JPH03242463A - Ignition control device of lean burning internal combustion engine - Google Patents

Ignition control device of lean burning internal combustion engine

Info

Publication number
JPH03242463A
JPH03242463A JP2034989A JP3498990A JPH03242463A JP H03242463 A JPH03242463 A JP H03242463A JP 2034989 A JP2034989 A JP 2034989A JP 3498990 A JP3498990 A JP 3498990A JP H03242463 A JPH03242463 A JP H03242463A
Authority
JP
Japan
Prior art keywords
throttle opening
air
fuel ratio
calculated
map
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2034989A
Other languages
Japanese (ja)
Other versions
JP3169593B2 (en
Inventor
Kiyoshi Yagi
八木 潔
Hirobumi Yamazaki
博文 山崎
Keisuke Tsukamoto
啓介 塚本
Toshio Takaoka
俊夫 高岡
Takao Fukuma
隆雄 福間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Toyota Motor Corp
Original Assignee
Denso Ten Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd, Toyota Motor Corp filed Critical Denso Ten Ltd
Priority to JP03498990A priority Critical patent/JP3169593B2/en
Priority to DE69104885T priority patent/DE69104885T2/en
Priority to EP91102107A priority patent/EP0451462B1/en
Publication of JPH03242463A publication Critical patent/JPH03242463A/en
Priority to US07/921,961 priority patent/US5190008A/en
Application granted granted Critical
Publication of JP3169593B2 publication Critical patent/JP3169593B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PURPOSE:To set ignition timing optimum in an advance timing side so as to always generate maximum torque by using an advance timing value, map- calculated from an engine speed and a throttle opening, to control ignition. CONSTITUTION:In this ignition system, air-fuel ratio of a mixture supplied to an internal combustion engine is controlled in a region leaner than theoretical air-fuel ratio by using a correction coefficient KAFTA map-calculated from a relation between an engine speed NE and a throttle opening TA. In this ignition system, ignition control is performed by using an advance timing value calculated from a relation between the engine speed NE and the throttle opening TA. Since the advance timing value of ignition timing is map-calculated with the throttle opening TA serving as a parameter in such a way as mentioned, maximum torque can be realized even in an accelerator high opening control region, where the air-fuel ratio is decreased in accordance with increase of the throttle opening TA, that is, in a relation where throttle opening TA > fixed value x deg.. This advance timing value is provided with a quality where the value is decreased according to increase of the throttle opening Ta accordingly decrease of the air-fuel ratio when the speed NE is fixed.

Description

【発明の詳細な説明】 〔概 要〕 燃費を改善する希薄燃焼式内燃機関の点火制御装置に関
し、 アクセル高開度時の空燃比補正に併せて点火進角を最適
化することを目的とし、 エンジン回転数とスロットル開度の関係からマツプ計算
される補正係数を用いて内燃機関に供給する混合気の空
燃比を理論空燃比より希薄な領域で制御する希薄燃焼式
内燃機関の点火制御装置において、回転数とスロットル
開度の関係からマツプ計算される進角値を用いて点火制
御するよう構成する。
[Detailed Description of the Invention] [Summary] Regarding an ignition control device for a lean-burn internal combustion engine that improves fuel efficiency, the present invention aims to optimize the ignition advance angle in conjunction with air-fuel ratio correction when the accelerator opening is high. In an ignition control device for a lean-burn internal combustion engine that controls the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine in a range leaner than the stoichiometric air-fuel ratio using a correction coefficient map calculated from the relationship between engine speed and throttle opening. , the ignition control is performed using an advance angle value that is map-calculated from the relationship between the rotational speed and the throttle opening.

〔産業上の利用分野〕[Industrial application field]

本発明は、燃費を改善する希薄燃焼式内燃機関の点火制
御装置に関する。
The present invention relates to an ignition control device for a lean burn internal combustion engine that improves fuel efficiency.

内燃機関(エンジン)で燃焼する混合気を理論空燃比よ
り希薄にする希薄燃焼(リーンバーン)システムは、燃
料の消費を節約しながら希望速度での走行を可能にする
Lean burn systems, which make the air-fuel mixture burnt by the internal combustion engine leaner than the stoichiometric air-fuel ratio, allow the vehicle to travel at the desired speed while saving fuel consumption.

点火制御は点火時期を上死点より進角側に最適設定する
ことで、最大トルク(MBT)を発生できるようにする
も、のである。
Ignition control optimally sets the ignition timing to the advanced side of top dead center to generate maximum torque (MBT).

〔従来の技術] 従来の希薄燃焼システムでは一般に、回転数NEと負圧
PMからマツプ計算される補正係数KAFを用いて空燃
比をリーン側へ補正する一方、同しパラメータで別途マ
ツプ計算される進角値を用いて点火制御をしている。(
特開昭60−237166号公報参照) ところがスロットル高開度時はPM変化がな(なるため
KAFではトルクがさほど増加しない。
[Prior art] In a conventional lean burn system, the air-fuel ratio is generally corrected toward the lean side using a correction coefficient KAF that is map-calculated from the rotational speed NE and negative pressure PM, while a map is calculated separately using the same parameters. Ignition control is performed using the advance angle value. (
(Refer to Japanese Patent Application Laid-open No. 60-237166.) However, when the throttle opening is high, there is no PM change (therefore, the torque does not increase much with KAF.

つまり、第5図のようにスロットル開度TAを全閉から
IDL(アイドル5W)ON−一定値X−VL(パワー
5W)ON=全開へと変化させた場合、TA<xoでは
負圧PMがTAGこ対応して変化するためトルクの変化
も追従するが、TA>Xoになると負圧PMがさほど変
化しなくなるためトルクの変化も望めない(負圧PMは
第2図参照)。この状態でドライバに加速意志があると
更にアクセルを踏み込むため、やがてVL(パワーSW
)がONになる。VL  ONになると強制的に燃料が
増量されるためトルクは増加するが、この変化が急激で
あるためショックが発生する。
In other words, when the throttle opening TA is changed from fully closed to IDL (idle 5W) ON - constant value X - VL (power 5W) ON = fully open as shown in Figure 5, when TA < xo, the negative pressure PM Since TAG changes correspondingly, the change in torque also follows, but when TA>Xo, the negative pressure PM does not change much, so no change in torque can be expected (see FIG. 2 for negative pressure PM). In this state, if the driver has the intention of accelerating, he will step on the accelerator further, and eventually the VL (power SW)
) turns ON. When VL is turned ON, the amount of fuel is forcibly increased, so the torque increases, but this change is so sudden that a shock occurs.

この点を改善するために本発明者等はスロットル開度T
Aと回転数NEからマツプ計算される空燃比補正係数K
APTAを別途提案した。
In order to improve this point, the present inventors have developed a throttle opening T
Air-fuel ratio correction coefficient K map calculated from A and rotation speed NE
APTA was proposed separately.

補正係数KAPTAはTAの増加に伴ない増加するので
、これを用いると第5図のようにTA>xでもトルクが
増加し、またVL ON時のショックも発生しない。
Since the correction coefficient KAPTA increases as TA increases, if it is used, the torque will increase even when TA>x as shown in FIG. 5, and no shock will occur when VL is turned on.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、NE、TAでマツプ計算されるKAFTAを
用いると第5図および第2図に示すようにTA>x’で
空燃比A/Fが減少し始めるため第3図のようにMBT
も変化する。しかし、TA>xでは第2図のようにPM
が変化しなくなるため、NE、PMでマツプ計算される
従来の進角値は一定値を保ち、その結果MBTを実現で
きなくなる。
By the way, when using KAFTA which is map-calculated with NE and TA, as shown in Fig. 5 and Fig. 2, the air-fuel ratio A/F starts to decrease when TA>x', so as shown in Fig. 3, MBT
also changes. However, when TA>x, PM
does not change, the conventional advance angle value calculated by map using NE and PM remains constant, and as a result, MBT cannot be realized.

本発明は、にAPTAと同しパラメータでマツプ計算さ
れる進角値ATAを導入することで、この点を改善しよ
うとするものである。
The present invention attempts to improve this point by introducing an advance angle value ATA which is map-calculated using the same parameters as APTA.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、エンジン回転数とスロットル開度の関係から
マツプ計算される補正係数を用いて内燃機関に供給する
混合気の空燃比を理論空燃比より希薄な領域で制御する
希薄燃焼式内燃機関の点火制御装置において、回転数と
スロットル開度の関係からマツプ計算される進角値を用
いて点火制御することを特徴とするものである。
The present invention provides a lean-burn internal combustion engine that controls the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine in a region leaner than the stoichiometric air-fuel ratio using a correction coefficient map calculated from the relationship between engine speed and throttle opening. The ignition control device is characterized in that ignition is controlled using an advance angle value that is map-calculated from the relationship between the rotational speed and the throttle opening.

〔作用) 本発明の進角値ATAはスロットル開度TAをパラメー
タとしてマツプ計算される。従って、空燃比がスロット
ル開度TAの増加に伴な°い減少するアクセル高開度制
御領域(TA>x”)でも、MBTを実現することがで
きる。このATAはNEを一定とすればTAの増加、従
って空燃比の減少に伴ない値を減少させる性質のもので
ある。
[Operation] The advance angle value ATA of the present invention is calculated using a map using the throttle opening degree TA as a parameter. Therefore, MBT can be achieved even in the high accelerator opening control region (TA >x'') where the air-fuel ratio decreases as the throttle opening TA increases. The value decreases as the air-fuel ratio increases and therefore the air-fuel ratio decreases.

〔実施例〕〔Example〕

第4図は電子式燃料噴射方式の希薄燃焼システムで、ス
ロットルバルブを通過した空気は吸気管を通してエンジ
ンに流入する。このときインジェクタ(INJ)から噴
出された燃料が霧化して流入空気中に混入し、所望空燃
比の混合気となる。
Figure 4 shows a lean burn system with electronic fuel injection, in which air passes through the throttle valve and flows into the engine through the intake pipe. At this time, the fuel injected from the injector (INJ) is atomized and mixed into the incoming air, forming an air-fuel mixture with a desired air-fuel ratio.

この混合気の空燃比は排気管内に設置されたり−ンセン
サ(リーンミクスチャセンサ)により検出される。
The air-fuel ratio of this air-fuel mixture is detected by a lean sensor (lean mixture sensor) installed in the exhaust pipe.

電子制御ユニット(ECU)はマイクロコンピュータを
使用し、水温センサから得られるエンジン冷却水温、圧
力センサから得られる吸気管内負圧PM、スロットルセ
ンサから得られるスロット開度TA、 E/G (エン
ジン)回転数NE、スタータ状態、車速等を入力として
噴射制御、点火制御、無負荷回転制御等を行う。
The electronic control unit (ECU) uses a microcomputer to control engine cooling water temperature obtained from a water temperature sensor, negative pressure PM in the intake pipe obtained from a pressure sensor, slot opening TA obtained from a throttle sensor, and E/G (engine) rotation. Injection control, ignition control, no-load rotation control, etc. are performed by inputting the number NE, starter status, vehicle speed, etc.

噴射制御はインジェクタ(INJ)の開弁時間の制御で
あり、また点火制御はイグナイタ、IG(イグニッショ
ン)コイル、ディストリビュータを通しての点火プラグ
(図示せず)の点火時期制御である。
Injection control is control of the valve opening time of an injector (INJ), and ignition control is control of the ignition timing of a spark plug (not shown) through an igniter, an IG (ignition) coil, and a distributor.

ここで本発明の詳細な説明する前にまず前述の本発明者
等により提案されたKAFTAを用いた制御について説
明する。第6図(a)(b)は2つの実施例を示すフロ
ー、チャートである。同図(a)は第1の実施例で、そ
のステップSlは回転数NEと負圧PMをパラメータと
して従来の補正係数KAFをマツプ計算する処理である
。これに対し、次のステップS2は回転数NBとスロッ
トル開度TAをバラメータとして補正係数KAPTAを
マツプ計算する処理である。このようにして2種類の補
正係数KAF、 KAFTAが計算されたらステップS
3で両者を比較し、ステップS4.S5で値の大きい方
を制御用のメモリKAFMに記憶する。
Before explaining the present invention in detail, control using KAFTA proposed by the above-mentioned inventors will be explained first. FIGS. 6(a) and 6(b) are flowcharts showing two embodiments. FIG. 5A shows a first embodiment, in which step Sl is a process of calculating a conventional correction coefficient KAF using the rotational speed NE and negative pressure PM as parameters. On the other hand, the next step S2 is a process of calculating a correction coefficient KAPTA using the rotational speed NB and throttle opening TA as parameters. After the two types of correction coefficients KAF and KAFTA are calculated in this way, step S
3, the two are compared, and step S4. In S5, the larger value is stored in the control memory KAFM.

以下にKAFとKAFTAのマツプ例を示す。但し、K
AFについてはフィードバック制御時の値である。
An example map of KAF and KAFTA is shown below. However, K
Regarding AF, the values are those during feedback control.

表1 (KAFのマツプ) 表2 (KAFTAのマツプ) 燃料噴射量の計算は下式による。Table 1 (KAF map) Table 2 (KAFTA map) The fuel injection amount is calculated using the formula below.

噴射量−基本噴射量* KAFM *他の補正係数上式
〇KAFMは第6図(a)の例ではKAFM=max 
(KAF、 KAFTA)であるが、同図(b)の第2
の実施例のように最初のステップS6でTA>x’とい
う判断をしてからステップSlまたはS2でKAF計算
かKAFTA計算の一方だけを行うようにしてもよい。
Injection amount - Basic injection amount * KAFM *Other correction coefficients The above formula 〇 KAFM is KAFM = max in the example of Fig. 6 (a)
(KAF, KAFTA), but the second
As in the embodiment, it is also possible to first determine that TA>x' in step S6, and then perform only one of the KAF calculation and KAFTA calculation in step Sl or S2.

ここで、両者の値の内、大きい方を用いる理由について
述べる。補正係数KAFに関しては、そのときのり−ン
限界付近に空燃比がなるように設定してあり、その空燃
比となるようにフィードバック制御を実行する。ところ
が、制御がオープンループとなったときには、そのよう
な空燃比で制御することが困難となるので、オープンル
ープ時の補正係数KAFはフィードバック時の値より大
きな値としである。それに対して、スロットル開度がX
°以上の領域では補正係数KAPTAによって設定され
る空燃比とリーン限界との間には余裕があるので、補正
係数KAPTAはフィードバック時とオープンループ時
とでは同し値となっている。
Here, the reason for using the larger of both values will be described. Regarding the correction coefficient KAF, it is set so that the air-fuel ratio at that time is near the line limit, and feedback control is executed so that the air-fuel ratio is maintained at that air-fuel ratio. However, when the control becomes open loop, it becomes difficult to control with such an air-fuel ratio, so the correction coefficient KAF during open loop is set to a larger value than the value during feedback. On the other hand, the throttle opening is
Since there is a margin between the air-fuel ratio set by the correction coefficient KAPTA and the lean limit in the range of .degree. or more, the correction coefficient KAPTA has the same value during feedback and open loop.

このように補正係数KAFは、運転状態によってさまざ
まに変化する。よって、スロットル開度がXoにおける
補正係数KAFと補正係数KAFTAとの大小関係も運
転状態によって変化するので、単に、スロットル開度が
Xoと威った時点で補正係数を切り換えるのでは空燃比
の段差が発生してドラビリが悪化する問題がある。それ
を防止するために、本実施例では上述のような構成をと
っている。この例では同図(a)のステップS3の代り
にステップS6を導入しているため、ステップSlの次
はステップS5を、またステップS2の次はステップS
4を実行して終了する。但し、オープンループ 第6図(a) (b)の改良例として、KAFとKAF
TA (7)切換えを安定させるために、一定のヒステ
リシスを持たせてもよい。尚、スロットル開度TAの一
定値X°は回転数NEによって異なるため、TA〈X″
′でKAFTA< K A Fとなるように設定してお
くとよい。
In this way, the correction coefficient KAF changes variously depending on the driving state. Therefore, the magnitude relationship between the correction coefficient KAF and the correction coefficient KAFTA when the throttle opening reaches Xo also changes depending on the driving condition, so simply switching the correction coefficient when the throttle opening reaches Xo will cause a difference in air-fuel ratio. There is a problem that occurs and the drivability worsens. In order to prevent this, this embodiment employs the above-mentioned configuration. In this example, step S6 is introduced in place of step S3 in FIG.
Execute step 4 and exit. However, as an improved example of open loop Fig. 6 (a) and (b), KAF and KAF
TA (7) A certain hysteresis may be provided to stabilize switching. In addition, since the constant value X° of the throttle opening TA varies depending on the rotation speed NE, TA〈X''
', it is recommended to set it so that KAFTA<KAF.

補正係数KAPTAは第7図のようにスロットル開度T
Aが増加するにつれ増大するので、第5図のトルク(K
AFTA)はTA>x’においても増加できる。しかも
、VL  ONの直前までに充分にトルクが上昇してい
るので、VL  ONとなってもショックは殆んど発生
しない。
The correction coefficient KAPTA is calculated based on the throttle opening T as shown in Fig. 7.
Since it increases as A increases, the torque (K
AFTA) can also be increased when TA>x'. Furthermore, since the torque has sufficiently increased just before VL ON, almost no shock occurs even when VL is turned ON.

TA>x’において空燃比(KAFTA)はスロットル
開度TAに反比例して減少し、理論空燃比(14、5)
に近づく。そして、VL  ONになると空燃比12.
5程度のリッチ状態になり、トルクの大きなパワーモー
ドになる。
When TA>x', the air-fuel ratio (KAFTA) decreases in inverse proportion to the throttle opening TA, and the stoichiometric air-fuel ratio (14, 5)
approach. Then, when VL is turned on, the air-fuel ratio is 12.
It becomes a rich state of about 5 and becomes a power mode with large torque.

第1図は本発明の実施例を示すフローチャートで、ステ
ップS1はアクセル高開度制御判定フラグXKの判定で
ある。このフラグXKは空燃比制御で補正係数KAPT
Aが使用されているときはl、そうでないとき(補正係
数KAFが使用されているとき)はOに設定されている
FIG. 1 is a flowchart showing an embodiment of the present invention, and step S1 is determination of the accelerator high opening control determination flag XK. This flag XK is a correction coefficient KAPT in air-fuel ratio control.
It is set to l when A is used, and to O otherwise (when correction coefficient KAF is used).

XK=1のときはステップS2でTA対応進角値ATA
をマツプ計算する。下表はATAマツプの一例で、NE
はrpra 、 TAはdeg 、 ATAは”CAで
ある。
When XK=1, the TA corresponding lead angle value ATA is set in step S2.
Calculate the map. The table below is an example of an ATA map.
is rpra, TA is deg, and ATA is “CA.”

表3 (ATAのマツプ) が大きいため、低地ではノックが発生してMBTがとれ
ない進角でも高地では実現可能であることに着目したも
ので、ATAPAはATAに加算する補正値である。こ
のATAPAは大気圧PAと回転数NEからマツプ計算
され、下表に示すようにPAが減少するにつれ大きくな
る。
Table 3 (ATA map) is large, so we focused on the fact that the advance angle that knocks occur at low altitudes and MBT cannot be obtained can be realized at high altitudes, and ATAPA is a correction value added to ATA. This ATAPA is map-calculated from the atmospheric pressure PA and the rotational speed NE, and increases as PA decreases as shown in the table below.

表4 (ATAPAのマツプ) 次のステップS3は大気圧補正値ATAPAのマツプ計
算である。大気圧補正は、高地(大気圧が低い)では低
地(大気圧が高い)に比ベノック余裕但し、PAが73
0mmHg以上になると高負荷時に僅かな進角でもノッ
クの恐れがあるので、この領域ではATAPA= Oに
する。このようにしてマツプ計算されたATAとATA
PAをステップS4で加算してその和をステップS5で
メモリにストアする。
Table 4 (Map of ATAPA) The next step S3 is map calculation of the atmospheric pressure correction value ATAPA. Atmospheric pressure correction has a slight margin at high altitudes (low atmospheric pressure) compared to low altitudes (high atmospheric pressure).However, PA is 73
If it exceeds 0mmHg, there is a risk of knocking even with a slight advance angle under high load, so set ATAPA=O in this region. ATA and ATA map calculated in this way
PA is added in step S4 and the sum is stored in memory in step S5.

一方、ステップS1でXK=Oと判定されたらステップ
S6で通常のPM対応進角値^BSEをマツプ計算する
。このABSEは負圧PMと回転数NEをパラメータと
する進角値であるから、空燃比の補正係数がKAFであ
るときはABSEをステップS5でメモリにストアして
使用する。
On the other hand, if it is determined in step S1 that XK=O, a normal PM corresponding lead angle value ^BSE is map-calculated in step S6. Since this ABSE is an advance angle value using negative pressure PM and rotational speed NE as parameters, when the air-fuel ratio correction coefficient is KAF, ABSE is stored in the memory and used in step S5.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、希薄燃焼システムの
空燃比がスロットル開度TAをパラメータとする補正係
数KAPTAで決定されているときは、点火進角値AT
Aもスロットル開度TAをパラメータとして算出するよ
うにしたので、常にMBTを実現できる利点がある。
As described above, according to the present invention, when the air-fuel ratio of the lean burn system is determined by the correction coefficient KAPTA using the throttle opening TA as a parameter, the ignition advance value AT
Since A is also calculated using the throttle opening TA as a parameter, there is an advantage that MBT can always be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例のフローチャート、第2図は空
燃比のスロットル開度依存特性図、第3図はMBTの空
燃比依存特性図、 第4図は希薄燃焼システムの構成国、 第5図は希薄燃焼の制御特性図、 第6図は本発明の実施例のフローチャート、第7図は本
発明の補正係数の特性図である。 出 願 人  トヨタ自動車株式会社
Fig. 1 is a flowchart of an embodiment of the present invention, Fig. 2 is a characteristic diagram of air-fuel ratio dependence on throttle opening, Fig. 3 is a characteristic diagram of air-fuel ratio dependence of MBT, Fig. 4 is a diagram showing constituent countries of the lean burn system, FIG. 5 is a control characteristic diagram of lean burn, FIG. 6 is a flowchart of an embodiment of the present invention, and FIG. 7 is a characteristic diagram of the correction coefficient of the present invention. Applicant Toyota Motor Corporation

Claims (1)

【特許請求の範囲】 1、エンジン回転数(NE)とスロットル開度(TA)
の関係からマップ計算される補正係数(KAFTA)を
用いて内燃機関に供給する混合気の空燃比を理論空燃比
より希薄な領域で制御する希薄燃焼式内燃機関の点火制
御装置において、 回転数(NE)とスロットル開度(TA)の関係からマ
ップ計算される進角値(ATA)を用いて点火制御する
ことを特徴とする希薄燃焼式内燃機関の点火制御装置。
[Claims] 1. Engine speed (NE) and throttle opening (TA)
In an ignition control system for a lean-burn internal combustion engine, which controls the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine in a region leaner than the stoichiometric air-fuel ratio using a correction coefficient (KAFTA) map-calculated from the relationship between rotation speed ( An ignition control device for a lean-burn internal combustion engine, characterized in that ignition control is performed using an advance angle value (ATA) that is map-calculated from the relationship between NE) and throttle opening (TA).
JP03498990A 1990-02-15 1990-02-15 Ignition control system for lean-burn internal combustion engine Expired - Lifetime JP3169593B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP03498990A JP3169593B2 (en) 1990-02-15 1990-02-15 Ignition control system for lean-burn internal combustion engine
DE69104885T DE69104885T2 (en) 1990-02-15 1991-02-14 Internal combustion engine with combustion of a lean mixture.
EP91102107A EP0451462B1 (en) 1990-02-15 1991-02-14 Lean burn internal combustion engine
US07/921,961 US5190008A (en) 1990-02-15 1992-08-04 Lean burn internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03498990A JP3169593B2 (en) 1990-02-15 1990-02-15 Ignition control system for lean-burn internal combustion engine

Publications (2)

Publication Number Publication Date
JPH03242463A true JPH03242463A (en) 1991-10-29
JP3169593B2 JP3169593B2 (en) 2001-05-28

Family

ID=12429554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03498990A Expired - Lifetime JP3169593B2 (en) 1990-02-15 1990-02-15 Ignition control system for lean-burn internal combustion engine

Country Status (1)

Country Link
JP (1) JP3169593B2 (en)

Also Published As

Publication number Publication date
JP3169593B2 (en) 2001-05-28

Similar Documents

Publication Publication Date Title
JP3211677B2 (en) Ignition timing control system for in-cylinder injection internal combustion engine
US6062189A (en) Spark ignition type in-cylinder injection internal combustion engine
US5979397A (en) Control apparatus for direct injection spark ignition type internal combustion engine
JPH1122505A (en) Control device for internal combustion engine
JP2005120942A (en) Control device for direct injection spark ignition type internal combustion engine
KR19980018213A (en) Control device of cylinder injection type spark ignition internal combustion engine
US6347612B1 (en) Control system for a direct injection engine of spark ignition type
US6843225B1 (en) Controller for control at engine startup
KR0137314B1 (en) Controlling apparatus of multi-cylinder internal combustion
JP3572783B2 (en) Engine exhaust purification device
JP3613894B2 (en) Idle rotational speed control device for internal combustion engine
JP3648864B2 (en) Lean combustion internal combustion engine
JP2822767B2 (en) Ignition timing control device for internal combustion engine
JP3491019B2 (en) Idle rotation learning control system for electronically controlled throttle internal combustion engine
JPH03242463A (en) Ignition control device of lean burning internal combustion engine
JPH03164538A (en) Compression ratio controller of internal combustion engine
JP2887350B2 (en) Fuel injection control device for lean-burn internal combustion engine
JPS62150040A (en) Fuel feed control device of internal-combustion engine
JPH05272383A (en) Air-fuel ratio control device for alcohol engine
JP3325975B2 (en) Engine control device
JPH11343915A (en) Idling engine rotational speed controller of engine
JPH1130177A (en) Control device for direct-injection spark-ignition type internal combustion engine
JP3564945B2 (en) Fuel supply control device for internal combustion engine
JP2887351B2 (en) Fuel injection control device for lean-burn internal combustion engine
JPH11241630A (en) Fuel injection control system for multiple cylinder internal combustion engine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 9

EXPY Cancellation because of completion of term