JPH03242131A - Infrared-ray endoscope device - Google Patents

Infrared-ray endoscope device

Info

Publication number
JPH03242131A
JPH03242131A JP2036286A JP3628690A JPH03242131A JP H03242131 A JPH03242131 A JP H03242131A JP 2036286 A JP2036286 A JP 2036286A JP 3628690 A JP3628690 A JP 3628690A JP H03242131 A JPH03242131 A JP H03242131A
Authority
JP
Japan
Prior art keywords
mirror
reflected
optical fiber
subject
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2036286A
Other languages
Japanese (ja)
Inventor
Hisakazu Kato
久和 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Avionics Co Ltd
Original Assignee
Nippon Avionics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Avionics Co Ltd filed Critical Nippon Avionics Co Ltd
Priority to JP2036286A priority Critical patent/JPH03242131A/en
Publication of JPH03242131A publication Critical patent/JPH03242131A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

PURPOSE:To attain the photographing of the area of a wider part than the area of an optical fiber, while using one piece of optical fiber by reflecting successively a light beam from an object to be photographed with two mirrors and leading it to one piece of optical fiber, and allowing it to scan the respective mirrors in different directions. CONSTITUTION:A first mirror 15 is placed in a position in which the object 1 is reflected and turned in the direction in which one direction of the body 1 is reflected successively. Also, a second mirror 16 is placed in a position in which the body 1 reflected on the mirror 15 is reflected and turned in the direction in which the direction different from the direction of the body 1 reflected on the mirror 15 is reflected successively. Also, a condensing lens 2 condenses the light from the body 1 reflected by the mirror 16. Moreover, as for an optical fiber 6, one end face thereof is positioned in a condensing point of the condensing lens 2. Furthermore, a detector 8 detects the light radiated from the other end of the optical fiber 6. In such a state, a signal processor 10 reproduces the image of the object from the output of the detector 8 and the turning information of the mirrors 15, 16. Consequently, the area of a wider part than the area of the optical fiber can be photographed.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、被写体を撮影する赤外線内視鏡装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an infrared endoscope device for photographing a subject.

[従来の技術1 従来、あるものの内部を見る場合、可視光を用いた内視
鏡がある。これはCCD等のセンサをマイクロカプセル
に収容し、そこで得られた電気信号を電線によって外部
に引き出して見るものである。ところがCCDセンサは
可視光の感度は良いが、赤外線にないしては非常に感度
が悪い。このため、赤外線の情報が必要な場合は、第2
図に示すように複数の光ファイバを束にしてその端面全
面に被写体の像を結ばせ、その光ファイバによって赤外
線情報を外部に伝送し、伝送先でその赤外線情報を可視
光に変換している。
[Prior Art 1] Conventionally, when looking inside something, there is an endoscope that uses visible light. This is a device in which a sensor such as a CCD is housed in a microcapsule, and the electrical signals obtained there are extracted to the outside via an electric wire and viewed. However, although CCD sensors have good sensitivity to visible light, they have very low sensitivity to infrared light. Therefore, if infrared information is required, the second
As shown in the figure, multiple optical fibers are bundled to form an image of the subject on the entire end face, and the infrared information is transmitted to the outside through the optical fibers, and the infrared information is converted into visible light at the transmission destination. .

[発明が解決しようとする課題] しかしながら、各光ファイバは第3図に拡大して記載し
たようになっており、映像は斜線を施したコア部分によ
って伝送されるので、コア以外の部分は再生像には寄与
せず、再生される画像は不連続なものになってしまうと
いう課題があった。
[Problems to be Solved by the Invention] However, each optical fiber is enlarged as shown in Figure 3, and since images are transmitted through the shaded core portion, the portions other than the core are not reproduced. This poses a problem in that it does not contribute to the image and the reproduced image becomes discontinuous.

[課題を解決するための手段] このような課題を解決するためにこの発明は、被写体が
写る位置に置かれ被写体の一方の方向が順次写し出され
る方向に回動する第1の鏡と、第1の鏡に写し出された
被写体が写る位置に置かれ第1の鏡に写る被写体の前記
方向と異なる方向が順次写し出される方向に回動する第
2の鏡と、第2の鏡で反射される被写体からの光線を伝
送する光ファイバと、その光ファイバの他端から放射さ
れる光と第1および第2の鏡の回動情報とから被写体像
を再生する信号処理器とを備えたものである。
[Means for Solving the Problems] In order to solve these problems, the present invention includes a first mirror that is placed at a position where a subject is photographed and rotates in a direction in which one direction of the subject is sequentially photographed; A second mirror is placed at a position where the subject reflected in the first mirror is reflected and rotates in a direction in which directions different from the direction of the subject reflected in the first mirror are sequentially reflected; It is equipped with an optical fiber that transmits the light beam from the subject, and a signal processor that reproduces the subject image from the light emitted from the other end of the optical fiber and the rotation information of the first and second mirrors. be.

[作用] 被写体よりの光線が第2の鏡と第1の鏡を介して光ファ
イバの一端に集束され、それが光ファイバによって所望
の箇所まで導かれる。その光は検出器で電気信号に変換
され、その変換された電気信号は信号処理回路において
鏡からの回動信号をもとに被写体像として再生されたう
え、種々の処理が施されモニタに画像として表示される
[Operation] The light rays from the subject are focused on one end of the optical fiber via the second mirror and the first mirror, and guided to a desired location by the optical fiber. The light is converted into an electrical signal by a detector, and the converted electrical signal is reproduced as a subject image in a signal processing circuit based on the rotation signal from the mirror, and is then subjected to various processing and displayed as an image on a monitor. will be displayed as .

[実施fM] 第1図はこの発明の一実施例を示すブロック図である。[Implementation fM] FIG. 1 is a block diagram showing one embodiment of the present invention.

図において15は被写体1を写す位置に置かれた第1の
鏡、16はその鏡15に写し出された被写体を写す位置
に置かれた第2の鏡である。鏡15は図の軸Aを中心に
回動するようになっており、鏡16は図の軸Bを中心に
回動するようになっている。
In the figure, 15 is a first mirror placed in a position to photograph the subject 1, and 16 is a second mirror placed in a position to photograph the subject reflected in the mirror 15. The mirror 15 is configured to rotate around an axis A in the figure, and the mirror 16 is configured to rotate around an axis B in the figure.

このため鏡15が回動すると、被写体1のX方向が走査
されるので、その部分が順次写し出されることになる。
Therefore, when the mirror 15 rotates, the subject 1 is scanned in the X direction, so that part of the subject 1 is sequentially photographed.

また鏡16が回動すると、鏡15のX方向が走査される
。鏡15には被写体1が写し出されているので、鏡15
のX方向が走査されることは被写体1のY方向が走査さ
れることになる。
Further, when the mirror 16 rotates, the X direction of the mirror 15 is scanned. Since object 1 is reflected in mirror 15, mirror 15
When the X direction of the subject 1 is scanned, the Y direction of the subject 1 is scanned.

このように、鏡15.16の回動によって被写体]の所
望の部分が走査される。このとき鏡15を1秒あたり1
往復程度の速度で回動させ、鏡16を1秒あたり200
往復程度の速度で回動させれば、被写体1のY方向を高
速に走査しながら、X方向も順次走査され、被写体1の
太線で示した部分の面積全部が1秒間で走査される。
In this manner, a desired portion of the object is scanned by rotating the mirrors 15 and 16. At this time, the mirror 15 is rotated at 1 per second.
Rotate the mirror 16 at a speed of about 200 rotations per second.
If it is rotated at a reciprocating speed, the subject 1 will be scanned in the Y direction at high speed while also being sequentially scanned in the X direction, and the entire area of the part of the subject 1 shown by the bold line will be scanned in one second.

このようにして鏡15.16で被写体1を走査し、最終
的に鏡16で反射された光は集光手段であるクローズア
ップレンズ2で光ファイバ6の一方の端面に集束される
が、そのときシリコンウィンド3において可視光が遮断
され赤外線のみが取り出され、光ファイバ6に入射する
。そこに入射した赤外線は光ファイバ6で所望の場所ま
で伝送され、光ファイバ6の他端より射出し、リレーレ
ンズ7によって赤外線検出器8に赤外線像を結ぶ。
In this way, the mirrors 15 and 16 scan the object 1, and the light finally reflected by the mirror 16 is focused on one end face of the optical fiber 6 by the close-up lens 2, which is a focusing means. At this time, visible light is blocked by the silicon window 3 and only infrared rays are taken out and input into the optical fiber 6. The infrared rays incident thereon are transmitted to a desired location through an optical fiber 6, exit from the other end of the optical fiber 6, and form an infrared image on an infrared detector 8 by a relay lens 7.

この赤外線像は光ファイバ6を通過してきたものであり
、光ファイバ6は1本しか使用していないので、極めて
小さな面積を持った像になる。赤外線検出器8に入射し
た赤外線像は信号処理器10に供給され、そこでは鏡1
5および鏡16の回動信号に基づいて点状に近い画像信
号を面状の画像信号に変換する処理が行われる。このよ
うにして被写体1の像が再生され、その再生像がモニタ
11に表示される。
This infrared image has passed through the optical fiber 6, and since only one optical fiber 6 is used, the image has an extremely small area. The infrared image incident on the infrared detector 8 is supplied to the signal processor 10, where the mirror 1
5 and the mirror 16, a process of converting a nearly point-like image signal into a planar image signal is performed. In this way, the image of the subject 1 is reproduced, and the reproduced image is displayed on the monitor 11.

モニタ11に表示した赤外線画像は赤外線のエネルギに
応じて色分けすれば、被写体1における相対的温度を知
ることはできる。しかしこのままでは被写体1の実際の
温度を知ることはできない。そこで、センサ12により
環境温度を検出し、その信号を信号処理回路10に供給
して、処理を行い、実際の温度を知るようにしである。
By color-coding the infrared image displayed on the monitor 11 according to the energy of the infrared rays, it is possible to know the relative temperature of the subject 1. However, in this state, the actual temperature of the subject 1 cannot be known. Therefore, the sensor 12 detects the environmental temperature, and the signal is supplied to the signal processing circuit 10 for processing to determine the actual temperature.

なお、鏡15.16とセンサ12はマイクロカプセルに
収容され、鏡15.16は図示しないワイヤによって回
動駆動されるか、圧縮空気によって駆動される。また、
鏡16は回動ではなく回転するようにしても良い。
The mirrors 15, 16 and the sensor 12 are housed in a microcapsule, and the mirrors 15, 16 are rotatably driven by a wire (not shown) or driven by compressed air. Also,
The mirror 16 may be rotated instead of rotating.

[発明の効果] 以上説明したようにこの発明は、被写体からの光を2つ
の鏡で順次反射させ1本の光ファイバに導き、それぞれ
の鏡を異なる方向に走査したので、1本の光ファイバを
使用しながら、その光ファイバの面積よりもはるかに広
い部分の面積を撮影できる。このため、従来のようにコ
アの部分以外は像が再生されないために再生像が不連続
になっていた不都合な現象が発生しないという効果を有
する。
[Effects of the Invention] As explained above, in this invention, the light from the subject is sequentially reflected by two mirrors and guided to one optical fiber, and each mirror is scanned in different directions. While using the optical fiber, it is possible to image a much wider area than the area of the optical fiber. For this reason, there is an effect that an inconvenient phenomenon in which the reproduced image becomes discontinuous because the image is not reproduced except for the core part as in the conventional case does not occur.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示すブロック図、第2図
は従来の光ファイバの端面を示す図、第3図はその端面
を部分的に拡大した図である。 1・・・・被写体、2・−・・クローズアッルンズ、5
・・・・集光レンズ、6・・・・赤外線用光ファイバ、
8・・・・赤外線検出器、10・・・・信号処理器、1
1・・・・モニタ。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing an end face of a conventional optical fiber, and FIG. 3 is a partially enlarged view of the end face. 1... Subject, 2... Close-up, 5
...Condensing lens, 6...Infrared optical fiber,
8... Infrared detector, 10... Signal processor, 1
1...Monitor.

Claims (1)

【特許請求の範囲】 被写体が写る位置に置かれ被写体の一方の方向が順次写
し出される方向に回動する第1の鏡と、第1の鏡に写し
出された被写体が写る位置に置かれ第1の鏡に写る被写
体の前記方向と異なる方向が順次写し出される方向に回
動する第2の鏡と、第2の鏡で反射される被写体からの
光線を集光する集光手段と、 一方の端面が集光手段の集光点に位置する光ファイバと
、 その光ファイバの他端から放射される光を検出する検出
器と、 検出器出力と第1および第2の鏡の回動情報とから被写
体像を再生する信号処理器とを備えたことを特徴とする
赤外線内視鏡装置。
[Claims] A first mirror placed at a position where the subject is photographed and rotated in a direction in which one direction of the subject is sequentially photographed; and a first mirror placed at a position where the subject reflected in the first mirror is photographed. a second mirror that rotates in a direction in which directions different from the direction of the subject reflected in the mirror are sequentially reflected; a condensing means that condenses light rays from the subject reflected by the second mirror; and one end surface. is an optical fiber located at the condensing point of the condensing means, a detector that detects the light emitted from the other end of the optical fiber, and a detector output and rotation information of the first and second mirrors. An infrared endoscope device comprising: a signal processor for reproducing a subject image.
JP2036286A 1990-02-19 1990-02-19 Infrared-ray endoscope device Pending JPH03242131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2036286A JPH03242131A (en) 1990-02-19 1990-02-19 Infrared-ray endoscope device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2036286A JPH03242131A (en) 1990-02-19 1990-02-19 Infrared-ray endoscope device

Publications (1)

Publication Number Publication Date
JPH03242131A true JPH03242131A (en) 1991-10-29

Family

ID=12465549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2036286A Pending JPH03242131A (en) 1990-02-19 1990-02-19 Infrared-ray endoscope device

Country Status (1)

Country Link
JP (1) JPH03242131A (en)

Similar Documents

Publication Publication Date Title
JPH05306915A (en) Method and instrument for measuring shape
JP2005148265A (en) Camera apparatus
JP2000004383A (en) Multidirectional image taking-in device
JPH03242131A (en) Infrared-ray endoscope device
JP2000036917A (en) Image pickup device
JP3324367B2 (en) 3D input camera
JPH05322526A (en) Three dimensional form measuring apparatus
JPH06147852A (en) Fingerprint imaging apparatus
JP2685849B2 (en) 2-axis star sensor
JPS5915379A (en) Heat infrared image pickup camera
JP3011211B1 (en) Infrared imaging method and infrared imaging device
JPH11305140A (en) Confocal microscope
JPH10206231A (en) Apparatus for measuring distributed light
JP3432949B2 (en) Lightwave search device
JPS60225139A (en) Infrared video aiming device
JPH03148968A (en) Two boards type electronic camera
JPS61255318A (en) Endoscope device
JPS62224180A (en) Automatic centering device
JPS6198317A (en) Optical scanner
JPH07284130A (en) Stereoscopic vision camera
JPH07198619A (en) Crystal defect detecting method by using forward scattered light
JPH1038521A (en) Three-dimensional measuring instrument
JP2002318353A (en) Lens for endoscope
JPS6380213A (en) Focus detector
JPH05142050A (en) Infrared thermal image device