当該膜に所定の圧力を
加えることにより、短周期発振と称される数秒周期の自
動発振が観測される。この短周期発振は、上述の直流電
流値を変化させることによって電気的インパルスの発振
周期を制御することができる。
In addition to the salt concentration difference (ion concentration gradient) mentioned above, by applying a direct current to the artificial membrane and applying a predetermined pressure to the membrane, automatic oscillation with a period of several seconds called short-period oscillation was observed. be done. In this short-period oscillation, the oscillation period of the electrical impulse can be controlled by changing the above-mentioned DC current value.

上述の自動発振のメカニズムは、例えば油滴状態から多
層膜状態への変化のような脂質の相転移に伴なうものと
推定され、かかる興奮性人工膜を用いることにより、ニ
ューロンやシナプスの機能を模倣したバイオ素子を構成
することが可能である。
The above-mentioned automatic oscillation mechanism is presumed to be accompanied by a phase transition of lipids, such as a change from an oil droplet state to a multilayer membrane state, and by using such an excitable artificial membrane, the functions of neurons and synapses can be improved. It is possible to construct a biodevice that mimics the

そして上記構成の人工膜を利用したバイオ素子として、
先に発明者等は特願昭63−96851号及び特願昭6
3−192116号により、例えばバイオコンピュータ
ーや種々のセンサ等への応用が可能である素子を提供し
ている。
As a biodevice using the artificial membrane with the above configuration,
The inventors previously filed Japanese Patent Application No. 63-96851 and Patent Application No. 6
No. 3-192116 provides an element that can be applied to, for example, biocomputers and various sensors.

(発明が解決しようとする課題) しかしながら、上述した従来のバイオ素子用興奮性人工
膜は、周期を変えて短周期発振させる場合の条件として
、塩濃度差及び直流電流に加え、比較的大きな外的な圧
力条件をも付加しなければならず、該条件設定に見合っ
た素子設計の自由度を低下させるという問題点があった
(Problems to be Solved by the Invention) However, in the conventional excitable artificial membrane for biodevices described above, in addition to the salt concentration difference and direct current, the relatively large external It is also necessary to add specific pressure conditions, which poses a problem in that the degree of freedom in element design commensurate with the setting of the conditions is reduced.

この発明は、上述した従来の問題点に鑑み、上記塩濃度
差及び直流電流印加の条件下で前述した短周期の自動発
振を行わせるに当って必要であった外的圧力を、従来の
人工膜に比べて著しく低減することが可能なバイオ素子
用興奮性人工膜を提供することを目的とする。
In view of the above-mentioned conventional problems, the present invention has been made to reduce the external pressure required to perform the short-period automatic oscillation under the conditions of the salt concentration difference and DC current application, compared to the conventional artificial pressure. The object of the present invention is to provide an artificial membrane for biodevices that can significantly reduce excitability compared to other membranes.

(課題を解決するための手段) 本発明は、ジオレイルホスフェート と、 コレステロール (C27H460) とからなり、該コレステロールの添加量が1 (wtχ
)以上40(wtχ)以下である混合脂質を多孔質膜に
吸着させてなるバイオ素子用興奮性人工膜である。
(Means for Solving the Problems) The present invention consists of dioleyl phosphate and cholesterol (C27H460), and the amount of the cholesterol added is 1 (wtχ
) or more and 40 (wtχ) or less is an excitable artificial membrane for biodevices, which is formed by adsorbing a mixed lipid having a molecular weight of 40 (wtχ) or less on a porous membrane.

(作 用) 本発明のバイオ素子用興奮性人工膜においては、ジオレ
イルホスフェートとコレステロールとから威る混合脂質
が多孔質膜に吸着され構成されている。そして上述の外
的条件の−っの圧力が低減されても、前記自動発振の際
に発生すると考えられている脂質の相転移が、上記混合
脂質によって促進されることになる。
(Function) In the excitable artificial membrane for biodevices of the present invention, a mixed lipid consisting of dioleyl phosphate and cholesterol is adsorbed onto a porous membrane. Even if the above-mentioned external pressure is reduced, the lipid phase transition that is thought to occur during the automatic oscillation will be promoted by the mixed lipid.

(実施例) 以下、本発明を実施例にて詳細に説明する。(Example) Hereinafter, the present invention will be explained in detail with reference to Examples.

まずジオレイルホスフェート(以下単にDOPH:Di
oleyl Phosphate とも云う)は、オレ
イルアルコール(関東化学製)とオキシ塩化リン(関東
化学製)を反応させた後、得られた合成物質を加水分解
することによって得た。また、コレステロールは東京化
成製のものを用いた。
First, dioleyl phosphate (hereinafter simply DOPH: Di
Oleyl Phosphate (also referred to as oleyl phosphate) was obtained by reacting oleyl alcohol (manufactured by Kanto Kagaku) with phosphorus oxychloride (manufactured by Kanto Kagaku) and then hydrolyzing the resulting synthetic substance. In addition, cholesterol manufactured by Tokyo Kasei was used.

次に、上述したDOPHとコレステロールとから成る混
合脂質として、この混合脂質におけるコレステロールの
添加量が20 (wtχ)となるように計量し、ヘンゼ
ンに溶解し、この溶液中に、8(即)の孔径を有するセ
ルロース・エステル製多孔質膜(ミリポアフィルタ−ξ
リボア社製)を浸漬した。上記混合脂質が乾燥重量で4
■/ c+ITの吸着量の人工膜試料とした。比較のた
めにD OP Hのみを多孔質膜に吸着させた外は上述
と同一の手順で行い4■/ cf+の吸着量の比較例人
工膜試料を作製した。
Next, as a mixed lipid consisting of DOPH and cholesterol as described above, the amount of cholesterol added in this mixed lipid is 20 (wtχ), dissolved in Hensen, and in this solution, 8 (immediate) Cellulose ester porous membrane with pore size (Millipore filter-ξ
(manufactured by Liboa) was immersed. The dry weight of the above mixed lipids is 4
■/ An artificial membrane sample with adsorption amount of c+IT was used. For comparison, a comparative artificial membrane sample with an adsorption amount of 4 .mu./cf+ was prepared by following the same procedure as described above except that only D OPH was adsorbed onto the porous membrane.

第1図は、通常の自動発振装置の概略説明図である。上
述の人工膜11は、第一電解槽13aに収容された1 
00mM KCI水溶液15a、及び、第二電解槽13
bに収容された5mMKCf水溶液15bとの双方に接
する状態で支持される。これらKCI水溶液15a及び
15b中には、夫々銀−塩化銀電極(Ag−AgC1)
標準電極17a及び17bが浸漬させである。高濃度側
100mM MCI水溶液15aの標準電極17aを直
流電源19の陽極側に接続し、低濃度側5mMK(J水
溶液15b標準電極17bを同陰極側に接続させる。人
工膜11に加わる電位差の時間変化を測定記録するため
、高インピーダンス電位計と)l’−Yレコーダーとか
らなる測定器21を設け、これに接続した標準電極23
a及び23bを対応するKCI水溶液15a及び15b
の各々に浸漬させる。図において25は第一電解槽13
aに配置させたマノメーターであり、矢印aの如く外的
圧力を人工膜11に対して加えることが可能な構成とな
っている。
FIG. 1 is a schematic explanatory diagram of a conventional automatic oscillation device. The above-mentioned artificial membrane 11 is made of
00mM KCI aqueous solution 15a and second electrolytic cell 13
It is supported in contact with both the 5mM KCf aqueous solution 15b housed in b. These KCI aqueous solutions 15a and 15b contained silver-silver chloride electrodes (Ag-AgC1), respectively.
Standard electrodes 17a and 17b are immersed. The standard electrode 17a of the 100mM MCI aqueous solution 15a on the high concentration side is connected to the anode side of the DC power supply 19, and the standard electrode 17b of the 5mMK (J aqueous solution 15b on the low concentration side) is connected to the same cathode side.Time change in the potential difference applied to the artificial membrane 11 In order to measure and record the
KCI aqueous solutions 15a and 15b corresponding to a and 23b
dipped in each. In the figure, 25 is the first electrolytic cell 13
This is a manometer placed at point a, and is configured to be able to apply external pressure to the artificial membrane 11 as indicated by arrow a.

以上の装置を用い、上記人工膜11として上述の実施例
及び比較測高を用い、外的圧力と発振周波数との関係を
測定した結果を第2図に示す。尚この測定に当って、前
記人工膜11に対して0.5(μA)の定電流を印加し
ながら、外的圧力aをO(cmHgo)から徐々に増加
させて行なった。
FIG. 2 shows the results of measuring the relationship between external pressure and oscillation frequency using the above-mentioned apparatus and using the above-mentioned embodiment and comparative height measurement as the artificial membrane 11. In this measurement, while applying a constant current of 0.5 (μA) to the artificial membrane 11, the external pressure a was gradually increased from O (cmHgo).

実施例の曲線から明らかなように、混合脂質を吸着させ
て得た人工膜試料は、外的圧力が0(cmllzo)で
も、約0.75 (1/sec )の発振周波数で短周
期の自動発振が認められ、外的な圧力を増大させるに従
って発振周波数が増加傾向を示した。
As is clear from the curves in the example, the artificial membrane sample obtained by adsorbing mixed lipids has a short-period automatic oscillation frequency of about 0.75 (1/sec) even when the external pressure is 0 (cmllzo). Oscillation was observed, and the oscillation frequency showed an increasing tendency as the external pressure was increased.

これに対して比較例人工膜は、短周期の自動発振に発振
開始圧として約18(cmH□0)の外的な圧力を必要
とし、その際の発振周波数は約0.57(1/8)であ
った。
On the other hand, the comparative artificial membrane requires an external pressure of approximately 18 (cmH□0) as the oscillation starting pressure for short-period automatic oscillation, and the oscillation frequency at that time is approximately 0.57 (1/8 )Met.

次に、実施例人工膜に関して、外的圧力が0(cmHz
O)の条件下、人工膜11に印加する直流電流を種々に
変え、各々の電流値と発振周波紐との関係を求めた結果
を第3図に示す。同図によれば実施例人工膜は直流電流
を0.25 (μA)のした場合に約0.55 (1/
see )の発振周波数で自動発振を生じた。また、直
流電流を増加させるに従って発振周波数も増大し、これ
ら直流電流と発振周波数とは略比例していることが確認
できた。
Next, regarding the example artificial membrane, when the external pressure is 0 (cmHz
Under the condition O), the direct current applied to the artificial membrane 11 was varied, and the relationship between each current value and the oscillation frequency string was determined, and the results are shown in FIG. According to the figure, when the DC current is 0.25 (μA), the artificial membrane of the example is about 0.55 (1/
automatic oscillation occurred at the oscillation frequency of see ). It was also confirmed that as the DC current increased, the oscillation frequency also increased, and that the DC current and the oscillation frequency were approximately proportional.

以上の結果から、この発明実施例に係る人工膜は、外的
圧力を加えることなく直流電流のみの調節により、従来
人工膜の場合と同様に、発振周波数を制御し得ることが
判った。
From the above results, it was found that the oscillation frequency of the artificial membrane according to the embodiment of the present invention can be controlled by adjusting only the direct current without applying external pressure, as in the case of conventional artificial membranes.

次に、実施例人工膜を、外的圧力を加えることなく、0
.5(μA)の直流電流によって自励発振させた際の、
5mMKC/水溶液1.5 b側を基準とした発振波形
を調べた結果を第4図に示す。この図から明らかなこと
は、実施例人工膜は、外的圧力なしに自動発振させた場
合であっても、電位差が急激に立ち上がり、しかもその
立ち下がりが裾を引くような興奮性人工膜に特有の発振
波形を有していた。
Next, the Example artificial membrane was heated to zero without applying external pressure.
.. When self-oscillating with a direct current of 5 (μA),
Figure 4 shows the results of examining the oscillation waveform of a 1.5mM KC/aqueous solution with reference to the b side. What is clear from this figure is that the example artificial membrane is an excitable artificial membrane in which the potential difference rises rapidly even when it is automatically oscillated without external pressure, and its fall is trailing. It had a unique oscillation waveform.

次に第5図は、コレステロールの添加量を変えて0.5
(μA)の直流電流印加時の発振開始圧を測定した結果
を示す特性曲線図である。尚混合脂質吸着量は4 mg
 / c+flとした。同図から明らかなことは、コレ
ステロールの添加なしの従来技術に係る人工膜は発振開
始圧が約18 (CIIll+20)であるのに対し、
コレステロール1 (wtZ)添加して得られた人工膜
では、発振開始圧が約10 (cmHzo)にま1 で急激に低減された。そしてコレステロール添加量を5
(wtりとした人工膜では6 (cmH,o)、  1
0(wtZ)とした人工膜では3(cmll□0)の発
振開始圧であった。特にコレステロール添加4jt15
htχ)〜40(wtZ)の範囲ではいずれの場合も発
振開始圧が0 (cmH,o)となっていた。図示省略
したが、このコレステロール添加量がこの発明の好適範
囲を超え、42.5 (wtりでは、少なくとも50(
C[1H20)の外的圧力を加えても自動発振が認めら
れなかった。
Next, in Figure 5, the amount of cholesterol added is changed to 0.5.
FIG. 3 is a characteristic curve diagram showing the results of measuring the oscillation start pressure when a direct current of (μA) is applied. The mixed lipid adsorption amount is 4 mg.
/c+fl. It is clear from the figure that the oscillation onset pressure of the conventional artificial membrane without addition of cholesterol is approximately 18 (CIIll + 20), whereas
In the artificial membrane obtained by adding cholesterol 1 (wtZ), the oscillation onset pressure was rapidly reduced to about 10 (cmHz). And the added amount of cholesterol is 5
(6 (cmH, o) for a wt artificial membrane, 1
In the artificial membrane set to 0 (wtZ), the oscillation starting pressure was 3 (cmll□0). Especially cholesterol added 4jt15
In the range of htχ) to 40(wtZ), the oscillation start pressure was 0 (cmH, o) in all cases. Although not shown, the amount of cholesterol added exceeds the preferred range of the present invention, and is 42.5 (wt) at least 50 (
Even when external pressure of C[1H20) was applied, no automatic oscillation was observed.

以上の実施例の結果によれば、上述の混合脂質中のコレ
ステロールが1から40(wtZ)の範囲において、上
記の自動発振に必要な外的圧力を低減し得る。そして特
に同15〜40 (wtZ)において外的圧力を実質的
に加えることなく短周期の自動発振が可能であることが
わかった。
According to the results of the above examples, the external pressure necessary for the automatic oscillation can be reduced when the cholesterol content in the mixed lipid is in the range of 1 to 40 (wtZ). In particular, it has been found that short-period automatic oscillation is possible at 15 to 40 (wtZ) without substantially applying external pressure.

この発明は上述の実施例のみ限定されるものではない。This invention is not limited to the above-described embodiments.

例えば、この発明のバイオ素子用興奮性人工膜の作用効
果は、特定の上述の如き実施装置によってのみ達成され
るとは限らない。そしてま1ま た、上記人工膜のための多孔質膜として、特定の材質及
び孔径のものに限定されるものでもない。
For example, the effects of the excitable artificial membrane for biodevices of the present invention are not necessarily achieved only by the specific implementation device described above. Furthermore, the porous membrane for the artificial membrane is not limited to a specific material or pore size.

さらに、該多孔質膜に対する混合脂質吸着量としては、
これら多孔質膜の材質や孔径に応じて種々に変更するこ
とができる。実際に上記混合脂質吸着量は3〜6(■/
 afl )程度の値にて上述の実施例と同様な効果が
得られた。
Furthermore, the amount of adsorption of mixed lipids on the porous membrane is as follows:
Various changes can be made depending on the material and pore diameter of these porous membranes. Actually, the above mixed lipid adsorption amount is 3 to 6 (■/
The same effect as in the above-mentioned example was obtained at a value of about 1.afl).

(発明の効果) この発明のバイオ素子用興奮性人工膜によれば、ジオレ
イルホスフェートとコレステロールとの混合脂質を多孔
質膜に吸着させて構成することによって、従来の人工膜
に比べて外的条件の一つである外的圧力の低減又は零の
条件で短周期の自動発振が可能な人工膜を実現すること
が可能となる。
(Effects of the Invention) According to the excitable artificial membrane for biodevices of the present invention, by adsorbing a mixed lipid of dioleyl phosphate and cholesterol on a porous membrane, the excitable artificial membrane for biodevices has a higher It becomes possible to realize an artificial membrane capable of short-period automatic oscillation under one of the conditions, which is a reduction or zero external pressure.

従って、該圧力条件の設定に見合う素子設計の自由度が
著しく向上され、結果的に種々のセンサやバイオコンピ
ュータへの応用分野拡大等が期待できる。
Therefore, the degree of freedom in element design that matches the setting of the pressure conditions is significantly improved, and as a result, the field of application to various sensors and biocomputers can be expected to expand.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は自動発振装置の概略図、第2図、第3図はこの
発明人工膜の膜特性図、第4図は同特性波形図、第5図
は同膜特性図である。 11・・・興奮性人工膜、13a・・・第一電解槽、1
3 b ・・・第二電解槽、15 a−100mM M
CI水溶液、15 b −5mM MCI水溶液、17
a、17b・−・標準電極、19・・・直流電源、21
・・・測定器、23a。 23b・・・標準電極、25・・・マノメーター a・
・・外的圧力。
FIG. 1 is a schematic diagram of an automatic oscillation device, FIGS. 2 and 3 are membrane characteristic diagrams of the artificial membrane of the present invention, FIG. 4 is a characteristic waveform diagram, and FIG. 5 is a membrane characteristic diagram. 11... Excitable artificial membrane, 13a... First electrolytic cell, 1
3 b...Second electrolytic cell, 15 a-100mM M
CI aqueous solution, 15 b -5mM MCI aqueous solution, 17
a, 17b -- Standard electrode, 19 -- DC power supply, 21
... Measuring device, 23a. 23b... Standard electrode, 25... Manometer a.
...external pressure.

Claims (1)

【特許請求の範囲】 ジオレイルホスフェート ▲数式、化学式、表等があります▼ と、コレステロール(C_2_7H_4_6O)▲数式
、化学式、表等があります▼ とからなり、該コレステロールの添加量が1(wt%)
以上40(wt%)以下である混合脂質を多孔質膜に吸
着させてなるバイオ素子用興奮性人工膜。
[Claims] Dioleyl phosphate▲There are mathematical formulas, chemical formulas, tables, etc.▼ and cholesterol (C_2_7H_4_6O)▲There are mathematical formulas, chemical formulas, tables, etc.▼, and the added amount of the cholesterol is 1 (wt%)
An excitable artificial membrane for biodevices, comprising a porous membrane adsorbing a mixed lipid of at most 40 (wt%) or less.
JP1265043A 1989-10-13 1989-10-13 Exciting artificial film for bio-element Pending JPH03127881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1265043A JPH03127881A (en) 1989-10-13 1989-10-13 Exciting artificial film for bio-element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1265043A JPH03127881A (en) 1989-10-13 1989-10-13 Exciting artificial film for bio-element

Publications (1)

Publication Number Publication Date
JPH03127881A true JPH03127881A (en) 1991-05-30

Family

ID=17411790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1265043A Pending JPH03127881A (en) 1989-10-13 1989-10-13 Exciting artificial film for bio-element

Country Status (1)

Country Link
JP (1) JPH03127881A (en)

Similar Documents

Publication Publication Date Title
Szabo et al. The effects of the macrotetralide actin antibiotics on the electrical properties of phospholipid bilayer membranes
Lu et al. Biophysical aspects of agar-gel supported bilayer lipid nembranes: a new method for forming and studying planar bilayer lipid membranes
Ohki et al. Surface potential of phosphatidylserine monolayers. I. Divalent ion binding effect
Tien et al. Black lipid membranes in aqueous media: the effect of salts on electrical properties
Kolb et al. Spectral analysis of current noise generated by carrier-mediated ion transport
Yoshida et al. Studies of electric capacitance of membranes: II. Conformational change in a model membrane composed of a filter paper and a lipid analogue
JPH03127881A (en) Exciting artificial film for bio-element
Adachi et al. Na+, K+-ATPase-based bilayer lipid membrane sensor for adenosine 5′-triphosphate
Alonso-Romanowski et al. An investigation by EIS of gramicidin channels in bilayer lipid membranes
Macaskill et al. Activity coefficients and osmotic coefficients in aqueous solutions of choline chloride at 25. degree. C
JP2763596B2 (en) Light-responsive artificial excitable membrane
Hianik et al. Electrostriction and membrane potential of lipid bilayers on a metal support
JP2523181B2 (en) Light-responsive artificial exciter membrane
JPH03244171A (en) Bioelement
Sakuma et al. Binding constants of metal cations to and hamaker constant for poly (N, Nl-lysinediylterephthaloyl) microcapsules
JPH02221852A (en) Excitatory artificial membrane for bioelement and production thereof
Reynaud Polarography as a tool in the investigation of interfacial behaviour of nucleic acids
JPH0453280A (en) Bioelement excitation artificial film
JPH02221853A (en) Excitatory artificial membrane for bioelement
JPH02231557A (en) Erethistic artificial membrane for bioelement
Marinetti et al. Large transient nonproton ion movements in purple membrane suspensions are abolished by solubilization in Triton X-100
Naumowicz et al. Chronopotentiometry insight into acid-base equilibria between phosphatidylcholine bilayer and ions from electrolyte solution
JPH05196594A (en) Excitable artificial film for biocomponent and its manufacture
JPH0320625A (en) Optical-response artificial exciting film
JP2980950B2 (en) Bio element