JP2887350B2 - Fuel injection control device for lean-burn internal combustion engine - Google Patents

Fuel injection control device for lean-burn internal combustion engine

Info

Publication number
JP2887350B2
JP2887350B2 JP3498790A JP3498790A JP2887350B2 JP 2887350 B2 JP2887350 B2 JP 2887350B2 JP 3498790 A JP3498790 A JP 3498790A JP 3498790 A JP3498790 A JP 3498790A JP 2887350 B2 JP2887350 B2 JP 2887350B2
Authority
JP
Japan
Prior art keywords
fuel injection
lean
internal combustion
combustion engine
correction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3498790A
Other languages
Japanese (ja)
Other versions
JPH03242442A (en
Inventor
潔 八木
博文 山崎
啓介 塚本
俊夫 高岡
隆雄 福間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Toyota Motor Corp
Original Assignee
Denso Ten Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd, Toyota Motor Corp filed Critical Denso Ten Ltd
Priority to JP3498790A priority Critical patent/JP2887350B2/en
Priority to EP91102107A priority patent/EP0451462B1/en
Priority to DE69104885T priority patent/DE69104885T2/en
Publication of JPH03242442A publication Critical patent/JPH03242442A/en
Priority to US07/921,961 priority patent/US5190008A/en
Application granted granted Critical
Publication of JP2887350B2 publication Critical patent/JP2887350B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 〔概要〕 燃費を改善する希薄燃焼式内燃機関の燃料噴射制御装
置に関し、 ドライバビリティの改善を目的とし、 内燃機関に供給する混合気の空燃比を理論空燃比より希
薄な領域で制御する希薄燃焼式内燃機関の燃料噴射制御
装置において、スロットル開度が所定値を越えた領域で
は、エンジン回転数とスロットル開度の関係からマップ
計算される補正係数を用いて燃料噴射量を補正するよう
構成する。
DETAILED DESCRIPTION OF THE INVENTION [Summary] The present invention relates to a fuel injection control device for a lean-burn internal combustion engine that improves fuel efficiency, with the aim of improving drivability, in which the air-fuel ratio of the mixture supplied to the internal combustion engine is leaner than the stoichiometric air-fuel ratio. In a fuel injection control device for a lean-burn internal combustion engine controlled in a specific region, in a region where the throttle opening exceeds a predetermined value, fuel injection is performed using a correction coefficient that is map-calculated from the relationship between the engine speed and the throttle opening. It is configured to correct the amount.

〔産業上の利用分野〕[Industrial applications]

本発明は、燃費を改善する希薄燃焼式内燃機関の燃料
噴射制御装置に関する。
The present invention relates to a fuel injection control device for a lean-burn internal combustion engine that improves fuel efficiency.

内燃機関(エンジン)で燃焼する混合気を理論空燃比
より希薄にする希薄燃焼(リーンバーン)システムは、
燃料の消費を節約しながら希望速度での走行を可能にす
る。燃料噴射制御装置は、基本噴射量に各種の補正係数
を乗じて実際の燃料噴射量を決定するが、希薄燃焼シス
テムでは空燃比を希薄にする補正係数を使用して燃料噴
射量を制御する。
Lean burn systems that make the air-fuel mixture burned in an internal combustion engine leaner than the stoichiometric air-fuel ratio
Enables driving at the desired speed while saving fuel consumption. The fuel injection control device determines the actual fuel injection amount by multiplying the basic injection amount by various correction coefficients. In a lean burn system, the fuel injection amount is controlled using a correction coefficient that makes the air-fuel ratio lean.

〔従来の技術〕[Conventional technology]

電子式の燃料噴射装置はインジェクタから噴射する燃
料の量を、間欠的な燃料噴射時間の長さで制御する。こ
のとき希薄燃焼システムでは排気管内に設置されたリー
ンセンサ(リーンミクスチャセンサ)を用いて空燃比を
リーン側で制御して燃費を改善する。(特開昭62-19994
3号公報参照) 〔発明が解決しようとする課題〕 従来の希薄燃焼システムの空燃比は、回転数NEと負圧
PMからマップ計算される補正係数KAFを用いて補正され
る。この補正係数KAFは基本噴射量(時間)への乗算項
とした場合、1.0(理論空燃比)以下の範囲内に設定さ
れている。そして、リーンセンサ出力(電流)がその時
のKAFより求まる目標リーンセンサ出力と一致するよう
にフィードバック制御用の補正係数FAFを調整して燃料
を増減する。
An electronic fuel injection device controls the amount of fuel injected from an injector by the length of an intermittent fuel injection time. At this time, in the lean combustion system, the air-fuel ratio is controlled on the lean side using a lean sensor (lean mixture sensor) installed in the exhaust pipe to improve fuel efficiency. (JP 62-19994
[Problem to be solved by the invention] The air-fuel ratio of the conventional lean burn system is determined by the rotational speed NE and the negative pressure.
The correction is performed using the correction coefficient KAF calculated from the PM. This correction coefficient KAF is set within a range of 1.0 (the stoichiometric air-fuel ratio) or less when a multiplication term is added to the basic injection amount (time). Then, the correction coefficient FAF for feedback control is adjusted so that the lean sensor output (current) matches the target lean sensor output obtained from the KAF at that time to increase or decrease the fuel.

ところで、第5図のようにスロットル開度TAを全閉か
らIDL(アイドルSW)ON→一定値x°→VL(パワーSW)O
N→全開へと変化させた場合、TA<x°では負圧PMがTA
に対応して変化するためトルクの変化も追従するが、TA
>x°になると負圧PMがさほど変化しなくなるためトル
クの変化も望めなくなる。この状態でドライバに加速意
志があると更にアクセルを踏み込むため、やがてVL(パ
ワーSW)がONになる、VL ONになると強制的に燃料が増
量されるためトルクは増加するが、この変化が急激であ
るためショックが発生する。
By the way, as shown in FIG. 5, the throttle opening TA is changed from fully closed to IDL (idle SW) ON → constant value x ° → VL (power SW) O
When changing from N to fully open, the negative pressure PM is TA
Changes in response to the
If> x °, the negative pressure PM does not change much, so that a change in torque cannot be expected. In this state, if the driver intends to accelerate, the accelerator is further depressed, and the VL (power SW) will be turned on soon. When VL is turned on, the fuel will be forcibly increased and the torque will increase. Therefore, a shock occurs.

この様なトルク変化の不規則性は、補正係数KAFのパ
ラメータに負圧PMを用いている点に起因する。つまり、
TA>x°ではPMがTAの変化(加速意志)を制御系に伝達
しなくなるからである。
Such irregularities in the torque change result from the fact that the negative pressure PM is used as a parameter of the correction coefficient KAF. That is,
This is because when TA> x °, the PM does not transmit a change in TA (acceleration will) to the control system.

本発明は、空燃比補正のパラメータにスロットル開度
TAを導入することで、希薄燃焼システムのドライバビリ
ティを改善しようとするものである。
The present invention uses the throttle opening degree as a parameter for air-fuel ratio correction.
The introduction of TA aims to improve the drivability of the lean burn system.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、内燃機関に供給する混合気の空燃比を理論
空燃比より希薄な領域で制御する希薄燃焼式内燃機関の
燃料噴射制御装置において、スロットル開度が所定値以
下の領域では、エンジン回転数と吸気管内負圧の関係か
らマップ計算される補正係数を用いて燃料噴射量を補正
し、スロットル開度が所定値を越えた領域では、エンジ
ン回転数とスロットル開度の関係からマップ計算される
補正係数を用いて燃料噴射量を補正することを特徴とす
るものであり、また前記燃料噴射制御装置において、エ
ンジン回転数と吸気管内負圧の関係からマップ計算され
る補正係数と、エンジン回転数とスロットル開度の関係
からマップ計算される補正係数とを比較し、補正係数の
大きい方を用いて燃料噴射量を補正することを特徴とす
るものである。
The present invention relates to a fuel injection control device for a lean-burn internal combustion engine that controls an air-fuel ratio of an air-fuel mixture supplied to an internal combustion engine in a region leaner than a stoichiometric air-fuel ratio. The fuel injection amount is corrected using a correction coefficient that is calculated from the relationship between the engine speed and the intake pipe negative pressure, and in the region where the throttle opening exceeds a predetermined value, a map is calculated from the relationship between the engine speed and the throttle opening. The fuel injection amount is corrected by using a correction coefficient, and the fuel injection control device includes: a correction coefficient that is map-calculated from a relationship between an engine speed and a negative pressure in an intake pipe; The correction coefficient is compared with a correction coefficient that is calculated from the relationship between the number and the throttle opening, and the fuel injection amount is corrected using the larger correction coefficient.

〔作用〕[Action]

第1図は本発明の補正係数KAFTAの特性図である。こ
の特性曲線はエンジン回転数NEをパラメータとして複数
本描かれるが、いずれも図示のようにスロットル開度TA
の増加につれて増加する特性を有する。このような特性
曲線を実験により複数本集めてマップ化しておくと、各
時点のNEとTAから最適なKAFTAを求めることができる。
FIG. 1 is a characteristic diagram of the correction coefficient KAFTA of the present invention. This characteristic curve is drawn with a plurality of parameters using the engine speed NE as a parameter.
Has the property of increasing with the increase of If a plurality of such characteristic curves are collected by experiment and mapped, an optimal KAFTA can be obtained from NE and TA at each time point.

このKAFTAを無条件で従来のKAFの代りに使用すること
もできるが、TA=x°を境にKAFとKAFTAを使い分ける
か、常にKAFとKAFTAを読み、そのうち値の大きい方を選
択して使用するようにしてもよい。いずれにしてもKAFT
Aを使用するとスロットル開度TAのほぼ全域で燃料噴射
量が補正されるためトルクの変化も滑らかになり、ドラ
イバビリティが改善される。
This KAFTA can be used unconditionally in place of the conventional KAF.However, use KAF and KAFTA separately at TA = x °, or always read KAF and KAFTA and select the larger one to use. You may make it. Either way, KAFT
When A is used, the fuel injection amount is corrected over almost the entire throttle opening TA, so that the change in torque becomes smooth and drivability is improved.

〔実施例〕〔Example〕

第4図は電子式燃料噴射方式の希薄燃焼システムで、
スロットルバルブを通過した空気は吸気管を通してエン
ジンに流入する。このときインジェクタ(INJ)から噴
出された燃料が霧化して流入空気中に混入し、所望空燃
比の混合気となる。この混合気の空燃比は排気管内に設
置されたリーンセンサ(リーンミクスチャセンサ)によ
り検出される。電子制御ユニット(ECU)はマイクロコ
ンピュータを使用し、水温センサから得られるエンジン
冷却水温、圧力センサから得られる吸気管内負圧PM、ス
ロットルセンサから得られるスロット開度TA、E/G(エ
ンジン)回転数NE、スタータ状態、車速等を入力として
噴射制御、点火制御、無負荷回転制御等を行う。噴射制
御はインジェクタ(INJ)の開弁時間の制御であり、ま
た点火制御はイグナイタ、lG(イグニッション)コイ
ル、ディストリビュータを通しての点火プラグ(図示せ
ず)の点火時期制御である。
FIG. 4 shows a lean burn system of an electronic fuel injection system.
The air that has passed through the throttle valve flows into the engine through the intake pipe. At this time, the fuel ejected from the injector (INJ) is atomized and mixed into the inflowing air to form a mixture having a desired air-fuel ratio. The air-fuel ratio of the air-fuel mixture is detected by a lean sensor (lean mixture sensor) installed in the exhaust pipe. The electronic control unit (ECU) uses a microcomputer, the engine cooling water temperature obtained from the water temperature sensor, the intake pipe negative pressure PM obtained from the pressure sensor, the slot opening TA obtained from the throttle sensor, and the E / G (engine) rotation. Injection control, ignition control, no-load rotation control, etc. are performed by inputting several NEs, starter status, vehicle speed, etc. The injection control is control of the valve opening time of the injector (INJ), and the ignition control is control of the ignition timing of a spark plug (not shown) through an igniter, an ignition coil (IG), and a distributor.

第2図(a)(b)は本発明の2つの実施例を示すフ
ローチャートである。同図(a)は第1の実施例で、そ
のステップS1は回転数NEと負圧PMをパラメータとして従
来の補正係数KAFをマップ計算する処理である。これに
対し、次のステップS2は回転数NEとスロットル開度TAを
パラメータとして本発明の補正係数KAFTAをマップ計算
する処理である。このようにして2種類の補正係数KAF,
KAFTAが計算されたらステップS3で両者を比較し、ステ
ップS4,S5で値の大きい方を制御用のメモリKAFMに記憶
する。
FIGS. 2A and 2B are flow charts showing two embodiments of the present invention. FIG. 7A shows a first embodiment, in which step S1 is a process for calculating a map of a conventional correction coefficient KAF using the rotational speed NE and the negative pressure PM as parameters. On the other hand, the next step S2 is a process of calculating a map of the correction coefficient KAFTA of the present invention using the rotation speed NE and the throttle opening TA as parameters. Thus, two kinds of correction coefficients KAF,
When KAFTA is calculated, the two are compared in step S3, and the larger value is stored in the control memory KAFM in steps S4 and S5.

以下にKAFとKAFTAのマップ例を示す。但し、KAFにつ
いてはフィードバック制御時の値である。
The following is an example of a map for KAF and KAFTA. However, KAF is a value at the time of feedback control.

燃料噴射量の計算は下式による。 The calculation of the fuel injection amount is based on the following equation.

噴射量=基本噴射量*KAFM*他の補正係数 上式のKAFMは第2図(a)の例では KAFM=max{KAF,KAFTA} であるが、同図(b)の第2の実施例のように最初のス
テップS6でTA>x°という判断をしてからステップS1ま
たはS2でKAF計算かKAFTA計算の一方だけを行うようにし
てもよい。ここで、両者の値の内、大きい方を用いる理
由について述べる。補正係数KAFに関しては、そのとき
のリーン限界付近に空燃比がなるように設定してあり、
その空燃比となるようにフィードバック制御を実行す
る。ところが、制御がオープンループとなったときに
は、そのような空燃比で制御することが困難となるの
で、オープンループ時の補正係数KAFはフィードバック
時の値より大きな値としてある。それに対して、スロッ
トル開度がx°以上の領域では補正係数KAFTAによって
設定される空燃比とリーン限界との間には余裕があるの
で、補正係数KAFTAはフィードバック時とオープンルー
プ時とでは同じ値となっている。
Injection amount = Basic injection amount * KAFM * Other correction coefficients KAFM in the above equation is KAFM = max {KAF, KAFTA} in the example of FIG. 2 (a), but the second embodiment of FIG. As described in the above, it is also possible to make only the KAF calculation or the KAFTA calculation in step S1 or S2 after judging that TA> x ° in the first step S6. Here, the reason for using the larger one of the two values will be described. The correction coefficient KAF is set so that the air-fuel ratio is near the lean limit at that time,
The feedback control is performed so that the air-fuel ratio is obtained. However, when the control is in an open loop, it is difficult to perform control with such an air-fuel ratio. Therefore, the correction coefficient KAF in the open loop is set to a value larger than the value in the feedback. On the other hand, in the region where the throttle opening is x ° or more, there is a margin between the air-fuel ratio set by the correction coefficient KAFTA and the lean limit, so the correction coefficient KAFTA has the same value in feedback and in open loop. It has become.

このように補正係数KAFは、運転状態によってさまざ
まに変化する。よって、スロットル開度がx°における
補正係数KAFと補正係数KAFTAとの大小関係も運転状態に
よって変化するので、単に、スロットル開度がX°と成
った時点で補正係数を切り換えるのでは空燃比の段差が
発生してドラビリが悪化する問題がある。それを防止す
るために、本実施例では上述のような構成をとってい
る。この例では同図(a)のステップS3の代りにステッ
プS6を導入しているため、ステップS1の次はステップS5
を、またステップS2の次はステップS4を実行して終了す
る。但し、オープンループ時はKAFはKAF+αになる。
Thus, the correction coefficient KAF changes variously depending on the operation state. Therefore, since the magnitude relationship between the correction coefficient KAF and the correction coefficient KAFTA at the throttle opening of x ° also changes depending on the operating state, simply switching the correction coefficient when the throttle opening reaches X ° does not mean that the air-fuel ratio is high. There is a problem that a step occurs and drivability deteriorates. In order to prevent this, the present embodiment has the above-described configuration. In this example, step S6 is introduced instead of step S3 in FIG.
After step S2, step S4 is executed and the processing ends. However, at the time of open loop, KAF becomes KAF + α.

第2図(a)(b)の改良例として、KAFとKAFTAの切
換えを安定させるために、一定のヒステリシスを持たせ
てもよい。尚、スロットル開度TAの一定値x°は回転数
NEによって異なるため、TA<x°でKAFTA<KAFとなるよ
うに設定しておくとよい。
As an improvement of FIGS. 2 (a) and 2 (b), a constant hysteresis may be provided to stabilize the switching between KAF and KAFTA. The constant value x ° of the throttle opening TA is the number of rotations.
Since it differs depending on the NE, it is preferable to set KAFTA <KAF so that TA <x °.

第3図は空燃比とトルクの特性図で、(KAFTA)は補
正係数KAFTAを用いた本発明の特性曲線、(KAF)は補正
係数KAFを用いた従来の特性曲線である。
FIG. 3 is a characteristic diagram of the air-fuel ratio and the torque, wherein (KAFTA) is a characteristic curve of the present invention using the correction coefficient KAFTA, and (KAF) is a conventional characteristic curve using the correction coefficient KAF.

本発明の補正係数KAFTAは第1図のようにスロットル
開度TAが増加するにつれ増大するので、第3図のトルク
(KAFTA)はTA>x°においても増加できる。しかも、V
L ONの直前までに充分にトルクが上昇しているので、VL
ONとなってもショックは殆んど発生しない。
Since the correction coefficient KAFTA of the present invention increases as the throttle opening TA increases as shown in FIG. 1, the torque (KAFTA) in FIG. 3 can be increased even when TA> x °. And V
Since the torque has risen enough just before L ON, VL
There is almost no shock even when turned ON.

TA>x°において空燃比(KAFTA)はスロットル開度T
Aに反比例して減少し、理論空燃比(14.5)に近づく、
そして、VL ONになると空燃比12.5程度のリッチ状態に
なり、トルクの大きなパワーモードになる。
When TA> x °, the air-fuel ratio (KAFTA) is the throttle opening T
Decreases in inverse proportion to A and approaches the stoichiometric air-fuel ratio (14.5),
Then, when VL is turned on, the air-fuel ratio becomes a rich state of about 12.5, and the power mode becomes a large torque mode.

〔発明の効果〕〔The invention's effect〕

以上述べたように本発明によれば、希薄燃焼システム
でもスロットル開度に応じてトルクを変化させることが
でき、またパワーモードへの移行時のショックも軽減で
きるので、全体としてドライバビリティを改善できる利
点がある。
As described above, according to the present invention, the torque can be changed according to the throttle opening even in the lean burn system, and the shock at the time of shifting to the power mode can be reduced, so that the drivability can be improved as a whole. There are advantages.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の補正係数の特性図、 第2図は本発明の実施例を示すフローチャート、 第3図は本発明の動作特性図、 第4図は希薄燃焼システムの構成図、 第5図は従来の動作特性図である。 FIG. 1 is a characteristic diagram of a correction coefficient of the present invention, FIG. 2 is a flowchart showing an embodiment of the present invention, FIG. 3 is an operational characteristic diagram of the present invention, FIG. The figure is a conventional operating characteristic diagram.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 塚本 啓介 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (72)発明者 高岡 俊夫 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (72)発明者 福間 隆雄 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (56)参考文献 特開 昭61−167134(JP,A) 特開 昭58−59328(JP,A) 特開 平3−944(JP,A) (58)調査した分野(Int.Cl.6,DB名) F02D 41/04 330 F02D 41/14 310 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Keisuke Tsukamoto 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (72) Inventor Toshio Takaoka 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation ( 72) Inventor Takao Fukuma 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (56) References JP-A-61-167134 (JP, A) JP-A-58-59328 (JP, A) 3-944 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) F02D 41/04 330 F02D 41/14 310

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】内燃機関に供給する混合気の空燃比を理論
空燃比より希薄な領域で制御する希薄燃焼式内燃機関の
燃料噴射制御装置において、 スロットル開度(TA)が所定値(x°)以下の領域で
は、エンジン回転数(NE)と吸気管内負圧(PM)の関係
からマップ計算される補正係数(KAF)を用いて燃料噴
射量を補正し、スロットル開度(TA)が所定値(x°)
を越えた領域では、エンジン回転数(NE)とスロットル
開度(TA)の関係からマップ計算される補正係数(KAFT
A)を用いて燃料噴射量を補正することを特徴とする希
薄燃焼式内燃機関の燃料噴射制御装置。
In a fuel injection control apparatus for a lean-burn internal combustion engine for controlling an air-fuel ratio of an air-fuel mixture supplied to an internal combustion engine in a region leaner than a stoichiometric air-fuel ratio, a throttle opening (TA) is set to a predetermined value (x °). ) In the following areas, the fuel injection amount is corrected using a correction coefficient (KAF) that is calculated from the relationship between the engine speed (NE) and the intake pipe negative pressure (PM), and the throttle opening (TA) is fixed. Value (x °)
In the region beyond the range, the correction coefficient (KAFT) calculated from the relationship between the engine speed (NE) and the throttle opening (TA) is calculated.
A fuel injection control device for a lean-burn internal combustion engine, wherein the fuel injection amount is corrected using A).
【請求項2】内燃機関に供給する混合気の空燃比を理論
空燃比より希薄な領域で制御する希薄燃焼式内燃機関の
燃料噴射制御装置において、 エンジン回転数(NE)と吸気管内負圧(PM)の関係から
マップ計算される補正係数(KAF)と、エンジン回転数
(NE)とスロットル開度(TA)の関係からマップ計算さ
れる補正係数(KAFTA)とを比較し、補正係数の大きい
方を用いて燃料噴射量を補正することを特徴とする希薄
燃焼式内燃機関の燃料噴射制御装置。
2. A fuel injection control apparatus for a lean-burn internal combustion engine for controlling an air-fuel ratio of an air-fuel mixture supplied to an internal combustion engine in a region leaner than a stoichiometric air-fuel ratio. PM) is compared with the correction coefficient (KAF) that is calculated from the relationship between the engine speed (NE) and the throttle opening (TA). A fuel injection control device for a lean-burn internal combustion engine, wherein the fuel injection amount is corrected by using a fuel injection control method.
【請求項3】エンジン回転数(NE)と吸気管内負圧(P
M)の関係からマップ計算される補正係数(KAF)と、エ
ンジン回転数(NE)とスロットル開度(TA)の関係から
マップ計算される補正係数(KAFTA)との切換に一定の
ヒステリシスを持たせたことを特徴とする請求項1、2
に記載の希薄燃焼式内燃機関の燃料噴射制御装置。
3. An engine speed (NE) and a negative pressure (P) in an intake pipe.
There is a certain hysteresis in switching between the correction coefficient (KAF) calculated from the relationship of M) and the correction factor (KAFTA) mapped from the relationship between the engine speed (NE) and the throttle opening (TA). 3. The method according to claim 1, wherein
A fuel injection control device for a lean-burn internal combustion engine according to claim 1.
【請求項4】スロットル開度(TA)が所定値(x°)以
下の領域では、エンジン回転数(NE)とスロットル開度
(TA)の関係からマップ計算される補正係数(KAFTA)
を、エンジン回転数(NE)と吸気管内負圧(PM)の関係
からマップ計算される補正係数(KAF)よりも小さく設
定しておくことを特徴とする請求項1、2に記載の希薄
燃焼式内燃機関の燃料噴射制御装置。
4. In a region where the throttle opening (TA) is equal to or less than a predetermined value (x °), a correction coefficient (KAFTA) that is map-calculated from the relationship between the engine speed (NE) and the throttle opening (TA).
The lean combustion is set to be smaller than a correction coefficient (KAF) that is map-calculated from the relationship between the engine speed (NE) and the intake pipe negative pressure (PM). A fuel injection control device for an internal combustion engine.
JP3498790A 1990-02-15 1990-02-15 Fuel injection control device for lean-burn internal combustion engine Expired - Lifetime JP2887350B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3498790A JP2887350B2 (en) 1990-02-15 1990-02-15 Fuel injection control device for lean-burn internal combustion engine
EP91102107A EP0451462B1 (en) 1990-02-15 1991-02-14 Lean burn internal combustion engine
DE69104885T DE69104885T2 (en) 1990-02-15 1991-02-14 Internal combustion engine with combustion of a lean mixture.
US07/921,961 US5190008A (en) 1990-02-15 1992-08-04 Lean burn internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3498790A JP2887350B2 (en) 1990-02-15 1990-02-15 Fuel injection control device for lean-burn internal combustion engine

Publications (2)

Publication Number Publication Date
JPH03242442A JPH03242442A (en) 1991-10-29
JP2887350B2 true JP2887350B2 (en) 1999-04-26

Family

ID=12429494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3498790A Expired - Lifetime JP2887350B2 (en) 1990-02-15 1990-02-15 Fuel injection control device for lean-burn internal combustion engine

Country Status (1)

Country Link
JP (1) JP2887350B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2867778B2 (en) * 1992-02-14 1999-03-10 トヨタ自動車株式会社 Air-fuel ratio control device for internal combustion engine
JP3945082B2 (en) 1999-08-24 2007-07-18 信越化学工業株式会社 Liquid silicone rubber composition for coating and airbag fabric

Also Published As

Publication number Publication date
JPH03242442A (en) 1991-10-29

Similar Documents

Publication Publication Date Title
US5979397A (en) Control apparatus for direct injection spark ignition type internal combustion engine
JPH03271544A (en) Control device of internal combustion engine
CN109630296B (en) Control device and control method for internal combustion engine
US6321714B1 (en) Hybrid operating mode for DISI engines
JP2887350B2 (en) Fuel injection control device for lean-burn internal combustion engine
US4662339A (en) Air-fuel ratio control for internal combustion engine
JP3491019B2 (en) Idle rotation learning control system for electronically controlled throttle internal combustion engine
JP4075080B2 (en) Control device for automobile and control method thereof
JP2590823B2 (en) Air-fuel ratio control device for internal combustion engine
JP3169593B2 (en) Ignition control system for lean-burn internal combustion engine
JPS6299652A (en) Automatic combustion controller for internal-combustion engine
JP3680528B2 (en) Engine idle rotation learning control device
EP0893592B1 (en) Engine fuel injection controller
JP2887351B2 (en) Fuel injection control device for lean-burn internal combustion engine
JP3612785B2 (en) Control device for internal combustion engine
JP2600824B2 (en) Air-fuel ratio control device for internal combustion engine
JP2712153B2 (en) Load detection device for internal combustion engine
JPH0615827B2 (en) Air-fuel ratio controller for internal combustion engine
JP2000097080A (en) Control device of engine
JP3170046B2 (en) Air-fuel ratio learning method for internal combustion engine
JP3591133B2 (en) Engine speed control device
JPH06610Y2 (en) Air-fuel ratio controller for internal combustion engine
JP2561248B2 (en) Fuel cut control device for internal combustion engine
JP3013541B2 (en) Air-fuel ratio control device for internal combustion engine
JP2586413B2 (en) Air-fuel ratio control device for internal combustion engine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080219

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090219

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090219

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100219

Year of fee payment: 11

EXPY Cancellation because of completion of term