JPH03242378A - Production of raw material for sintered body of cubic boron nitride - Google Patents

Production of raw material for sintered body of cubic boron nitride

Info

Publication number
JPH03242378A
JPH03242378A JP2037154A JP3715490A JPH03242378A JP H03242378 A JPH03242378 A JP H03242378A JP 2037154 A JP2037154 A JP 2037154A JP 3715490 A JP3715490 A JP 3715490A JP H03242378 A JPH03242378 A JP H03242378A
Authority
JP
Japan
Prior art keywords
boron nitride
powder
sintered body
raw material
alkaline earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2037154A
Other languages
Japanese (ja)
Other versions
JP2938500B2 (en
Inventor
Taku Kawasaki
卓 川崎
Hiroaki Tanji
丹治 宏彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Japan Science and Technology Agency
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Research Development Corp of Japan
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material, Research Development Corp of Japan, Denki Kagaku Kogyo KK filed Critical National Institute for Research in Inorganic Material
Priority to JP2037154A priority Critical patent/JP2938500B2/en
Publication of JPH03242378A publication Critical patent/JPH03242378A/en
Application granted granted Critical
Publication of JP2938500B2 publication Critical patent/JP2938500B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a raw material for a sintered body of cubic boron nitride having high purity and high thermal conductivity in a high yield by bringing a thermally decomposed BN molding into contact with mixed powder comprising powder hexagonal BN and powder of alkaline earth metal (boride) nitride in a specific ratio and heating in a nonoxidizing atmosphere. CONSTITUTION:(A) A thermally decomposed boron nitride molding or sintered material of hexagonal boron nitride is brought into contact with (B) mixed powder comprising 0.5-5wt.% powder of hexagonal boron nitride and 99.5-50wt.% powder of alkaline earth metal (boride). Then the blend is heated in a nonoxidizing atmosphere to give a raw material for a sintered body of cubic boron nitride wherein an alkaline earth metal boron nitride is dispersed and impregnated into the component A. The raw material is successively treated at high temperature under extra-high pressure so that high-quality sintered body of cubic boron nitride can be produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はヒートシンクおよび切削工具に適した立方晶窒
化ほう素(cBN)焼結体を合成するための原料の製造
方法、特に出発物質の熱分解窒化ほう素(P−BN)成
型体もしくは六方晶窒化ほう素(hBN)焼結体に、c
BN転換触媒であるアルカリ土類金属ほう窒化物を拡散
含浸させた原料を効率よく製造する方法に関するもので
ある。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for producing raw materials for synthesizing cubic boron nitride (cBN) sintered bodies suitable for heat sinks and cutting tools, and in particular to A decomposed boron nitride (P-BN) molded body or hexagonal boron nitride (hBN) sintered body is
The present invention relates to a method for efficiently producing a raw material diffused and impregnated with an alkaline earth metal bonitride, which is a BN conversion catalyst.

〔従来の技術〕[Conventional technology]

cBNはダイヤモンドに次ぐ硬さおよび熱伝導率を有す
る材料で、特にその高純度焼結体は切削工具および半導
体素子用ヒートシンクとしての応用が期待されている。
cBN is a material with hardness and thermal conductivity second only to diamond, and its high-purity sintered bodies are particularly expected to be used as cutting tools and heat sinks for semiconductor devices.

高純度cBN焼結体を製造する方法としては、P−BN
成型体(特開昭62−108772号公報、特開昭63
〜260865号公報)あるいはhBN焼結体(特公昭
60−287132号公報)の表面にそれぞれ、cBN
転換触媒であるアルカリ土類金属ほう窒化物などを拡散
含浸させ、これらを立方晶窒化ほう素の熱力学的安定条
件下に高温高圧で焼結する方法が知られている。これら
の方法によって、cBN粒子が互に直接結合した高純度
焼結体が製造可能であり、特に前者のP−BN成型体を
出発物質とする方法では高熱伝導率の焼結体が得られる
As a method for producing a high-purity cBN sintered body, P-BN
Molded body (JP-A-62-108772, JP-A-63
~260865) or hBN sintered body (Japanese Patent Publication No. 60-287132).
A method is known in which a conversion catalyst such as an alkaline earth metal bonitride is diffused and impregnated, and these are sintered at high temperature and pressure under thermodynamically stable conditions of cubic boron nitride. By these methods, it is possible to produce a high-purity sintered body in which cBN particles are directly bonded to each other, and in particular, the former method using a P-BN molded body as a starting material yields a sintered body with high thermal conductivity.

アルカリ土類金属ほう窒化物を拡散含浸させる方法とし
ては、 1.  P−BN成型体あるいはhBN焼結体に、アル
カリ土類金属窒化物及び/又はほう窒化物の粉末を接触
させて、非酸化性雰囲気中で反応拡散させる方法(固相
法)、 2、  hBN焼結体を窒化ほう素るつぼに入れ、アル
カリ土類金属窒化物及び/又はほう窒化物の粉末と非接
触状態とし、窒素ガス中で気相拡散させる方法(気相法
)、 等が知られているが、拡散条件を簡便に制御できる上述
の方法1(固相法)が−船釣である。
As a method for diffusion impregnation with alkaline earth metal bonitride, 1. A method of bringing a P-BN molded body or hBN sintered body into contact with alkaline earth metal nitride and/or boron nitride powder and reacting and diffusing it in a non-oxidizing atmosphere (solid phase method), 2. hBN There are known methods such as placing the sintered body in a boron nitride crucible, keeping it in a non-contact state with powder of alkaline earth metal nitride and/or boron nitride, and performing vapor phase diffusion in nitrogen gas (vapor phase method). However, the above-mentioned method 1 (solid phase method) that allows easy control of diffusion conditions is - boat fishing.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記の固相法によりアルカリ土類金属ほう窒化
物を拡散含浸させたcBN焼結体用原料を製造する場合
には、拡散含浸のための熱処理と同時に、P−BN成型
体もしくはhBN焼結体と接触させたアルカリ土類金属
窒化物及び/又はほう窒化物の粉末の焼結も同時に進行
し、P−BN成型体もしくはhBN焼結体の表面に形成
されたアルカリ土類金属ほう窒化物N(触媒層)と、周
囲のアルカリ土類金属窒化物及び/又はほう窒化物の粉
末とが固着する現象がしばしば発生する。このため、触
媒を拡散含浸させたP−BN成型体もしくはhBN焼結
体(cBN焼結体用原料)を回収する際に、その表面の
触媒層が周囲の焼結したアルカリ土類金属窒化物及び/
又はほう窒化物に付着して、cBN焼結体用原料の表面
から脱落することが多く、歩留りを低下させる大きな原
因となっていた。
However, when producing a raw material for a cBN sintered body diffused and impregnated with an alkaline earth metal bonitride by the above-mentioned solid-phase method, at the same time as the heat treatment for diffusion impregnation, the P-BN molded body or the hBN sintered body is Sintering of the alkaline earth metal nitride and/or bonitride powder that has been brought into contact with the body also proceeds at the same time, and the alkaline earth metal bonitride formed on the surface of the P-BN molded body or the hBN sintered body is sintered. A phenomenon in which the substance N (catalyst layer) and the surrounding alkaline earth metal nitride and/or boronitride powder stick together often occurs. For this reason, when recovering a P-BN molded body or hBN sintered body (raw material for cBN sintered body) that has been diffused and impregnated with a catalyst, the catalyst layer on the surface of the body is removed from the surrounding sintered alkaline earth metal nitride. as well as/
Otherwise, it often adheres to boronitride and falls off from the surface of the raw material for cBN sintered body, which is a major cause of lowering the yield.

良質のcBN焼結体を得るためには、P−BN成型体も
しくはhBN焼結体に触媒層が均一に形成されている原
料が望まれるが、そのためには接触させるアルカリ土類
金属窒化物及び/又はほう窒化物の粉末の粒度が細かい
方が好ましい。しかし粒度の細かい粉末は焼結・付着も
起こし易い。このため、触媒層が均一に形成されている
良質のcBN焼結体用原料の合成と、高い歩留りでの該
原料の製造とを両立させることが困難であった。
In order to obtain a high-quality cBN sintered body, it is desirable to use a P-BN molded body or hBN sintered body with a raw material in which a catalyst layer is uniformly formed. It is preferable that the grain size of the boronitride powder is fine. However, fine-grained powder tends to cause sintering and adhesion. For this reason, it has been difficult to simultaneously synthesize a raw material for a high-quality cBN sintered body in which a catalyst layer is uniformly formed and manufacture the raw material at a high yield.

本発明の目的は、従来の固相法におけるこのような問題
を解決し、cBN焼結体用原料を高い歩留りで製造する
ことにある。すなわち、本発明の目的は、従来の固相法
で起きていた、拡散含浸のための熱処理時に、焼結した
アルカリ土類金属窒化物及び/又はほう窒化物の粉末が
、P−BN成型体もしくはhBN焼結体の表面に生成し
た触媒層に固着し、原料回収時に触媒層を脱落させると
いう問題を解消し、cBN焼結体用原料を工業的に高歩
留りで製造する方法を提供することにある。
An object of the present invention is to solve these problems in the conventional solid-phase method and to produce raw materials for cBN sintered bodies at a high yield. That is, an object of the present invention is to prevent sintered alkaline earth metal nitride and/or boron nitride powder from forming a P-BN molded body during heat treatment for diffusion impregnation, which occurs in the conventional solid phase method. Or, to provide a method for industrially producing a raw material for a cBN sintered body at a high yield by solving the problem of adhesion to a catalyst layer formed on the surface of an hBN sintered body and causing the catalyst layer to fall off when recovering the raw material. It is in.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、固相法によりP−BN成型体もしくはh
BN焼結体に、アルカリ土類金属ほう窒化物を拡散含浸
させる際に、P−BN成型体もしくはhBN焼結体に接
触させるアルカリ土類金属窒化物及び/又はほう窒化物
の粉末にhBN粉末を混合すると、拡散含浸のための熱
処理時にアルカリ土類金属窒化物及び/又はほう窒化物
の粉末の焼結が抑止され、P−BN成型体もしくはhB
N焼結体の表面の触媒層との固着が起きないことを見い
だし、本発明に至ったものである。
The present inventors have developed a P-BN molded body or h
When diffusing and impregnating alkaline earth metal bonitride into the BN sintered body, hBN powder is added to the alkaline earth metal nitride and/or boronitride powder that is brought into contact with the P-BN molded body or the hBN sintered body. When mixed, sintering of alkaline earth metal nitride and/or boronitride powder during heat treatment for diffusion impregnation is suppressed, and P-BN molded body or hB
It was discovered that the surface of the N sintered body does not adhere to the catalyst layer, leading to the present invention.

すなわち、本発明は、cBN焼結体用原料の製造方法に
関するもので、熱分解窒化ほう素成型体もしくは六方晶
窒化ほう素焼結体に、アルカリ土類金属ほう窒化物を拡
散含浸させた立方晶窒化ほう素焼結体用原料を製造する
にあたり、熱分解窒化ほう素成型体もしくは立方晶窒化
ほう素焼結体を、0.5〜50重量%の六方晶窒化ほう
素粉末と、99.5〜50重量%のアルカリ土類金属窒
化物及び/又はほう窒化物の粉末とからなる混合粉末に
接触させて、非酸化性雰囲気中で加熱することを特徴と
するものである。
That is, the present invention relates to a method for producing a raw material for a cBN sintered body, in which a cubic boron nitride molded body or a hexagonal boron nitride sintered body is diffused and impregnated with an alkaline earth metal boron nitride. In producing a raw material for a boron nitride sintered body, a pyrolytic boron nitride molded body or a cubic boron nitride sintered body is mixed with 0.5 to 50% by weight of hexagonal boron nitride powder and 99.5 to 50% by weight of hexagonal boron nitride powder. It is characterized in that it is brought into contact with a mixed powder consisting of powder of an alkaline earth metal nitride and/or boron nitride in an amount of % by weight, and heated in a non-oxidizing atmosphere.

拡散含浸処理に用いる粉末中のhBN粉末の含有量は、
0.5〜50重量%が好ましい。0.5%以下ではhB
N粉末の添加効果が現れず、拡散含浸処理時の粉末の焼
結が抑止されないので、cBN焼結体用原料の製造歩留
りが低下する。また50%を越えると、P−BN成型体
もしくはhBN焼結体に接触するアルカリ土類金属窒化
物及び/又はほう窒化物の濃度が低下するために、P−
BN成型体もしくはhBN焼結体中へのほう窒化物の拡
散速度が遅く、触媒の拡散含浸に長時間を要するので実
用的でない。なお、粉末の粒度ば均一な拡散含浸を達成
するために500μm以下が好ましく、300μm以下
が一層好ましい。
The content of hBN powder in the powder used for diffusion impregnation treatment is
0.5 to 50% by weight is preferred. hB below 0.5%
Since the effect of adding N powder is not exhibited and sintering of the powder during the diffusion impregnation treatment is not suppressed, the production yield of the raw material for the cBN sintered body is reduced. Moreover, if it exceeds 50%, the concentration of alkaline earth metal nitrides and/or boronitrides in contact with the P-BN molded body or hBN sintered body decreases.
The rate of diffusion of boronitride into the BN molded body or the hBN sintered body is slow, and it takes a long time to diffuse and impregnate the catalyst, so it is not practical. The particle size of the powder is preferably 500 μm or less, more preferably 300 μm or less in order to achieve uniform diffusion and impregnation.

ここで使用するhBN粉末は、酸素含有量が1%以下の
高純度粉末であるのが好ましく、また粒度は100μm
以下の粉末がアルカリ土類金属窒化物及び/又はほう窒
化物の粉末の焼結を抑止する上で好ましい。
The hBN powder used here is preferably a high purity powder with an oxygen content of 1% or less, and a particle size of 100 μm.
The following powders are preferred in terms of suppressing sintering of alkaline earth metal nitride and/or boronitride powders.

アルカリ土類金属とは周期律表のIla属、即ちBe、
 Mg、 Ca、 Sr、 Ba、 Raであるが、こ
のうち本発明方法では取扱の容易なMg、 Ca、 S
r、 Baの窒化物及び/又はほう窒化物を通常用いる
。窒化物はそれぞれ、Mg3Nz 、Ca3Nz 、5
rJz (あるいは5r2N+SrN ) 、BaJz
が一般的であるが、この他にも金属対窒素の化学量論比
が、2:1.11:8.3:4.1:6などの化合物の
存在が知られており、これらのいずれによっても、本発
明の目的を達成することができる。これらの窒化物は通
常、各金属を窒素と高温で反応させることにより製造す
ることができる。反応速度が適度に速くしかも窒化反応
の熱暴走が起きにくい工業的に好ましい窒化反応温度・
時間条件の例は、Mg、 Ca、 Sr、 Baの場合
には、それぞれ700〜800°C1850〜950°
C1500〜600°C1450〜550 ’Cの温度
において5〜10時間の加熱である。なお、Mgおよび
Caの場合には、前記の温度において金属が溶融するの
で、それぞれ600°C,750°C前後で4時間程度
の加熱によりあらかじめ金属表面を予備窒化してお(の
が好ましい。ほう窒化物はMe38N+もしくはMe、
B、N4(Meはアルカリ土類金属を示す)で表わされ
、前記の各窒化物と窒化ほう素とを所定量づつ混合して
、窒素中で加熱することにより製造することができる。
Alkaline earth metals are members of the Ila genus of the periodic table, namely Be,
Mg, Ca, Sr, Ba, and Ra, among which Mg, Ca, and S are easy to handle in the method of the present invention.
nitrides and/or boronitrides of Ba are commonly used. The nitrides are Mg3Nz, Ca3Nz, and 5, respectively.
rJz (or 5r2N+SrN), BaJz
However, it is known that there are other compounds with a metal to nitrogen stoichiometric ratio of 2:1.11:8.3:4.1:6, and none of these The object of the present invention can also be achieved. These nitrides can usually be produced by reacting each metal with nitrogen at high temperatures. Industrially preferable nitriding reaction temperature where the reaction rate is moderately fast and thermal runaway of the nitriding reaction is less likely to occur.
Examples of time conditions are 700 to 800°C and 1850 to 950° for Mg, Ca, Sr, and Ba, respectively.
Heating at a temperature of 1500-600'C and 1450-550'C for 5-10 hours. In the case of Mg and Ca, since the metals melt at the above-mentioned temperatures, it is preferable to pre-nitridize the metal surfaces by heating at around 600° C. and 750° C. for about 4 hours, respectively. Boronitride is Me38N+ or Me,
B, N4 (Me represents an alkaline earth metal), and can be produced by mixing predetermined amounts of each of the above nitrides and boron nitride and heating the mixture in nitrogen.

その条件は、Mg、 Ca、 Sr、 Baの場合には
、それぞれ1100〜1300°C1650〜850 
”C1500〜800°C1700〜1000°Cの温
度において155時間程である。
The conditions are 1100-1300°C 1650-850°C for Mg, Ca, Sr, and Ba, respectively.
155 hours at a temperature of 1500-800°C and 1700-1000°C.

この粉末に接触させるP−BN成型体もしくはhBN焼
結体は、cBN焼結体を得るためには高純度のものであ
ることが必要である。CVD法により気体から直接製造
されるP−BN成型体は非常に高純度であるので特に好
ましく、特別の前処理無しに用いることができる。一方
、hBN焼結体はhBN粉末に酸化物助剤を添加して焼
結したものであるが、酸素がcBNへの転換を阻害する
ので、これを用いる場合には、特公昭60−28782
号公報などに示されているように、予め高温処理により
酸素を除去しておくことが必要である。
The P-BN molded body or hBN sintered body that is brought into contact with this powder needs to be of high purity in order to obtain a cBN sintered body. P-BN molded bodies produced directly from gas by the CVD method are particularly preferred because they have very high purity and can be used without special pretreatment. On the other hand, the hBN sintered body is made by adding an oxide aid to hBN powder and sintering it, but since oxygen inhibits the conversion to cBN, when using this, it is necessary to use the
As shown in the above publication, it is necessary to remove oxygen in advance by high-temperature treatment.

P−BN成型体もしくはhBN焼結体にアルカリ土類金
属窒化物及び/又はほう窒化物の粉末を接触させる方法
としては、粉末中にP−BN成型体もしくはhBN焼結
体を軽く埋め込むのが一般的である。
A method of bringing the alkaline earth metal nitride and/or boronitride powder into contact with the P-BN molded body or hBN sintered body is to lightly embed the P-BN molded body or hBN sintered body in the powder. Common.

拡散含浸のための熱処理は通常1100〜1300°C
の温度で行なわれるので、P−BN成型体、hBN焼結
体、アルカリ土類金属窒化物及び/又はほう窒化物の酸
化を防ぐために、窒素、希ガスなどのような非酸化性雰
囲気中で加熱する必要がある。
Heat treatment for diffusion impregnation is usually 1100-1300°C
The process is carried out at a temperature of Needs to be heated.

本発明方法によって製造された原料は、引続き高温超高
圧処理することによりcBN焼結体に転換されるが、そ
の条件としては1300″C以上で4万気圧以上のcB
Nの熱力学的安定域が選ばれ、またこのような高温高圧
を発生する装置としては、ベルト型、ガードル型などの
装置が一般的である。
The raw material produced by the method of the present invention is subsequently converted into a cBN sintered body by high-temperature and ultra-high pressure treatment.
The thermodynamic stability range of N is selected, and belt-type, girdle-type, and other devices are commonly used to generate such high temperature and pressure.

(実施例〕 次に、本発明を実施例および比較例についてさらに詳細
に説明する。
(Examples) Next, the present invention will be described in more detail with reference to Examples and Comparative Examples.

1〜9および   1〜3 密度2.16g/cm’の熱分解窒化ほう素(電気化学
工業■製、商品名「デンカP−BNJ )の板から、厚
さ1mmX直径7閣の円板を超音波加工機により打ち抜
いた。この円板を各50枚づつ、表1に示すアルカリ土
類金属窒化物もしくはほう窒化物の粉末とhBN粉末(
電気化学工業■製、グレードGP、粒度325メツシユ
以下)との混合粉末中に埋め、窒素雰囲気中で1200
″Cにおいて20時間保持して、アルカリ土類金属ほう
窒化物触媒をP−BN円板表面に拡散含浸させ、含浸後
のアルカリ土類金属窒化物もしくはほう窒化物の粉末と
hBN粉末との混合粉末の状態、触媒含浸量、触媒層の
脱落なく回収できた含浸済みP−BN円板の割合(良品
率)を調べた。結果を表1に示す。なお、アルカリ土類
金属ほう窒化物がP−BN円板に含浸されたことは、そ
れぞれX線回折法により確認した。また触媒含浸量は熱
処理前後のP−BN円板の重量変化から求めた。
1 to 9 and 1 to 3 From a plate of pyrolytic boron nitride (manufactured by Denki Kagaku Kogyo ■, trade name ``Denka P-BNJ'') with a density of 2.16 g/cm', a disk with a thickness of 1 mm and a diameter of 7 mm was made. The disks were punched out using a sonic processing machine. Fifty disks each were mixed with alkaline earth metal nitride or boronitride powder and hBN powder (shown in Table 1).
(manufactured by Denki Kagaku Kogyo ■, grade GP, particle size 325 mesh or less) and buried in a mixed powder of
"C" for 20 hours to diffuse and impregnate the alkaline earth metal bonitride catalyst onto the P-BN disk surface, and mix the alkaline earth metal nitride or bonitride powder and hBN powder after impregnation. The state of the powder, the amount of catalyst impregnated, and the percentage of impregnated P-BN disks that could be recovered without falling off of the catalyst layer (good product rate) were investigated.The results are shown in Table 1.It should be noted that alkaline earth metal bonitride It was confirmed by X-ray diffraction that the P-BN disks were impregnated with each catalyst.The amount of catalyst impregnated was determined from the change in weight of the P-BN disks before and after heat treatment.

10〜14および   4〜6 密度1.9g/cm3のhBN焼結(電気化学工業■製
、グレードN−1)を窒素雰囲気中で2100°Cの温
度で2時間処理した。処理後の酸素含存量は0.1重量
%以下であった。この板から、厚さ1mmX直径7mm
の円板を超音波加工機により打ち抜いた。
10-14 and 4-6 Sintered hBN (manufactured by Denki Kagaku Kogyo ■, grade N-1) having a density of 1.9 g/cm3 was treated at a temperature of 2100° C. for 2 hours in a nitrogen atmosphere. The oxygen content after treatment was 0.1% by weight or less. From this board, thickness 1mm x diameter 7mm
A disk was punched out using an ultrasonic processing machine.

この円板を各50枚づつ、表2に示すMg3Nz粉末と
hBN粉末(電気化学工業■製、グレードGP、粒度3
25メソシユ以下)との混合粉末中に埋め、窒素雰囲気
中で1160°Cにおいて8時間保持して、マグネシウ
ムほう窒化物(Mg3BJ)触媒をP−BN円板表面に
拡散含浸させ、含浸後のMgJz粉末とhBN粉末との
混合粉末の状態、触媒含浸量、触媒層の脱落なく回収で
きた含浸済みhBN焼結体の割合(良品率)を調べた。
Fifty disks each were prepared using Mg3Nz powder and hBN powder (manufactured by Denki Kagaku Kogyo ■, grade GP, particle size 3) shown in Table 2.
The P-BN disc surface was diffused and impregnated with a magnesium boronitride (Mg3BJ) catalyst by burying it in a mixed powder with a P-BN disk (less than 25 mesosinus) and holding it at 1160 °C for 8 hours in a nitrogen atmosphere. The state of the mixed powder of powder and hBN powder, the amount of catalyst impregnated, and the percentage of impregnated hBN sintered bodies that were recovered without falling off of the catalyst layer (good product rate) were investigated.

結果を表2に示す。なお、マグネシウムほう窒化物が含
浸されたことは、それぞれX線回折法により確認した。
The results are shown in Table 2. In addition, impregnation with magnesium bonitride was confirmed by X-ray diffraction.

また触媒含浸量は熱処理前後のhBN焼結体円板の重量
変化から求めた。
Further, the amount of catalyst impregnated was determined from the change in weight of the hBN sintered disk before and after heat treatment.

〔発明の効果] 本発明によれば、高純度かつ高熱伝導率の立方晶窒化ほ
う素焼結体用原料を高い歩留りで製造する事ができる。
[Effects of the Invention] According to the present invention, a raw material for a cubic boron nitride sintered body having high purity and high thermal conductivity can be manufactured at a high yield.

Claims (1)

【特許請求の範囲】[Claims] 1.熱分解窒化ほう素成型体もしくは六方晶窒化ほう素
焼結体に、アルカリ土類金属ほう窒化物を拡散含浸させ
た立方晶窒化ほう素焼結体用原料を製造するにあたり、 熱分解窒化ほう素成型体もしくは六方晶窒 化ほう素焼結体を、0.5〜50重量%の六方晶窒化ほ
う素粉末と99.5〜50重量%のアルカリ土類金属窒
化物及び/又はほう窒化物の粉末とからなる混合粉末に
接触させて、非酸化性雰囲気中で加熱することを特徴と
する立方晶窒化ほう素焼結体用原料の製造方法。
1. In producing a raw material for a cubic boron nitride sintered body, which is a pyrolytic boron nitride molded body or a hexagonal boron nitride sintered body diffused and impregnated with an alkaline earth metal boron nitride, a pyrolyzed boron nitride molded body is used. Or a hexagonal boron nitride sintered body consisting of 0.5 to 50% by weight of hexagonal boron nitride powder and 99.5 to 50% by weight of alkaline earth metal nitride and/or boron nitride powder. A method for producing a raw material for a cubic boron nitride sintered body, which comprises bringing the raw material into contact with a mixed powder and heating it in a non-oxidizing atmosphere.
JP2037154A 1990-02-20 1990-02-20 Method for producing raw material for cubic boron nitride sintered body Expired - Fee Related JP2938500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2037154A JP2938500B2 (en) 1990-02-20 1990-02-20 Method for producing raw material for cubic boron nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2037154A JP2938500B2 (en) 1990-02-20 1990-02-20 Method for producing raw material for cubic boron nitride sintered body

Publications (2)

Publication Number Publication Date
JPH03242378A true JPH03242378A (en) 1991-10-29
JP2938500B2 JP2938500B2 (en) 1999-08-23

Family

ID=12489686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2037154A Expired - Fee Related JP2938500B2 (en) 1990-02-20 1990-02-20 Method for producing raw material for cubic boron nitride sintered body

Country Status (1)

Country Link
JP (1) JP2938500B2 (en)

Also Published As

Publication number Publication date
JP2938500B2 (en) 1999-08-23

Similar Documents

Publication Publication Date Title
US5942455A (en) Synthesis of 312 phases and composites thereof
JP2907315B2 (en) Production of polycrystalline cubic boron nitride
KR0134958B1 (en) Method for preparing a self support having controlled pores and graded properties
WO1997018162A9 (en) Synthesis of 312 phases and composites thereof
JPH11246271A (en) Cubic boron nitride sintered body and its production
JPH0472792B2 (en)
JPS6256104B2 (en)
JPS62274034A (en) Manufacture of polycrystalline diamond sintered compact by reaction sintering
JPH03242378A (en) Production of raw material for sintered body of cubic boron nitride
JP2799426B2 (en) Method for producing boron nitride composite
JPH0510282B2 (en)
JPH04500497A (en) Improving thermal conductivity of aluminum nitride through pre-densification treatment
JPH0345561A (en) Sintered material of cubic boron nitride and production thereof
JPH08509691A (en) Silicon carbide object and manufacturing method thereof
JPH0438685B2 (en)
JP2721525B2 (en) Cubic boron nitride sintered body and method for producing the same
JP2628668B2 (en) Cubic boron nitride sintered body
JPS59217608A (en) Method for synthesizing cubic boron nitride
JPS5891060A (en) Manufacture of silicon carbide sintered body
JPH07121835B2 (en) Cubic boron nitride coating
JPH0455144B2 (en)
JP2774386B2 (en) Method for producing cubic boron nitride sintered body
JPS5915112B2 (en) Method for manufacturing high-density silicon carbide sintered body
JP3452741B2 (en) Method for producing aluminum nitride based composite material
JPH024550B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees