JP2523181B2 - Light-responsive artificial exciter membrane - Google Patents

Light-responsive artificial exciter membrane

Info

Publication number
JP2523181B2
JP2523181B2 JP1154823A JP15482389A JP2523181B2 JP 2523181 B2 JP2523181 B2 JP 2523181B2 JP 1154823 A JP1154823 A JP 1154823A JP 15482389 A JP15482389 A JP 15482389A JP 2523181 B2 JP2523181 B2 JP 2523181B2
Authority
JP
Japan
Prior art keywords
membrane
artificial
exciter
oscillation
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1154823A
Other languages
Japanese (ja)
Other versions
JPH0320623A (en
Inventor
雅一 加藤
稔 斎藤
勝晶 海部
裕生 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP1154823A priority Critical patent/JP2523181B2/en
Publication of JPH0320623A publication Critical patent/JPH0320623A/en
Application granted granted Critical
Publication of JP2523181B2 publication Critical patent/JP2523181B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、高濃度及び低濃度塩溶液間を仕切ってい
る細胞膜等の生体膜が膜電位を生じ興奮し情報発現、情
報伝達、情報処理を行なっていることを模倣した人工的
な興奮膜(人工興奮膜と称する。)に関するもので、特
に光により膜電位変化を制御出来る人工興奮膜(これを
光応答人工興奮膜と称することにする。)に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a biological membrane such as a cell membrane partitioning between a high-concentration and a low-concentration salt solution, which generates a membrane potential and is excited to express information, transmit information, and process information. It is related to an artificial exciter membrane (called an artificial exciter membrane) that mimics the fact that a person is performing an action. In particular, an artificial exciter membrane that can control the membrane potential change by light (this is called a photoresponsive artificial exciter membrane). It is related to.

(従来の技術) 従来のコンピューターは、主に、シリコン半導体素子
等の無機系材料によって構成されており、その処理機能
はフォン・ノイマン(Von Neumann)方式によって直列
型の論理演算を実行するものであった。この方式は正確
な論理演算を行うことができるが、例えば高等生物の脳
が得意とするパターン認識に必要な、多数の情報処理を
同時に並行して行うことが困難であるという欠点を有し
ていた。
(Prior Art) A conventional computer is mainly composed of an inorganic material such as a silicon semiconductor element, and its processing function is to perform serial logical operation by the Von Neumann method. there were. Although this method can perform accurate logical operations, it has the drawback that, for example, it is difficult to perform many information processing operations in parallel, which are necessary for pattern recognition, which the brains of higher organisms are good at. It was

一方、近年、生体の認識機能に関する研究が急速に進
んでおり、例えば上述の脳を構成する複数の神経細胞
(ニューロン)が、生体の学習や記憶に伴なって、互い
の結合関係を適宜に変化させ、所謂、可塑性を有するこ
とが明らかに成りつつ有る。しかしながら、脳に見い出
されるようなパターン認識や学習・記憶といった機能
が、どのような原理に基づいて実行され、さらには、ど
のような構成成分で営まれているのかについては不明点
が多く、多数の研究者によって解明が進められている。
On the other hand, in recent years, the research on the cognitive function of the living body has been rapidly advanced, and for example, a plurality of nerve cells (neurons) that compose the above-mentioned brain are appropriately connected with each other as the living body learns and remembers. It is becoming clear that they have been changed and have so-called plasticity. However, there are many unclear points about what principle the functions such as pattern recognition, learning and memory found in the brain are executed, and what constituent components are used. Are being clarified by researchers.

生物は、外界から承ける種々の刺激を知覚器官で受け
入れ、ヒューロンや複数のニューロン間を接合するシナ
プスを介して脳に伝達した後、多数のニューロンから成
る脳で情報認識を行なう。このような認識機能の一例に
つき説明すれば、まず、外界からの刺激(情報)は電気
的な信号に変換され、神経インパルスが発生する。この
神経インパルスがニューロンを構成する軸索の末端に到
達すると、神経伝達物質と称される、小胞中に内包され
た化学物質が放出される。このような神経伝達物質とし
てアセチルコリン、アドレナリン、セロトニン、グルタ
ミン酸等が知られている。細胞外に放出された神経伝達
物質は、例えばばシナプスの生体膜に存在する受容体を
介して次の細胞内に受け取られる。そしてこの細胞で
は、ナトリウムイオン、カリウムイオン等のイオンが細
胞内へ流入又は細胞外へ流出することにより細胞膜等の
ような生体膜に膜電位が生じる。この結果新たな神経イ
ンパルスを誘起する。さらに、神経インパルスを受けた
シナプスのシナプス前膜からは、上述と同様に神経伝達
物質の放出が生じ、隣接するシナプス後膜まで拡散し、
受容体を介して取り込み、神経インパルスの誘起が行な
われる。このような神経インパルスを介した一連の情報
伝達は興奮と称され、複数のシナプスを経て脳に達す
る。また、脳内に達したインパルスは、脳内の膨大な数
の神経細胞を興奮させ、この結果種々の情報処理が行な
われる。
Organisms accept various stimuli that can be accepted from the outside world by sensory organs and transmit them to the brain via synapses that connect between Huron and multiple neurons, and then recognize information in the brain consisting of many neurons. Explaining an example of such a recognition function, first, a stimulus (information) from the outside world is converted into an electrical signal, and a nerve impulse is generated. When this nerve impulse reaches the end of the axon that constitutes a neuron, a chemical substance called a neurotransmitter, which is contained in a vesicle, is released. Acetylcholine, adrenaline, serotonin, glutamic acid and the like are known as such neurotransmitters. The neurotransmitter released to the outside of the cell is received in the next cell via, for example, a receptor present in the biological membrane of the synapse. Then, in this cell, ions such as sodium ion and potassium ion flow into or out of the cell to generate a membrane potential on a biological membrane such as a cell membrane. As a result, a new nerve impulse is induced. Furthermore, from the presynaptic membrane of the synapse that received the nerve impulse, release of neurotransmitters occurs in the same manner as described above, and diffuses to the adjacent postsynaptic membrane,
It is taken up through the receptor and the nerve impulse is induced. Such a series of information transmission through nerve impulses is called excitement, and reaches the brain through multiple synapses. Further, the impulse reaching the brain excites a huge number of nerve cells in the brain, resulting in various information processing.

そこで、前述した生体膜を構成する脂質を利用し生体
系を模倣した機能素子を実現しようとする試みが、例え
ば文献(「合成脂質膜における相転移と自励発振現象」
(都甲 潔他,膜(MEM−BRANE),12(1),P.12〜21,1
987年)に開示されている。この文献によれば、多孔質
膜に合成脂質(以下、脂質類似物質と称する。)を吸着
させた人工興奮膜の自励発振現象等が報告されている。
ここで、脂質類似物質とは、ジオレイン酸、トリオレイ
ン酸、スパン80、ジオレイルホスフオスフェート等のよ
うな両親媒性物質、界面活性剤等である。
Therefore, an attempt to realize a functional element that mimics a biological system by using the lipids that compose the biological membrane described above has been performed, for example, in the literature (“Phase transition and self-oscillation phenomenon in synthetic lipid membrane”).
(Toki Kiyoshi et al., Membrane (MEM-BRANE), 12 (1), P.12-21,1
987). According to this document, a self-excited oscillation phenomenon of an artificial exciter membrane in which a synthetic lipid (hereinafter, referred to as a lipid-like substance) is adsorbed on a porous membrane is reported.
Here, the lipid-like substance is an amphipathic substance such as dioleic acid, trioleic acid, Span 80, dioleyl phosphate, or the like, a surfactant, or the like.

以下、上述の自励発振現象につき簡単に説明する。 The self-oscillation phenomenon described above will be briefly described below.

数μm程度の孔径を有する多孔質膜に、脂質類似物質
であるジオレイルホスフェートを吸着させて人工興奮膜
を作製する。このような人工興奮膜の一方の面を高濃度
の塩溶液に接触させ、かつ他方の面を低濃度の塩溶液に
接触させた状態とする。係る状態に置かれた人工興奮膜
は、数分〜数十分の周期で、これら塩溶液の間に所定の
電位差を生じ、電気的インパルスが発生する。
An artificial exciter membrane is prepared by adsorbing dioleyl phosphate, which is a lipid-like substance, to a porous membrane having a pore size of about several μm. One side of such an artificial exciter membrane is brought into contact with a high-concentration salt solution, and the other side is brought into contact with a low-concentration salt solution. The artificial exciter membrane placed in such a state causes a predetermined potential difference between these salt solutions in a cycle of several minutes to several tens of minutes, and an electric impulse is generated.

上述の自励発振のメカニズムは、油滴状態から多層膜
状態への脂質の集合体構造の変化に伴なうものと考えら
れている。このメカニズムにつき上述の文献を引用して
いま少し詳細に説明する。
It is considered that the above-mentioned mechanism of self-oscillation is accompanied by a change in the lipid aggregate structure from the oil droplet state to the multi-layered state. This mechanism will now be explained in a little more detail with reference to the above mentioned references.

第4図(A)及び(B)は、その説明に供する図であ
り、微小な貫通孔11aを有する支持体11の微小孔11a中に
脂質又は脂質類似物質が含浸されて構成されている人工
興奮膜により低濃度の塩溶液13と高濃度の塩溶液15との
間を仕切った状態を示した図である。特に1つの微小孔
周辺に着目して示してある。
FIGS. 4 (A) and 4 (B) are diagrams used for the explanation, and an artificial structure in which a lipid or a lipid-like substance is impregnated in the micropores 11a of the support 11 having the microscopic through-holes 11a. FIG. 3 is a diagram showing a state in which a low concentration salt solution 13 and a high concentration salt solution 15 are partitioned by an exciter membrane. In particular, it is shown focusing on the periphery of one minute hole.

脂質や脂質類似物質(以下、脂質等と略称することも
ある。)は、ある塩濃度を境として、低濃度の塩溶液中
では油滴状態が安定であり高濃度の塩溶液中では多層膜
状態が安定である。従って、第4図(A)に示すよう
に、微小孔11aの低濃度の塩溶液側の出口では脂質等は
油滴17になり微小孔をふさいでおり、微小孔11a中では
カチオン19が高濃度の塩溶液側から流入しているために
油滴が多層膜21へと変化している。このような状態で
は、微小孔11a中には塩溶液中のアニオンよりもカチオ
ンのほうが選択的に多く流入しているので、アニオンが
支持体11上に残され、膜電位が生じる。ところが、第4
図(B)に示すように、油滴17の多層膜21への変化が進
み微小孔11aをふさいでいた油滴17が小さくなり出口が
開かれ微小孔11aが貫通すると、微小孔11a中の高濃度な
カチオンが拡散により低濃度な塩溶液側に流出し、微小
孔11a内のカチオン濃度は低下する。支持体11上に残さ
れていたアニオンは、この時から、アニオン自身の拡散
や拡散してきたカチオンとの再結合により、ある緩和時
間で無くなる。その後は、微小孔内のカチオンの濃度が
低くなったことから脂質等は油滴状態が安定状態である
ので、再び第4図(A)に示した状態にもどる。このよ
うにして人工興奮膜は自励的な発振を繰り返す。人工興
奮膜の、第4図(A)及び(B)を用いて説明した特性
を第1表にまとめて示した。
Lipids and lipid-like substances (hereinafter sometimes abbreviated as lipids, etc.) have stable oil droplets in a low-concentration salt solution and a multilayer film in a high-concentration salt solution with a certain salt concentration as a boundary. The condition is stable. Therefore, as shown in FIG. 4 (A), at the outlet of the micropores 11a on the side of the low-concentration salt solution, lipids and the like become oil droplets 17 and block the micropores, and the cations 19 are high in the micropores 11a. The oil drops change to the multilayer film 21 because they flow from the salt solution side of the concentration. In such a state, the cations selectively flow into the micropores 11a more than the anions in the salt solution, so that the anions are left on the support 11 and a membrane potential is generated. However, the fourth
As shown in FIG. 7B, when the oil droplet 17 changes to the multilayer film 21 and the oil droplet 17 that has blocked the minute hole 11a becomes smaller and the outlet is opened and the minute hole 11a penetrates, the inside of the minute hole 11a The high-concentration cation flows out to the low-concentration salt solution side due to diffusion, and the cation concentration in the micropores 11a decreases. From this time, the anion left on the support 11 disappears within a certain relaxation time due to diffusion of the anion itself and recombination with the diffused cation. After that, the concentration of cations in the micropores has decreased, and the lipid droplets are in a stable oil droplet state, so that the state returns to the state shown in FIG. 4 (A) again. In this way, the artificial exciter membrane repeats self-excited oscillation. The characteristics of the artificial exciter membrane described with reference to FIGS. 4 (A) and 4 (B) are summarized in Table 1.

上述のような人工興奮膜を用いるとニューロンやシナ
プスを模倣したバイオ素子を構成することが可能にな
る。その一例としては、この出願に係る発明者等によっ
て、特願昭63−96851号及び特願昭63−192116号に提案
されている素子が有り、例えばバイオコンピューターや
種々のセンサ等への応用が期待されている。
By using the artificial exciter membrane as described above, it becomes possible to construct a bio element that imitates a neuron or a synapse. As an example thereof, there are elements proposed by the inventors of the present application in Japanese Patent Application No. 63-96851 and Japanese Patent Application No. 63-192116, which are applied to, for example, biocomputers and various sensors. Is expected.

(発明が解決しようとする課題) しかしながら、第4図を用いて説明したような従来の
人工興奮膜は、例えば高濃度の塩溶液側からこの溶液を
加圧しかつこの溶液に電流を印加すること等により自励
的な発振をさせることは出来るが、発振の停止、発振の
進行、を光刺激により制御出来るものではなかった。即
ち、膜電位の制御を光刺激により行なえるものではなか
った。自励発振の制御を光刺激により行なえれば、人工
興奮膜によりバイオセンサ等が実現されたときの当該セ
ンサの制御を無接触で行なえる等の利点が得られ非常に
有用である。
(Problems to be Solved by the Invention) However, in the conventional artificial exciter membrane described with reference to FIG. 4, for example, the solution is pressurized from the high-concentration salt solution side and an electric current is applied to the solution. However, it was not possible to control the stop of oscillation and the progress of oscillation by optical stimulation. That is, the membrane potential could not be controlled by light stimulation. If the control of the self-excited oscillation can be performed by optical stimulation, there is an advantage that the sensor can be controlled without contact when the biosensor or the like is realized by the artificial exciter membrane, which is very useful.

この発明は、このような点に鑑みなされたものであ
り、従ってこの発明の目的は、人工興奮膜の膜電位の変
化に起因する発振の停止・開始を光により無接触で然も
可逆的に制御出来る光応答人工興奮膜を提供することに
ある。
The present invention has been made in view of the above points, and therefore, an object of the present invention is to reversibly stop and start oscillation caused by a change in membrane potential of an artificial exciter membrane by light without contact. It is to provide a controllable light-responsive artificial exciter membrane.

(課題を解決するための手段) この目的の達成を図るため、この発明の光応答人工興
奮膜によれば、その一方の面を高濃度塩溶液に接触さ
せ、その他方の面を低濃度塩溶液に接触させ、膜電位変
化を発生させる自励発振可能な人工興奮膜であって、微
小孔を有する支持体に下記式で示されるジオレイルホ
スフェートと下記式で示されるアゾベンゼンとの混合
物を吸着させてなり、自励発振の発振開始及び発振停止
が可視光及び紫外光により制御されるものであることを
特徴とする。
(Means for Solving the Problems) In order to achieve this object, according to the photoresponsive artificial exciter membrane of the present invention, one surface thereof is brought into contact with a high-concentration salt solution, and the other surface is brought into contact with a low-concentration salt solution. It is an artificial excitable membrane that can generate self-oscillation by bringing it into contact with a solution to change the membrane potential, and adsorbs a mixture of dioleyl phosphate represented by the following formula and azobenzene represented by the following formula on a support having micropores. It is characterized in that the oscillation start and oscillation stop of self-excited oscillation are controlled by visible light and ultraviolet light.

この発明の光応答人工興奮膜によれば、微小孔を有す
る支持体に、上記式で示されるジオレイルホスフェー
トと上記式で示されるアゾベンゼンとの混合物を吸着
させてあり、微小孔内にこの混合物が含浸された状態に
ある。ここで上記アゾベンゼンは可視光照射時と紫外光
照射時とで構造が立体的に変化するから、この構造変化
における一方の状態が、第4図を用いて説明した多層膜
化を阻害するようになる。このため、微小孔は油滴によ
りふさがれたままとなり微小孔の貫通が阻止される。こ
の結果人工興奮膜の膜電位変化が阻止され発振の停止が
可能になり、発振の制御が出来る。
According to the photoresponsive artificial exciter membrane of the present invention, a support having micropores is adsorbed with a mixture of dioleyl phosphate represented by the above formula and azobenzene represented by the above formula, and the mixture is contained in the micropores. Is in the impregnated state. Here, since the structure of azobenzene changes three-dimensionally between visible light irradiation and ultraviolet light irradiation, one of the states in this structural change may interfere with the formation of the multilayer film described with reference to FIG. Become. For this reason, the micropores remain blocked by the oil droplets, and penetration of the micropores is blocked. As a result, the change in the membrane potential of the artificial exciter membrane is blocked, oscillation can be stopped, and oscillation can be controlled.

このことについて、以下に詳述する。 This will be described in detail below.

アゾベンゼンは、紫外光(UV)と可視光(VIS)とを
選択的に照射することにより、下記式に示すように可
逆的にシス型−トランス型の幾何異性化反応を行なうこ
とが知られている(文献:ポリマー(Polymer)22(198
1)p.1511)。
Azobenzene is known to reversibly undergo a cis-trans geometric isomerization reaction as shown in the following formula by selectively irradiating ultraviolet light (UV) and visible light (VIS). (Reference: Polymer 22 (198
1) p.1511).

トランス型のアゾベンゼン分子は、横から見ると2つ
のベンゼン環平面が一平面上に位置する構造になり、シ
ス型のアゾベンゼン分子は2つのベンゼン環がV字状に
折れ曲がった嵩高い構造になる。
The trans-type azobenzene molecule has a structure in which two benzene ring planes are located on one plane when viewed from the side, and the cis-type azobenzene molecule has a bulky structure in which two benzene rings are bent in a V shape.

従って、アゾベンゼンとジオレイルホスフェートとの
混合物に対し紫外線を照射しアゾベンゼンをシス型にし
た場合、これが嵩高い構造であるので配列分子の間隔を
広げ、この結果ジオレイルホスフェートの多層膜構造を
不安定化するようになる。このため、微小孔の貫通が阻
止され人工興奮膜の発振の停止が可能になり、結果的に
発振の制御が出来る。
Therefore, when the mixture of azobenzene and dioleyl phosphate is irradiated with ultraviolet rays to make azobenzene into a cis type, since this is a bulky structure, the arrayed molecules are widened, and as a result, the multilayer structure of dioleyl phosphate becomes unstable. Will be transformed. Therefore, the penetration of the micropores is blocked, and the oscillation of the artificial exciter membrane can be stopped, and as a result, the oscillation can be controlled.

(実施例) 以下、図面を参照して、この発明の光応答人工興奮膜
の実施例につき説明する。なお、以下の説明では、この
発明が理解し得る程度に特定の条件を例示して説明する
が、この発明は、これら条件にのみ限定されるものでは
ないことを理解されたい。また、以下の実施例で用いた
薬品類の出所を一部省略する場合もあるが、いずれの薬
品も容易に入手出来るものでありかつ化学的に充分に純
粋なものを用いた。
(Examples) Examples of the photoresponsive artificial exciter membrane of the present invention will be described below with reference to the drawings. It should be noted that in the following description, specific conditions are illustrated and described to the extent that the present invention can be understood, but it should be understood that the present invention is not limited to these conditions. In addition, although the sources of the chemicals used in the following examples may be omitted in some cases, all of the chemicals that can be easily obtained and are chemically pure enough were used.

人工興奮膜の作製手順の説明 始めに、微小孔を有する支持体を孔径8μmの貫通孔
を多数有するセルロースエステル製の多孔質膜(ミリポ
アフィルター、ミリポア社製)とし、脂質類似物質を下
記の構造式で表されるジオレイルホスフェート(Diol
eyl Phosphate。以下、DOPHと略称することもある。)
とし、光により構造が立体的に変化する物質を上記式
で表されるアゾベンゼンとした例の実施例の光応答人工
興奮膜(以下、単に実施例の人工興奮膜と云う場合もあ
る。)の作製手順につき説明する。
Description of the procedure for producing an artificial exciter membrane First, a support having micropores is a porous membrane made of cellulose ester (Millipore filter, manufactured by Millipore) having a large number of through holes with a pore size of 8 μm, and a lipid-like substance having the following structure. Diol phosphate represented by the formula (Diol
eyl Phosphate. Hereinafter, it may be abbreviated as DOPH. )
Of the photoresponsive artificial exciter membrane of the example of the example in which the substance whose structure is three-dimensionally changed by light is azobenzene represented by the above formula (hereinafter sometimes simply referred to as the artificial exciter membrane of the example). The manufacturing procedure will be described.

DOPHは、この実施例の場合以下のように合成し精製し
たものを用いた。
DOPH used in this example was synthesized and purified as follows.

出発物質として、オレイルアルコール(関東化学
(株)製)とオキシ塩化リン(POCl3)(関東化学
(株)製)とを用い、これらを周知の合成手段によって
反応させた後、得られた合成物質を加水分解する。この
ようにして、前述の構造式に示すようなDOPHを得、こ
れをクロマト法により精製した。
Oleyl alcohol (manufactured by Kanto Chemical Co., Inc.) and phosphorus oxychloride (POCl 3 ) (manufactured by Kanto Chemical Co., Ltd.) were used as starting materials, and these were reacted by a well-known synthetic means. Hydrolyze the substance. In this way, DOPH as shown in the above structural formula was obtained and purified by the chromatographic method.

アゾベンゼンは、この実施例の場合東京化成工業製の
ものを再結晶法により精製したものを用いた。
In the case of this example, azobenzene used was that manufactured by Tokyo Kasei Kogyo that was purified by the recrystallization method.

次に、アゾベンゼンをDOPHの5重量%となるように秤
量し、然る後、これらDOPHとアゾベンゼンとを溶媒とし
てのベンゼンに溶かす。
Next, azobenzene is weighed so as to be 5% by weight of DOPH, and then these DOPH and azobenzene are dissolved in benzene as a solvent.

次に、この溶液中に上述のセルロース・エステル製の
多孔質膜を浸漬する。浸漬後この多孔質膜を取り出しベ
ンゼンを蒸発させ、DOPHとアゾベンゼンとの混合物を吸
着させた実施例の人工興奮膜を得る。なお、この実施例
の場合、混合物の吸着量が4(mg/cm2)となるようにし
た。
Next, the above-mentioned porous film made of cellulose ester is immersed in this solution. After the immersion, the porous membrane is taken out and benzene is evaporated to obtain the artificial excitable membrane of the example in which the mixture of DOPH and azobenzene is adsorbed. In this Example, the adsorbed amount of the mixture was set to 4 (mg / cm 2 ).

また、実施例との比較を行なうため、DOPHのみを用い
て多孔質膜に吸着させたことを除いては上述と同一の手
順で、従来技術に係る人工興奮膜(以下、比較例の人工
興奮膜と称する。)を4(mg/cm2)の吸着量で作製し
た。
Further, in order to make a comparison with the example, the artificial exciter membrane according to the prior art (hereinafter, the artificial exciter membrane of the comparative example is used) in the same procedure as described above except that only the DOPH is adsorbed on the porous membrane. (Referred to as a membrane) was prepared with an adsorption amount of 4 (mg / cm 2 ).

自励発振用装置の説明 次に、実施例及び比較例の人工興奮膜の自励発振を確
認するための装置(以下、自励発振用装置と云う。)の
説明を行なう。第2図は、この実施例で用いた自励発振
用装置の概略的な構成を示す説明図である。なお、同図
中、断面を示すハッチング等は一部省略する。
Description of Self-Excited Oscillation Device Next, a device for confirming self-excited oscillation of the artificial excitable membranes of Examples and Comparative Examples (hereinafter, referred to as a self-excited oscillation device) will be described. FIG. 2 is an explanatory diagram showing a schematic configuration of the self-oscillation device used in this embodiment. In the figure, some hatching and the like showing the cross section are omitted.

この第2図に示すように、実施例或いは比較例の人工
興奮膜(図中では代表して31で示す。)は、一方の面が
第一の電解槽33aに収容された100mMのKCl水溶液35aと接
し、他方の面が第二の電解槽33bに収容された5mMのKCl
水溶液35bと接した状態で支持される。
As shown in FIG. 2, the artificial exciter membrane of the example or comparative example (represented by 31 in the figure as a representative) has a 100 mM KCl aqueous solution having one surface accommodated in the first electrolytic cell 33a. 35a in contact with the other surface of the second electrolytic cell 33b in 5mM KCl
It is supported in contact with the aqueous solution 35b.

第一及び第二の電解槽33a,33bの周囲には図示せずも
恒温水を循環させる設備が設けてあり、槽内温度を任意
の値に制御出来る。この実施例の場合、KCl水溶液35a,3
5bの温度が20℃±1℃となるようにしている。また、第
二の電解槽33bの一部には人工興奮膜31に対し紫外光及
び可視光を照射するための光透過窓37cを設けてある。
A facility for circulating constant temperature water (not shown) is provided around the first and second electrolytic cells 33a, 33b, and the temperature in the vessel can be controlled to an arbitrary value. In this example, KCl aqueous solution 35a, 3
The temperature of 5b is set to 20 ℃ ± 1 ℃. Further, a light transmission window 37c for irradiating the artificial exciter film 31 with ultraviolet light and visible light is provided in a part of the second electrolytic cell 33b.

2種類のKCl水溶液35a及び35bには、銀−塩化銀(Ag
−AgCl)で構成される標準電極37a或いは37bを夫々浸漬
させてある。そして、高濃度側である100mMKCl水溶液35
a中に浸漬された標準電極37aを、直流電源39の陽極側に
接続し、低濃度側である5mMKCl水溶液35b中の標準電極3
7bを、上述した直流電源39の陰極側に接続させ人工興奮
膜に対し定電流を印加している。
The two KCl aqueous solutions 35a and 35b contain silver-silver chloride (Ag
A standard electrode 37a or 37b composed of -AgCl) is immersed. Then, the high-concentration 100 mM KCl aqueous solution 35
The standard electrode 37a immersed in a is connected to the anode side of the DC power supply 39, and the standard electrode 3 in the 5mM KCl aqueous solution 35b, which is the low concentration side,
7b is connected to the cathode side of the DC power supply 39 described above, and a constant current is applied to the artificial exciter membrane.

さらに、この自励発振装置は、人工膜31に加わる電位
差の時間変化を測定して記録するため、高インピーダン
ス電位計とX−Yレコーダーとからなる測定器41を具え
ている。そしてこの測定器41に接続する標準電極43a或
いは43bを、上述したKCl水溶液35aと35bとの夫々に浸漬
させてある。
Further, this self-excited oscillating device is equipped with a measuring instrument 41 consisting of a high impedance electrometer and an XY recorder for measuring and recording the time change of the potential difference applied to the artificial membrane 31. Then, the standard electrode 43a or 43b connected to the measuring instrument 41 is immersed in each of the above KCl aqueous solutions 35a and 35b.

さらにこの自励発振装置は、第一の電解槽33aに接続
されているマノメーター45を具え、このマノメータ45を
介してのみ、図中に矢印aを付して示す外的な圧力を、
人工膜31に対して加えることが可能な構成となってい
る。なお、この実施例では、上述したマノメーター45に
よって加えた圧力を印加圧力として説明する。
Further, this self-excited oscillating device comprises a manometer 45 connected to the first electrolytic cell 33a, and only through this manometer 45, the external pressure indicated by the arrow a in the figure,
It has a configuration that can be added to the artificial membrane 31. In this embodiment, the pressure applied by the manometer 45 described above will be described as the applied pressure.

上述した印加電流と印加圧力は、実施例及び比較例の
人工興奮膜の発振を生じさせるために必要な条件であ
り、ある値に設定されるものである。
The applied current and applied pressure described above are conditions necessary for causing oscillation of the artificial exciter membranes of the examples and comparative examples, and are set to certain values.

さらにこの自励発振用装置は、電解槽33a,33bを収納
する暗箱47と、光透過窓37cを通して人工興奮膜31に紫
外光及び可視光のいずれを選択的に照射するための光源
49を具える。光源49は、紫外光用光源としての理化学用
水銀ランプと、可視光用光源として波長450nm以下の光
を除去する色ガラスフィルタ及び波長700nm以上の光を
除去する多層フィルタを装備したハロゲンランプとを具
えている。
Furthermore, this self-excited oscillation device is a light source for selectively irradiating either the ultraviolet light or the visible light to the artificial exciter film 31 through the dark box 47 that houses the electrolytic cells 33a and 33b and the light transmission window 37c.
With 49. The light source 49 comprises a mercury lamp for physics and chemistry as a light source for ultraviolet light, and a halogen lamp equipped with a colored glass filter for removing light having a wavelength of 450 nm or less and a multilayer filter for removing light having a wavelength of 700 nm or more as a light source for visible light. It has.

自励発振の測定結果説明 次に、上述した自励発振用装置を用いて、実施例及び比
較例の人工興奮膜の自励発振の測定を以下に説明するよ
うに行なった。
Description of Self-Excited Oscillation Measurement Results Next, using the above-described self-excited oscillation device, self-excited oscillations of the artificial exciter membranes of Examples and Comparative Examples were measured as described below.

<発振条件の測定> 先ず、実施例及び比較例の人工興奮膜の自励発振条件
を測定した。この測定は、直流電源39を用い人工興奮膜
39に対し0.5(μA)の定電流を印加しながら印加圧力
aを徐々に増加させて行なった。ただし、実施例の人工
興奮膜に対しては、上記条件に加え、これに含まれるア
ゾベンゼンの90%以上がトランス型に異性化するように
可視光を照射した場合と、アゾベンゼンの90%以上がシ
ス型に異性化するように紫外光を照射した場合との2つ
の条件の下で測定した。なお、上記異性化を達成する光
照射条件は、各々予め決定してある。
<Measurement of Oscillation Conditions> First, the self-excited oscillation conditions of the artificial exciter membranes of Examples and Comparative Examples were measured. This measurement was performed using a DC power source 39 and an artificial exciter membrane.
The applied pressure a was gradually increased while applying a constant current of 0.5 (μA) to 39. However, for the artificial excitable membrane of the example, in addition to the above conditions, when 90% or more of the azobenzene contained therein was irradiated with visible light so as to isomerize into the trans form, and 90% or more of the azobenzene The measurement was performed under two conditions of irradiation with ultraviolet light so as to isomerize into cis type. The light irradiation conditions for achieving the above isomerization are determined in advance.

この測定結果によれば、比較例の人工興奮膜は、発振
開始印加圧力として18cmH2Oを必要とし、そのときの発
振周波数が0.57sec-1であることが分った。一方、実施
例の人工興奮膜は、可視光を照射した場合は発振が現わ
れ、発振開始印加圧力として16cmH2Oを必要とし、その
ときの発振周波数が0.60sec-1であることが分ったが、
紫外光を照射した場合は、膜電位の上昇は認められたも
のの電位はもとにもどらず発振が現われないことが分っ
た。
According to these measurement results, it was found that the artificial exciter membrane of the comparative example requires 18 cmH 2 O as the oscillation start applied pressure and the oscillation frequency at that time is 0.57 sec −1 . On the other hand, in the artificial exciter membrane of the example, oscillation was observed when visible light was irradiated, and 16 cmH 2 O was required as the oscillation start applied pressure, and it was found that the oscillation frequency at that time was 0.60 sec -1 . But,
It was found that when the film was irradiated with ultraviolet light, the membrane potential increased, but the potential did not return and oscillation did not appear.

第3図は、上述の発振条件の測定結果を説明するた
め、横軸に印加圧力をとり、縦軸に発振周波数をとり、
印加圧力と発振周波数との関係を示した図である。第3
図中、Iで示す曲線は実施例の人工興奮膜の可視光照射
後の特性、IIは比較例の人工興奮膜の特性である。曲線
I及びIIを比較すると、実施例の人工興奮膜で可視光照
射したもののほうが、比較例の人工興奮膜よりわずかに
発振し易いと云えるが、これは誤差範囲内と考えられ両
者は実質的に同一と考えて良いと思われる。
In FIG. 3, in order to explain the measurement results of the above-mentioned oscillation conditions, the applied pressure is plotted on the horizontal axis and the oscillation frequency is plotted on the vertical axis.
It is the figure which showed the relationship between the applied pressure and the oscillation frequency. Third
In the figure, the curve indicated by I is the characteristic of the artificial excitable membrane of the example after irradiation with visible light, and II is the characteristic of the artificial excitable membrane of the comparative example. Comparing the curves I and II, it can be said that the artificial exciter membrane of the example irradiated with visible light slightly oscillates more easily than the artificial exciter membrane of the comparative example, but this is considered to be within the error range, and both are substantially. It seems that they can be considered to be the same.

上述の実験結果からも明らかなように、DOPHにアゾベ
ンゼンを含有させても、アゾベンゼン分子がトランス型
になっている時は、アゾベンゼン分子はDOPHの多層膜構
造の安定性を低下させることがないと云える。しかし、
このアゾベンゼンがシス型になっている時は、これがDO
PHの多層膜構造を不安定なものとするため、DOPHは多層
膜構造を取らず油滴状態を取る。この理由は、多層膜構
造を取って配列しているDOPH分子間のシス型アゾベンゼ
ン分子はV字型の嵩高い構造を取るため配列している分
子の間隔を広げDOPHの多層膜構造を不安定化するためと
考えられる。
As is clear from the above experimental results, even if azobenzene is contained in DOPH, the azobenzene molecule does not decrease the stability of the DOPH multilayer structure when the azobenzene molecule is in the trans type. Can say But,
When this azobenzene is in cis form, this is DO
Because the PH multilayer structure is unstable, DOPH does not have a multilayer structure and is in an oil drop state. The reason for this is that the cis-type azobenzene molecules between the DOPH molecules arranged in a multilayer film structure have a V-shaped bulky structure, so the distance between the arranged molecules is widened and the DOPH multilayer film structure becomes unstable. It is thought to be to change.

<光応答性の確認> 次に、実施例及び比較例の人工興奮膜の発振が光によ
り制御されるものであるか否かにつき、以下に説明する
ような実験により調べた。
<Confirmation of Photoresponsiveness> Next, whether or not the oscillation of the artificial exciter membranes of Examples and Comparative Examples is controlled by light was examined by an experiment as described below.

先ず第2図を用いて説明した自励発振用装置に実施例
の人工興奮膜をセット後、この人工興奮膜に対し可視光
を照射した。次いで、自励発振用装置の印加圧力を20cm
H2Oとし、印加電流を0.5μAとした。この結果、実施例
の人工興奮膜は、油滴状態と多層膜状態とを繰り返し、
膜電位変化が周期的に現われ、自励発振した。次に、こ
の発振状態の実施例の人工興奮膜に対し、紫外光を照射
したところ、発振は停止し膜電位は高い状態で一定値と
なった。次に、紫外光照射により発振が停止した実施例
の人工興奮膜に対し、紫外光の照射停止後しばらくした
後今度は可視光を照射した。するとこの人工興奮膜は再
び自励発振した。実施例の人工興奮膜の上述の発振の光
応答性の様子を、縦軸に膜電位をとり、横軸に時間をと
り、第1図(A)に示した。
First, the artificial exciter membrane of the example was set in the self-excited oscillation device described with reference to FIG. 2, and then the artificial exciter membrane was irradiated with visible light. Next, the applied pressure of the device for self-excited oscillation is 20 cm.
H 2 O and applied current of 0.5 μA. As a result, the artificial exciter membrane of the embodiment repeats the oil drop state and the multilayer film state,
Membrane potential changes appeared periodically and self-excited oscillation. Next, when the artificial excitable membrane of this example in the oscillated state was irradiated with ultraviolet light, the oscillation stopped and the membrane potential became a constant value in a high state. Next, the artificial exciter membrane of the example in which the oscillation was stopped by the irradiation with ultraviolet light was irradiated with visible light after a while after the irradiation with ultraviolet light was stopped. Then, the artificial exciter membrane oscillated again. The photoresponsiveness of the above-mentioned oscillation of the artificial exciter membrane of the example is shown in FIG. 1 (A), where the vertical axis represents the membrane potential and the horizontal axis represents the time.

続いて、比較例の人工興奮膜についても、実施例の人
工興奮膜の場合と同様に、20cmH2Oの圧力及び0.5μAの
電流を印加することで自励発振させ、実施例の人工興奮
膜の場合と同様に紫外光及び可視光を順に照射した。し
かし、比較例の人工興奮膜の発振状態は、光照射によっ
てはなんら変わることがなかった。比較例の人工興奮膜
の上述の発振の光応答性の様子を、縦軸に膜電位をと
り、横軸に時間をとり、第1図(B)に示した。
Subsequently, also in the artificial exciter membrane of the comparative example, as in the case of the artificial exciter membrane of the example, self-excited oscillation was performed by applying a pressure of 20 cmH 2 O and a current of 0.5 μA, and the artificial exciter membrane of the example. The ultraviolet light and the visible light were sequentially irradiated in the same manner as in the above case. However, the oscillation state of the artificial exciter membrane of the comparative example was not changed by the light irradiation. The state of the optical response of the above-mentioned oscillation of the artificial exciter membrane of the comparative example is shown in FIG. 1 (B), in which the vertical axis represents the membrane potential and the horizontal axis represents the time.

このように、この発明に係る人工興奮膜は、これに対
し紫外光及び可視光を選択的に照射することにより、自
励発振の停止・開始の制御が出来ることが分った。
As described above, it was found that the artificial exciter membrane according to the present invention can control stop / start of self-excited oscillation by selectively irradiating the artificial exciter membrane with ultraviolet light and visible light.

以上がこの発明の実施例の説明である。しかしこの発
明は上述の実施例のみに限定されるものではなく以下に
説明するような種々の変更を加えることが可能である。
The above is the description of the embodiments of the present invention. However, the present invention is not limited to the above-described embodiments, and various modifications as described below can be added.

例えば、実施例中で述べたDOPHと、アゾベンゼンとの
混合比、また、DOPHと、アゾベンゼンとから成る混合物
の支持体への吸着量は、単なる例示にすぎない。これら
値は、自励発振及び光制御性を確保出来る範囲内で設計
に応じ種々に変更されるものであることは理解された
い。なお、上記吸着量の制御は、例えばDOPHとアゾベン
ゼンのベンゼンに溶解させる量を変えることで容易に行
なえる。
For example, the mixing ratio of DOPH and azobenzene described in the examples, and the adsorption amount of the mixture of DOPH and azobenzene on the support are merely examples. It should be understood that these values are variously changed according to the design within the range where the self-excited oscillation and the light controllability can be secured. The adsorption amount can be controlled easily by changing the amounts of DOPH and azobenzene dissolved in benzene.

また、実施例で用いた支持体も単なる例示にすぎず、
材質、微小孔の直径等は設計に応じ変更出来る。原理的
には、支持体は微小孔が1個であっても良いと云える。
また、例えばシリコン基板に微小孔を設けたような無機
材料の支持体でも良い。
Further, the support used in the examples is merely an example,
The material, the diameter of the micropores, etc. can be changed according to the design. In principle, it can be said that the support may have only one micropore.
Further, for example, a support made of an inorganic material such as a silicon substrate provided with micropores may be used.

また、上述の実施例では、効果の説明を容易とするた
め、特定の実験装置を例示して、種々の特性を測定した
場合につき説明した。しかしながら、この発明の人工興
奮膜の効果は、特定の装置によってのみ達成されるもの
ではないこと明らかである。
In addition, in the above-described embodiments, in order to facilitate the description of the effect, the case where various characteristics are measured was described by exemplifying a specific experimental apparatus. However, it is clear that the effect of the artificial exciter membrane of the present invention is not achieved only by a specific device.

(発明の効果) 上述した説明からも明らかなように、この発明の光応
答人工興奮膜は、塩濃度差のある溶液を当該光応答人工
興奮膜により仕切ると膜電位を生じ自励発振するという
従来の人工興奮膜の物性に加え、当該人工興奮膜に対し
外部から紫外光を照射すると自励発振が停止し、可視光
を照射すると自励発振が再開するという新たな物性を有
する。
(Effect of the invention) As is clear from the above description, the photoresponsive artificial exciter membrane of the present invention is said to generate a membrane potential and self-oscillate when a solution having a different salt concentration is partitioned by the photoresponsive artificial exciter membrane. In addition to the physical properties of the conventional artificial exciter film, the artificial exciter film has new physical properties that the self-excited oscillation is stopped when the artificial exciter film is externally irradiated with ultraviolet light, and the self-excited oscillation is restarted when the visible light is irradiated.

従って、この発明の光応答人工興奮膜を用い神経細胞
や五感センサ等を模倣した素子を構築した場合、当該素
子の制御を無接触で可逆的に行なえる等の利点が得られ
る。
Therefore, when a device imitating a nerve cell, a five-sense sensor or the like is constructed by using the photoresponsive artificial exciter membrane of the present invention, there is an advantage that the device can be reversibly controlled without contact.

【図面の簡単な説明】[Brief description of drawings]

第1図(A)及び(B)は、実施例及び比較例の人工興
奮膜の発振の光応答性の説明に供する図、 第2図は、自励発振を確認するために用いた装置の説明
に供する図、 第3図は、印加圧力と、発振周波数との関係を示す図、 第4図(A)及び(B)は、自励発振のメカニズムの説
明に供する図である。 11……支持体、11a……微小孔 13……低塩濃度の塩溶液、15……高塩濃度の塩溶液 17……油滴状態の脂質等、19……カチオン 21……多層膜状態の脂質等 31……比較例或いは実施例の人工興奮膜 33a……第一の電解槽、33b……第二の電解槽 35a……100mMのKCl水溶液 35b……5mMのKCl水溶液 37a,37b,43a,43b……標準電極 37c……光透過窓、39……直流電源 41……測定器、45……マノメーター a……外的な圧力、47……暗箱 49……光源。
1 (A) and 1 (B) are diagrams for explaining the photoresponsiveness of oscillation of the artificial exciter membranes of Examples and Comparative Examples, and FIG. 2 shows the device used to confirm self-sustained pulsation. FIG. 3 is a diagram for explanation, FIG. 3 is a diagram showing a relationship between an applied pressure and an oscillation frequency, and FIGS. 4 (A) and 4 (B) are diagrams for explaining a mechanism of self-excited oscillation. 11 ... Support, 11a ... Micropores 13 ... Salt solution with low salt concentration, 15 ... Salt solution with high salt concentration 17 ... Lipids in oil drop state, 19 ... Cation 21 ... Multilayer state Lipids, etc. 31 …… Artificial exciter membrane of Comparative Example or Example 33a …… First electrolytic cell, 33b …… Second electrolytic cell 35a …… 100mM KCl aqueous solution 35b …… 5mM KCl aqueous solution 37a, 37b, 43a, 43b …… Standard electrode 37c …… Light transmission window, 39 …… DC power supply 41 …… Measuring instrument, 45 …… Manometer a …… External pressure, 47 …… Dark box 49 …… Light source.

フロントページの続き (72)発明者 宮本 裕生 東京都港区虎ノ門1丁目7番12号 沖電 気工業株式会社内 (56)参考文献 特開 昭63−191929(JP,A) 特開 昭63−32364(JP,A)Front Page Continuation (72) Inventor Hiroo Miyamoto 1-7-12 Toranomon, Minato-ku, Tokyo Oki Electric Industry Co., Ltd. (56) References JP 63-191929 (JP, A) JP 63- 32364 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】その一方の面を高濃度塩溶液に接触させ、
その他方の面を低濃度塩溶液に接触させ、膜電位変化を
発生させる自励発振可能な人工興奮膜であって、 微小孔を有する支持体に下記式で示されるジオレイル
ホスフェートと下記式で示されるアゾベンゼンとの混
合物を吸着させてなり、自励発振の発振開始及び発振停
止が可視光及び紫外光により制御されるものであること を特徴とする光応答人工興奮膜。
1. A method of contacting one surface thereof with a high-concentration salt solution,
An artificial excitable membrane capable of self-oscillation in which the other surface is brought into contact with a low-concentration salt solution to generate a membrane potential change, and a dioleyl phosphate represented by the following formula on a support having micropores and the following formula An optically responsive artificial exciter film, characterized in that it adsorbs a mixture with the indicated azobenzene, and the start and stop of self-excited oscillation are controlled by visible light and ultraviolet light.
JP1154823A 1989-06-17 1989-06-17 Light-responsive artificial exciter membrane Expired - Fee Related JP2523181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1154823A JP2523181B2 (en) 1989-06-17 1989-06-17 Light-responsive artificial exciter membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1154823A JP2523181B2 (en) 1989-06-17 1989-06-17 Light-responsive artificial exciter membrane

Publications (2)

Publication Number Publication Date
JPH0320623A JPH0320623A (en) 1991-01-29
JP2523181B2 true JP2523181B2 (en) 1996-08-07

Family

ID=15592659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1154823A Expired - Fee Related JP2523181B2 (en) 1989-06-17 1989-06-17 Light-responsive artificial exciter membrane

Country Status (1)

Country Link
JP (1) JP2523181B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110586039B (en) * 2019-10-24 2020-11-10 福州大学 Biomass adsorbent capable of being regenerated by illumination, and preparation method and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079381B2 (en) * 1987-02-05 1995-02-01 株式会社東芝 Optical information conversion element

Also Published As

Publication number Publication date
JPH0320623A (en) 1991-01-29

Similar Documents

Publication Publication Date Title
Ottova-Leitmannova et al. Bilayer lipid membranes: An experimental system for biomolecular electronic devices development
Horn et al. Photocurrents generated by bacteriorhodopsin adsorbed on nano-black lipid membranes
Li et al. Scanning electrochemical microscopy (SECM) of photoinduced electron transfer kinetics at liquid/liquid interfaces
Musha et al. Physics of the living state: dynamics of information and fluctuation in biological systems
Krysinski et al. Membrane electrochemistry
Devlin et al. Interactions of synthetic polymers with cell membranes and model membrane systems. 11. Glucose-dependent disruption of phospholipid vesicle membranes
US6197387B1 (en) Method to prepare the production of structured metal coatings using proteins
JP2523181B2 (en) Light-responsive artificial exciter membrane
JP2763596B2 (en) Light-responsive artificial excitable membrane
JPH0320625A (en) Optical-response artificial exciting film
JP3364370B2 (en) Information conversion element
JP3194995B2 (en) Light-responsive excitable artificial membrane and method for producing the same
JPH0442585A (en) Photoresponsive excitable synthetic membrane and its manufacture
JP3194973B2 (en) Light-responsive excitable artificial membrane and manufacturing method thereof
JPH0320624A (en) Optical-response artificial exciting film
Korenbrot [8] The assembly of bacteriorhodopsin-containing planar membranes by the sequential transfer of air-water interface films
JP2566625B2 (en) Bio element
JPH05142035A (en) Photo-excitable artificial film and its manufacture
JPH03244171A (en) Bioelement
Baker et al. Lipid and salt effects on carbocyanine dye-induced photo-voltages in bilayer membranes
JP2883132B2 (en) Bio element
JPH0452527A (en) Bioelement
Gugeshashvili et al. Emulsion photobioelectrochemistry: bacteriorhodopsin phototransfer of protons through the water/lipid interface
JPH079381B2 (en) Optical information conversion element
JP2950549B2 (en) Bio element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees