JPH03242293A - Anaerobic bacteria immobilizing gel and production thereof - Google Patents

Anaerobic bacteria immobilizing gel and production thereof

Info

Publication number
JPH03242293A
JPH03242293A JP2040707A JP4070790A JPH03242293A JP H03242293 A JPH03242293 A JP H03242293A JP 2040707 A JP2040707 A JP 2040707A JP 4070790 A JP4070790 A JP 4070790A JP H03242293 A JPH03242293 A JP H03242293A
Authority
JP
Japan
Prior art keywords
gel
anaerobic bacteria
sodium
dissolved oxygen
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2040707A
Other languages
Japanese (ja)
Inventor
Hiroaki Fujii
弘明 藤井
Toshihiro Hamada
敏裕 浜田
Masaki Okazaki
正樹 岡崎
Tamemaru Ezaki
江嵜 為丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2040707A priority Critical patent/JPH03242293A/en
Publication of JPH03242293A publication Critical patent/JPH03242293A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Treatment Of Sludge (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To stably fix anaerobic bacteria while maintaining activity by removing the dissolved oxygen in a gel base material or lowering an oxidation reduction potential. CONSTITUTION:Reducing agents, such as sodium thioglycolate, potassium thioglycolate, cysteine-hydrochloate, sodium sulfide, potassium sulfide, ascorbic acid, sodium sulfite, and sodium hydrogensilfite are charged into the gel base material to stably fix the anaerobic bacteria while holding the same or the reducing agents are charged into a solidifying liquid or washing liquid when the solidifying liquid is required for gelatinization or when washing is required. The dissolved oxygen is decreased to <=0.1ppm or the oxidation reduction potential is lowered to <=0mV by charging of the reducing agents in such a manner. Further, the atmosphere is substd. with nitrogen, helium, argon, carbon dioxide, etc., under the perfect anaerobic condition. The utilization to a methane fermentation treatment, etc., is possible and the industrial value is extremely high.

Description

【発明の詳細な説明】 A   の1 本発明は、嫌気性菌を高い活性を保持したまま固定化し
た嫌気性菌固定化ゲルおよびその製造方法に関する。本
発明の嫌気性菌固定化ゲルは嫌気性処理・嫌気性反応等
のりアクタ−に供するものである。
DETAILED DESCRIPTION OF THE INVENTION A.1 The present invention relates to an anaerobic bacteria-immobilized gel in which anaerobic bacteria are immobilized while maintaining high activity, and a method for producing the same. The anaerobic bacteria-immobilized gel of the present invention is used for adhesive agents such as anaerobic treatment and anaerobic reactions.

B 従来の技術 近年、酵素、微生物などの生体触媒を固定化して、その
機能を効率よく利用する研究が行なわれている。
B. Prior art In recent years, research has been conducted to immobilize biocatalysts such as enzymes and microorganisms to efficiently utilize their functions.

生体触媒を固定化する方法の一つに、高分子素材を用い
て生体触媒をそのまま包み込む包括固定化法であり、こ
の方法によく用いられる高分子素材として、寒天、アル
ギン酸塩、カラギーナン、キチン、キトサン、ポリアク
リルアミド、ポリエチレングリコール、エボキン樹月旨
、ポリビニルアルコール、光硬化性樹脂等がある。包括
固定の方法としては、高分子水溶液中に微生物を分散混
合させたのち、それぞれの高分子に応じた方法でゲル化
させる。特に、ポリビニルアルコール(PVA)を担体
に用い72例が種々あるが、凍結−融解によるゲル化法
は特開昭64−43188号に提案されている。また、
PVAのホウ酸によるゲル化担体は特公昭83−507
3号に示されている。
One of the methods for immobilizing biocatalysts is the entrapping immobilization method, in which the biocatalyst is wrapped in a polymeric material. Examples of polymeric materials commonly used in this method include agar, alginate, carrageenan, chitin, Examples include chitosan, polyacrylamide, polyethylene glycol, Evokin Jugetsuji, polyvinyl alcohol, and photocurable resin. As a method of comprehensive immobilization, microorganisms are dispersed and mixed in an aqueous polymer solution, and then gelled using a method suitable for each polymer. In particular, there are various examples using polyvinyl alcohol (PVA) as a carrier, and a gelation method by freezing and thawing is proposed in JP-A-64-43188. Also,
Gelation carrier of PVA with boric acid was published in Japanese Patent Publication No. 1983-507.
It is shown in No. 3.

PVAのホウ酸によるゲル化により嫌気性菌を包括固定
化した研究報告が、用水と廃水(volJ。
A research report on comprehensive immobilization of anaerobic bacteria by gelation of PVA with boric acid is published in Water and Wastewater (vol. J.

No、6.1988年、 9.36〜42)および第2
3回水質汚局学会講演集(p、427〜428.198
9年)に報告されている。前者は、初期固定化汚泥濃度
が1%のとき、嫌気性菌のメタン発酵活性が発現するま
で、140日もかかつている。後者は、ろ床法と同一の
活性か発現するまで5〜10倍もの時間を要する。これ
では、固定化された活性のある菌を即座に利用すること
ができないという問題点があった。
No. 6.1988, 9.36-42) and 2nd
Proceedings of the 3rd Water Pollution Society Conference (p. 427-428.198)
It was reported in 2010). In the former case, when the initial immobilized sludge concentration is 1%, it takes 140 days for the anaerobic bacteria to develop methane fermentation activity. The latter method takes 5 to 10 times longer to develop the same activity as the filter bed method. This poses a problem in that immobilized active bacteria cannot be used immediately.

C1発明か解決しようとする課題 上記のよう?こ、嫌気性菌をゲル担体に固定化する場合
、分散混合やゲル化の過程で、溶存酸素あるいは高い酸
化還元電位により菌が死滅する。特に、偏性嫌気、性菌
でうるメタノサルシス(Meth−anosarcin
a) 、メタノコツカス(Methanothrix)
、メタノブラナス(Methanol)Ianus) 
、メタノバクリウム(Methanospirillu
m) 、メタノミフロピラム(Methanomicr
obium) 、メタノゲニウム(Methanoge
nium) 、メタノコツカス(!!1ethano−
coccus) 、メタノサルシス(Methanot
hermus)、メタノバクテリウム(Methano
bacterium) 、メタノブレビバクター(Me
thanobrovibacter) 、メタノスフイ
ーラ(Methanosphaera) 、メタノロー
パス(Methanolobus) 、メタノココデス
(Methano−coccodes) 、メタノバク
テリウム(Methan。
C1 Invention or problem to be solved as above? When anaerobic bacteria are immobilized on a gel carrier, the bacteria are killed by dissolved oxygen or high redox potential during the dispersion mixing and gelation processes. In particular, Meth-anosarcin is an obligately anaerobic and sexually transmitted bacteria.
a) , Methanothrix
, Methanol Ianus)
, Methanobacrium (Methanospirilla)
m), Methanomiflopyram (Methanomicr)
obium), Methanogenium (Methanogenium)
nium), Methanokotsucus (!!1ethano-
coccus), Methanosarcosis (Methanot)
hermus), Methanobacterium (Methano
bacterium), Methanobrevibacter (Me
thanobrovibacter), Methanosphaera, Methanolobus, Methano-coccodes, Methanobacterium.

halophillus) 、メタノコ−バスキュラム
(Meth−anocorpasculum) 、メタ
ノローパス(Methano−halobium) 、
バチルス アミロバクター(13acillus am
ylobactor) 、バチルス フオンキュララム
(Bacillus fossicularum) 、
バチルス セルロースデソルベンス(Bacillus
 cellulosedessolvens)、バチル
ス メタゲネス(Bacillus methagen
es)等は溶存酸素あるいは高い酸化還元電位の影響が
大きく、活性を保持したまま包括固定することは困難で
あった。
halophilus), Meth-anocorpasculum, Methano-halobium,
Bacillus amylobacter (13acillus am
ylobactor), Bacillus fossicularum,
Bacillus cellulose desolvens
Bacillus metagenes
es) etc. are greatly affected by dissolved oxygen or high redox potential, and it has been difficult to comprehensively immobilize them while retaining their activity.

D 課題を解決するための 段 ゲル基材中の溶存酸素の除去あるいは酸化還元電位を下
げることにより、嫌気性菌を活性を保持したまま安定に
固定することかできる。とくに、個性嫌気性菌を固定す
る場合には溶存酸素は0.1ppm以下あるいは酸化還
元電位は0mV以下にすることが好ましい。溶存酸素を
除去する方法としては、高温にして溶存酸素を追い出す
方法、窒素・ヘリウム・二酸化炭素・アルゴン等の気体
をバブリングさせることにより溶存酸素を追い出す方法
、還元剤を投入することにより溶存酸素を除去する方法
が考えられるが、操作性と酸素の再溶解を考慮すると、
還元剤を投入する方法が望ましい。また、還元剤投入に
より酸化還元14位を下げることかできる。還元剤は、
特に限定されるものではなく、菌体に悪影響を及ぼさな
い範囲で投入することができる。たとえば、チオグリコ
ール酸ナトリウム・チオグリコール酸カリウム・システ
ィン−塩酸塩・硫化ナトリウム・硫化カリウム・アスコ
ルビン酸・亜硫酸ナトウリム・亜硫酸水素ナトリウム等
を還元剤として用いることができる。これらの還元剤は
、ゲル基材中に投入するか、ゲル化に凝固液を必要とす
る場合や、洗浄を必要とする場合には、その凝固液や洗
浄液に還元剤を投入することもできる。還元剤の投入に
より、溶存酸素が除去され、酸化還元電位が下がるため
嫌気性菌を安定に固定することができるが、さらに、雰
囲気を窒素・ヘリウム・アルゴン・二酸化炭素等で置換
すれば完全な嫌気条件化で固定することができる。
D. To solve the problem By removing dissolved oxygen in the gel base material or lowering the redox potential, it is possible to stably immobilize anaerobic bacteria while retaining their activity. In particular, when immobilizing individual anaerobes, it is preferable that the dissolved oxygen be 0.1 ppm or less or the redox potential be 0 mV or less. Methods for removing dissolved oxygen include heating to high temperatures to drive out dissolved oxygen, bubbling gas such as nitrogen, helium, carbon dioxide, argon, etc. to drive out dissolved oxygen, and adding a reducing agent to drive out dissolved oxygen. There are ways to remove it, but considering operability and redissolution of oxygen,
A method of adding a reducing agent is preferable. Furthermore, the oxidation-reduction level at position 14 can be lowered by adding a reducing agent. The reducing agent is
It is not particularly limited, and can be added within a range that does not adversely affect the bacterial cells. For example, sodium thioglycolate, potassium thioglycolate, cysteine hydrochloride, sodium sulfide, potassium sulfide, ascorbic acid, sodium sulfite, sodium hydrogen sulfite, and the like can be used as the reducing agent. These reducing agents can be added to the gel base material, or if a coagulating liquid is required for gelation or washing is required, reducing agents can be added to the coagulating liquid or washing liquid. . By adding a reducing agent, dissolved oxygen is removed and the redox potential is lowered, making it possible to stably immobilize anaerobic bacteria; however, if the atmosphere is replaced with nitrogen, helium, argon, carbon dioxide, etc. It can be fixed under anaerobic conditions.

旦−m 以下、実施例により本発明を具体的に証明するが、本発
明はこれらの実施例により限定されるものではない。
EXAMPLES Hereinafter, the present invention will be specifically demonstrated by Examples, but the present invention is not limited by these Examples.

実施例1 (株)クラレ製のポリビニルアルコール(以下PVAと
略記する)(平均重合度1740、ケン化度99.95
モル%)を40℃の温水で約1時間洗浄後、P V A
 a W 16wt%になるようにPVAに水を加え全
量を1kgにしてpi(7に調整した。これをオートク
レーブで120℃、30分処理し、PVAを溶解しfこ
後、室温まで放冷しf二。このPVA水溶液に4%アル
ギン酸ナトリウム水溶液0.5kgを加えて混合し、さ
らに還元剤としてシスティン−塩酸塩を1 、5g1指
示薬としてレザズリンナトリウム0.003gを加えた
。混合液は薄赤色となり、溶存酸素が除かれ、酸化還元
電位がOml’以下になっていることを示した。これに
、嫌気性消火汚泥(遠心分離によりM L S 5 8
0000mg/ Qに濃縮したもの) 0.5kgを加
え、充分に撹拌した。
Example 1 Polyvinyl alcohol (hereinafter abbreviated as PVA) manufactured by Kuraray Co., Ltd. (average degree of polymerization 1740, degree of saponification 99.95)
mol%) with warm water at 40°C for about 1 hour, PVA
Water was added to PVA to give a W of 16 wt%, the total amount was 1 kg, and the pi (pi) was adjusted to 7. This was treated in an autoclave at 120 °C for 30 minutes to dissolve the PVA, and then allowed to cool to room temperature. f2. 0.5 kg of 4% sodium alginate aqueous solution was added to this PVA aqueous solution and mixed, and 1.5 g of cysteine hydrochloride as a reducing agent and 0.003 g of resazurin sodium as an indicator were added. The color turned red, indicating that dissolved oxygen had been removed and the redox potential was below Oml'.In addition, anaerobic fire extinguishing sludge (by centrifugation, M L S 5 8
0.5 kg (concentrated to 0,000 mg/Q) was added and stirred thoroughly.

これらの混合液を先端に内径0.8mmの注射針を取り
付けた内径2mmφのビニル管1本を使用したローラー
ポンプで1mQ/minで送液し、スターラーで撹拌し
た。0.2mof!/Q塩化カルシウム(CaC&、)
水溶液に氷表面5cmの高5より滴下した。このCaC
(12水溶液にも還元剤としてンステインー塩酸塩を0
.05%、指示薬としてレザズリンナトリウム0.00
01%を加え1こ。CaCQ、水溶液は薄赤色となり、
溶存酸素が除かれ、酸化還元電位が0+nV以下である
ことを示した。滴下した液滴はCaC1!z水溶液中で
直ちに球状化して沈降した。これらの球状化しj: P
 V A混合成形物を全1cacL水溶液と分離し、窒
素雰囲気下−20℃+:3°Cで凍結した。20時間凍
結後、常温・窒素雰囲気下で解凍することによって不透
明な黒色の柔軟性に富んだ平均直径3mmの球状のゲル
が得られた。このゲルの強度を上げるため、以上の凍結
−解凍操作をさらに2回繰り返した。
These mixed solutions were pumped at a rate of 1 mQ/min using a roller pump using a vinyl tube with an inner diameter of 2 mmφ and a syringe needle with an inner diameter of 0.8 mm attached to the tip, and stirred with a stirrer. 0.2mof! /Q Calcium chloride (CaC&,)
It was dropped into the aqueous solution from a height 5 5 cm above the ice surface. This CaC
(No. 12 aqueous solution also contains Nstein hydrochloride as a reducing agent.
.. 05%, resazurin sodium 0.00 as indicator
Add 01% and get 1. CaCQ, aqueous solution becomes light red,
It was shown that dissolved oxygen was removed and the redox potential was 0+nV or less. The dropped droplet is CaC1! It immediately became spheroidized and precipitated in the Z aqueous solution. These spheroidized: P
The VA mixture moldings were separated from the total 1 cacL aqueous solution and frozen at -20°C+:3°C under nitrogen atmosphere. After freezing for 20 hours, the gel was thawed at room temperature under a nitrogen atmosphere to obtain an opaque, black, and highly flexible spherical gel with an average diameter of 3 mm. In order to increase the strength of this gel, the above freeze-thaw operation was repeated two more times.

得られた菌固定PVAゲル2kgを3gのジャーファー
メンタに入れ、37℃に加温し、BOD容積負荷2kg
/cm3・日の人工排水を投入した。人工排水は、グル
コース800部、ペプトン300部、Kl(、Po。
2 kg of the obtained bacteria-fixed PVA gel was placed in a 3 g jar fermenter, heated to 37°C, and the BOD volume load was 2 kg.
Artificial wastewater was added at an amount of /cm3·day. Artificial wastewater contained 800 parts of glucose, 300 parts of peptone, Kl (, Po.

20部、NaHCO3200部、CaCQt・6Ht0
2部、MgSO4・7H,05部の重量比のものを用い
た。負荷はTOCメーター(島津製作所T OC−50
0)により測定した。気相は窒素置換し、メチルオレン
ジが赤変するまで硫酸を添加した200mg/f2食塩
水による水上置換により発生する気体を捕集した。気体
の組成はガスクロマトグラフにより測定した。
20 parts, NaHCO3200 parts, CaCQt・6Ht0
A weight ratio of 2 parts and 0.5 parts of MgSO4.7H was used. The load is measured using a TOC meter (Shimadzu TOC-50
0). The gas phase was purged with nitrogen, and the gas generated by purging on water with a 200 mg/f2 saline solution to which sulfuric acid had been added until methyl orange turned red was collected. The gas composition was measured using a gas chromatograph.

実験開始後2日目から、気体の発生が見られ、ガスクロ
マトグラフにより、メタンと二酸化炭素の生成が確認さ
れた。また、負荷投入直後の系内の水のTOCは、約5
000mg/Nであったが、1日経過後には、約100
mg/&に減少していた。
From the second day after the start of the experiment, gas generation was observed, and gas chromatography confirmed the production of methane and carbon dioxide. In addition, the TOC of water in the system immediately after load application is approximately 5.
000mg/N, but after one day, it was about 100mg/N.
mg/&.

以上のことから、菌が死滅することなく、固定すること
ができ、活性か発現したものと考えられる。
From the above, it is considered that the bacteria could be immobilized without being killed and activity was expressed.

さらに、包括固定の宵効性をみるため、100日後にジ
ャーファーメンタ−およびゲル担体を水洗し、再度、同
様の立ち上げ試験を行なったところ、2日目から活性を
示し、繰り返し使用できることがわかった。
Furthermore, in order to examine the efficacy of entrapping fixation, the jar fermenter and gel carrier were washed with water after 100 days, and the same start-up test was conducted again. As a result, it showed activity from the second day and could be used repeatedly. Understood.

比較例1 (昧)クラレ製のポリビニルアルコール(PVA)(平
均重合変1740、ケン化度99.85モル%)を40
00の温水で約1時間洗浄後、PVAa度16wt%に
なるようにPVAに水を加え全量を1kgにしてpI(
7に調整した。これをオートクレーブで120℃、30
分処理し、PVAを溶解した後、室温まで放冷しfこ。
Comparative Example 1 (Major) Polyvinyl alcohol (PVA) manufactured by Kuraray (average polymerization modification 1740, degree of saponification 99.85 mol%) was
After washing with warm water of 0.00 for about 1 hour, water was added to the PVA so that the PVAa content was 16 wt%, the total amount was 1 kg, and the pI (
Adjusted to 7. Autoclave this at 120℃ for 30 minutes.
After dissolving the PVA, let it cool to room temperature.

このPVA水溶液に4%アルギン酸ナトリウム水溶液0
.5kgを加えて混合し、還元剤は加えず、指示薬レザ
ズリンナトリウム0.003gを加えた。
Add 4% sodium alginate aqueous solution to this PVA aqueous solution.
.. 5 kg was added and mixed, no reducing agent was added, and 0.003 g of indicator resazurin sodium was added.

混合液は濃青色となり、溶存酸素が多量に存在し、酸化
還元電位が0IIlv以上であることを示した。これに
、嫌気性消火汚泥(遠心分離によりMLSS30000
+ng/i2に濃縮しkもの) 0.5kgを加え、充
分に撹拌した。
The mixture turned dark blue, indicating that a large amount of dissolved oxygen was present and the redox potential was 0IIlv or higher. To this, anaerobic fire extinguishing sludge (MLSS30000
0.5 kg of the mixture was added and stirred thoroughly.

これらの混合液を先端に内径0.8+nmの注射針を取
り付けた内径2m+++φのビニル管1本を使用したロ
ーラーポンプで1mQ/In1nで送液し、スターラー
で撹拌した0、5mof2/(!塩化カルンウム(Ca
CQt)水溶液に氷表面5c+nの高さより滴下した。
These mixed solutions were pumped at 1mQ/In1n using a roller pump using one vinyl pipe with an inner diameter of 2m+++φ and a syringe needle with an inner diameter of 0.8+nm attached to the tip, and were stirred with a stirrer. (Ca
CQt) aqueous solution from a height of 5c+n above the ice surface.

このCaC1を水溶液には還元剤を加えず、指示薬とし
てレザズリンナトリウム0.0001%を加えた。Ca
CQv水溶液は濃青色となり、溶存酸素が多量に存在し
、酸化還元電位が0mV以上であることを示した。滴下
した液滴はCaCQv水溶液中で直ちに球状化して沈降
した。これらの球状化したPVA混合成形物を全量Ca
Cl2.水溶液と分離し、−20℃=3℃で凍結した。
No reducing agent was added to this CaCl aqueous solution, and 0.0001% resazurin sodium was added as an indicator. Ca
The CQv aqueous solution turned dark blue, indicating that a large amount of dissolved oxygen was present and the redox potential was 0 mV or more. The dropped droplets immediately became spherical and precipitated in the CaCQv aqueous solution. The total amount of these spheroidized PVA mixed moldings was
Cl2. It was separated from the aqueous solution and frozen at -20°C=3°C.

20時間凍結後、・常温で解凍することによって不透明
な黒色の柔軟性に富んだ球状のゲルが得られた。
After freezing for 20 hours, an opaque, black, and highly flexible spherical gel was obtained by thawing at room temperature.

このゲルの強度を上げるため、以上の凍結−解凍操作を
さらに2回繰り返した。
In order to increase the strength of this gel, the above freeze-thaw operation was repeated two more times.

得られた菌固定PVAゲル2kgを312のジャーフア
ーメンクに入れ、実施例1と同一の方法で実験した。
2 kg of the obtained bacteria-fixed PVA gel was placed in a 312 jar, and an experiment was conducted in the same manner as in Example 1.

ところか、実験開始後10日間:よ気体の発生が見られ
ず、そh以後、二酸化炭素の発生かわずかに見られ、メ
タンの生成が確認されにのは、40日後であった。また
、負荷投入直後の系内の水のTOCは、約5000mg
/ (lであったが、TOCはほとんど変化しなかった
。固定の際に、大部分の菌が死滅し、活性の発現に長時
間を要し几ものと考えられろ。
However, for 10 days after the start of the experiment, no gas was observed to be produced, and after that, a slight amount of carbon dioxide was observed to be produced, and it was 40 days later that methane production was confirmed. In addition, the TOC of water in the system immediately after loading is approximately 5000 mg.
/ (l), but there was almost no change in TOC. Most of the bacteria were killed during fixation, and it takes a long time to develop activity, which is considered to be a process.

F 発明の効果 上記の実施例で明らかなとおり、本発明により、従来困
難であった嫌気性菌の固定か容易となり、メタン発酵処
理・嫌気性排水処理への利用が可能になるので工業的な
価値か極めて高い乙のてめろ。
F. Effects of the Invention As is clear from the above examples, the present invention makes it easy to fix anaerobic bacteria, which was difficult in the past, and makes it possible to use it for methane fermentation treatment and anaerobic wastewater treatment. The value is extremely high.

Claims (4)

【特許請求の範囲】[Claims] (1)ゲル基材中の溶存酸素が0.1ppm以下あるい
は酸化還元電位が0mV以下であることを特徴とする嫌
気性菌固定化ゲル。
(1) An anaerobic bacteria-immobilized gel characterized in that the dissolved oxygen in the gel base material is 0.1 ppm or less or the redox potential is 0 mV or less.
(2)ゲル基材中に還元剤が存在することを特徴とする
請求項1記載の嫌気性菌固定化ゲル。
(2) The anaerobic bacteria-immobilized gel according to claim 1, characterized in that a reducing agent is present in the gel base material.
(3)ゲル基材がポリビニルアルコールからなることを
特徴とする請求項1または2記載の嫌気性菌固定化ゲル
(3) The anaerobic bacteria-immobilized gel according to claim 1 or 2, wherein the gel base material is made of polyvinyl alcohol.
(4)ゲル原液、ゲルの凝固液またはゲルの洗條液に還
元剤を添加することを特徴とする請求項1〜3のいずれ
か1つの項に記載の嫌気性菌固定化ゲルの製造方法。
(4) The method for producing an anaerobic bacteria-immobilized gel according to any one of claims 1 to 3, characterized in that a reducing agent is added to the gel stock solution, gel coagulation solution, or gel washing solution. .
JP2040707A 1990-02-20 1990-02-20 Anaerobic bacteria immobilizing gel and production thereof Pending JPH03242293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2040707A JPH03242293A (en) 1990-02-20 1990-02-20 Anaerobic bacteria immobilizing gel and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2040707A JPH03242293A (en) 1990-02-20 1990-02-20 Anaerobic bacteria immobilizing gel and production thereof

Publications (1)

Publication Number Publication Date
JPH03242293A true JPH03242293A (en) 1991-10-29

Family

ID=12588053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2040707A Pending JPH03242293A (en) 1990-02-20 1990-02-20 Anaerobic bacteria immobilizing gel and production thereof

Country Status (1)

Country Link
JP (1) JPH03242293A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03245895A (en) * 1990-02-22 1991-11-01 Nishihara Environ Sanit Res Corp Method for immobilizing anaerobic bacteria
JP2003053385A (en) * 2001-08-09 2003-02-25 Kurita Water Ind Ltd Biological denitrification equipment
JP2012076001A (en) * 2010-09-30 2012-04-19 Kuraray Co Ltd Anaerobic wastewater treatment apparatus
JP2012076000A (en) * 2010-09-30 2012-04-19 Kuraray Co Ltd One tank type anaerobic wastewater treatment apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03245895A (en) * 1990-02-22 1991-11-01 Nishihara Environ Sanit Res Corp Method for immobilizing anaerobic bacteria
JP2003053385A (en) * 2001-08-09 2003-02-25 Kurita Water Ind Ltd Biological denitrification equipment
JP2012076001A (en) * 2010-09-30 2012-04-19 Kuraray Co Ltd Anaerobic wastewater treatment apparatus
JP2012076000A (en) * 2010-09-30 2012-04-19 Kuraray Co Ltd One tank type anaerobic wastewater treatment apparatus

Similar Documents

Publication Publication Date Title
CN107523561B (en) Preparation method and application of high-temperature alkalization modified charcoal-based carrier
Wu et al. Cell immobilization using PVA crosslinked with boric acid
Jianlong et al. Microbial degradation of 4-chlorophenol by microorganisms entrapped in carrageenan-chitosan gels
CN108359663B (en) Phosphorus-accumulating bacterium immobilized pellet and application thereof
CN109438732B (en) Preparation method of polyvinyl alcohol/chitosan gel beads
Zhu et al. Nitrogen removal performance of anaerobic ammonia oxidation co-culture immobilized in different gel carriers
CN105505913B (en) A kind of anaerobic bacteria process for fixation
CN110699347B (en) Immobilized microbial inoculum and preparation method and application thereof
JPH03242293A (en) Anaerobic bacteria immobilizing gel and production thereof
CN101392245B (en) Preparation and application of flocculating alcaligenes faecalis fixed pellet
CN109502933A (en) A kind of processing method and system containing polyacrylamide waste water
Lemoine et al. Reduction of nitrate by Pseudomonas putrefaciens entrapped in composite agar layer/microporous membrane structures
JP2003235554A (en) Microorganism-immobilized carrier and method for producing the same
JPH05130867A (en) Biocatalyst-immobilized gel
WO2020192536A1 (en) Method for efficiently treating nitrogen-containing wastewater based on dnra-anammox immobilized pellets
JPH0249709B2 (en)
CN1219855C (en) Method for oil desulfuration by using calcium alginate immobilized Diehliumyces pseudomonads R-8
JPH09155388A (en) Denitrification device using biological catalyst
CN118527116B (en) Modified biomass charcoal-sodium alginate gel and preparation method and application thereof
CN112010431B (en) Embedding method immobilized microorganism particle fluidized bed sewage treatment method
CN110066423B (en) Preparation method of noble metal platinum-doped fluorescent bacterial cellulose
CN111593043B (en) Immobilization method for quorum-sensing burst sterilization of core-shell structure and application
JPH05123694A (en) Treatment of organic waste water with nitrogen fixation bacterial
CN118236929A (en) Calcium phosphate-based hydrogel and preparation method and application thereof
CN113061914B (en) Light-induced biosynthesis H based on microbial fuel cell2O2Method (2)