JPH03241834A - Wiring formation method and device - Google Patents

Wiring formation method and device

Info

Publication number
JPH03241834A
JPH03241834A JP4015390A JP4015390A JPH03241834A JP H03241834 A JPH03241834 A JP H03241834A JP 4015390 A JP4015390 A JP 4015390A JP 4015390 A JP4015390 A JP 4015390A JP H03241834 A JPH03241834 A JP H03241834A
Authority
JP
Japan
Prior art keywords
substrate
height
laser beam
deposition
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4015390A
Other languages
Japanese (ja)
Other versions
JP2890616B2 (en
Inventor
Yukio Morishige
幸雄 森重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4015390A priority Critical patent/JP2890616B2/en
Publication of JPH03241834A publication Critical patent/JPH03241834A/en
Application granted granted Critical
Publication of JP2890616B2 publication Critical patent/JP2890616B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To eliminate the generation of a disconnection and the generation of a fluctuation in a line width and to obtain a wiring formation method having a superior controllability by a method wherein the height of a deposition substance at the irradiation position of a laser beam for deposition use and the height of the surface of a substrate at a scheduled drawing spot in the vicinity of the irradiation position of the laser beam are detected by a laser focus detection method and the irradiation intensity or the substrate scanning rate of the laser beam is feedback-controlled in such a way that the difference between the heights is constant. CONSTITUTION:In a wiring formation method, wherein while a laser beam for deposition use is focused on a substrate, on which a conductive substance is deposited by a thermal decomposition reaction, in a compound gas-containing raw gas atmosphere, the substrate is scanned with the laser beam relatively to the laser beam and a wiring is drawn, the height of a deposited substance at an irradiation position A of the laser beam and the height of the substrate surface at a scheduled drawing spot B in the vicinity of the position A are detected by a laser focal point detection method and an irradiation intensity or a substrate scanning rate of the laser beam is feedback-controlled in such a way that a difference between the height of the deposition substance at the position A of the laser beam and the height of the substrate surface at the same position, where the height of the substrate surface is first found, is constant using the difference as an error signal. Thereby, the generation of a disconnection due to variation in the reflectivity and heat characteristics and the generation of variation in line width can be inhibited and the wiring formation method having a superior controllability can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、配線形成方法及びその装置に関し、さらに詳
しくは、レーザ光を利用する半導体製造プロセスの一つ
であるレーザCVD反応を利用する配線形成方法及びそ
の装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a wiring forming method and an apparatus therefor, and more particularly, to a wiring forming method using a laser CVD reaction, which is one of the semiconductor manufacturing processes using laser light. The present invention relates to a forming method and an apparatus thereof.

〔従来の技術〕[Conventional technology]

従来、集光したレーザ光を原料ガス雰囲気中の基板に照
射し、集光したレーザ光が基板表面に吸収されて起こる
局所的な発熱により熱分解反応を誘起して導電性物質を
堆積させながら、基板をレーザ光に対して相対的に走査
して配線を基板上に直接描画するレーザ直描CVD法が
知られている。
Conventionally, a substrate in a source gas atmosphere is irradiated with focused laser light, and the focused laser light is absorbed by the substrate surface, causing a local heat generation that induces a thermal decomposition reaction and deposits a conductive material. 2. Description of the Related Art A laser direct writing CVD method is known in which wiring is directly drawn on a substrate by scanning the substrate relative to a laser beam.

例えば、■987年のジャーナル・オブ・バキューム・
サイエンス・テクノロジー(Journal ofVa
cuum 5cience Technology)誌
の第5巻、843ページにW、M、Grossman等
による配線描画方法及び装置が報告されている。この文
献によれば、原料ガス雰囲気中に載置された基板上に音
響光学変調器によりアルゴンレーザ光の強度を変調でき
る槽底を用いてレーザ光を集光照射し、基板上の集光点
をステージの移動により走査して、金属線を直接描画で
きることが示されている。さらにこの文献では、直接描
画を安定に行わせるために、基板上のレーザ光照財部の
反射率をモニターし、この反射率が一定の範囲内に収ま
るよう反射率の基準値との差信号を音響光学変調器の変
調度にフィードバックさせる構成を用いている。この構
成では、基板の反射率に比べ、描画するタングステン線
の反射率が大きなことを利用して、反射率が高くなると
照射光強度を弱めて、堆積速度の低下による描画特性の
変動を抑え得る利点がある。
For example, ■ 987 Journal of Vacuum
Science and Technology (Journal of Va.
A wiring drawing method and apparatus are reported by W. M. Grossman et al. in Volume 5, page 843 of the journal Cuum 5 Science Technology. According to this document, a laser beam is focused and irradiated onto a substrate placed in a raw material gas atmosphere using an acousto-optic modulator that can modulate the intensity of the argon laser beam. It has been shown that it is possible to directly draw metal wires by scanning by moving the stage. Furthermore, in this document, in order to perform direct writing stably, the reflectance of the laser beam illumination part on the substrate is monitored, and the difference signal from the reference value of the reflectance is recorded acoustically to keep the reflectance within a certain range. A configuration is used in which feedback is provided to the modulation degree of the optical modulator. This configuration takes advantage of the fact that the reflectance of the tungsten wire to be drawn is greater than that of the substrate, and as the reflectance increases, the intensity of the irradiated light is weakened, making it possible to suppress fluctuations in the drawing characteristics due to a decrease in the deposition rate. There are advantages.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の配線形成方法及び装置では、描画特性を
安定化する帰還信号に光照財部の反射率を用いているた
めに、基板と描画した配線の反射率の差が小さい場合や
、既存配線が基板上に形成されていて、直接描画して形
成する配線とこれらの基板配線を横切らせる、もしくは
、コンタクトさせる必要がある場合など、実用上不可避
な描画条件においては、反射率に、直接描画する配線以
外からの寄与が多く含まれるようになり、その結果、所
望の帰還・制御を行うことが困難となって、配線が断線
したり、線幅が変動する等の欠点がある。
In the conventional wiring forming method and apparatus described above, since the reflectance of the lighting part is used as a feedback signal to stabilize the drawing characteristics, there are cases where the difference in reflectance between the substrate and the drawn wiring is small, or when the existing wiring is Under practically unavoidable drawing conditions, such as when it is necessary to cross or contact wiring formed on a substrate and formed by direct drawing, it is necessary to draw directly on the reflectance. Many contributions from sources other than the wiring are included, and as a result, it becomes difficult to perform desired feedback and control, resulting in drawbacks such as wiring breakage and line width fluctuations.

本発明は、以上述べたような従来の問題点を解決するた
めに成されたもので、断線や線幅の変動の発生がなく、
制御性に優れた配線形成方法及びその装置を提供するこ
とを目的とする。
The present invention was made to solve the conventional problems as described above, and eliminates wire breakage and line width fluctuations.
It is an object of the present invention to provide a wiring forming method with excellent controllability and an apparatus therefor.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、熱分解反応により導電性物質を堆積する化合
物気体を含む原料ガス雰囲気中の基板に堆積用レーザ光
を集光しながら、基板を堆積用レーザ光に対し相対的に
走査して配線を描画する配線形成方法において、堆積用
レーザ光の照射位置の堆積物の高さと、近傍の描画予定
地点の基板表面高さをレーザ焦点検出法により検出し、
堆積用レーザ光の照射位置の高さと先に求めた同位置で
の基板表面高さとの差が一定になるよう、この差を誤差
信号として、堆積用レーザ光の照射強度もしくは基板走
査速度をフィードバック制御することを特徴とする配線
形成方法であり、またその方法を実現するための装置は
、窓を有するチェンバと、熱分解反応により導電性物質
を堆積する原料気体をチェンバに導入する原料ガス供給
ユニットと、原料気体雰囲気にさらされるチャンバ内に
配置した基板上に、レーザ光源からの堆積用レーザ光を
集光して照射しながら、該基板表面を観察することので
きる照射観察光学系と、該堆積用レーザ光に対して基板
を相対的に走査するステージとからなる配線形成装置に
おいて、基板上のレーザ光源からの堆積用レーザ光の集
光位置での堆積物表面の高さ、及び近傍の配線描画予定
方向の基板表面の高さを実時間で各々計測する焦点高さ
検出ユニットと、該堆積用レーザ光の集光位置の焦点高
さ信号の強度と、該近傍の基板位置とのステージ移動時
間差分遅延させた該近傍の位置の焦点高さからの信号強
度の差から堆積用レーザ光照射位置の堆積厚みを求め、
この厚みが一定となるよう該レーザ光源の出射強度もし
くは、ステージの移動速度をフィードバック制御する信
号処理ユニットとを備えたことを特徴とする配線形成装
置である。
The present invention focuses a deposition laser beam on a substrate in a source gas atmosphere containing a compound gas that deposits a conductive material by a thermal decomposition reaction, and scans the substrate relative to the deposition laser beam to conduct wiring. In the wiring formation method for drawing, the height of the deposit at the irradiation position of the deposition laser beam and the substrate surface height of the nearby drawing point are detected by a laser focus detection method,
In order to keep the difference between the height of the irradiation position of the deposition laser light and the previously determined substrate surface height at the same position constant, this difference is used as an error signal to feed back the irradiation intensity of the deposition laser light or the substrate scanning speed. This is a wiring formation method characterized by control, and the apparatus for realizing this method includes a chamber having a window and a source gas supply for introducing a source gas into the chamber to deposit a conductive material by a thermal decomposition reaction. an irradiation observation optical system capable of observing the substrate surface while focusing and irradiating a deposition laser beam from a laser light source onto the substrate disposed in a chamber exposed to the source gas atmosphere; In a wiring forming apparatus comprising a stage that scans the substrate relative to the deposition laser beam, the height of the deposit surface at the convergence position of the deposition laser beam from the laser light source on the substrate and the vicinity A focal height detection unit that measures the height of the substrate surface in the direction in which wiring is planned to be drawn in real time, and a focal height detection unit that measures the intensity of the focal height signal at the focal position of the deposition laser beam and the substrate position in the vicinity. Determine the deposition thickness at the deposition laser beam irradiation position from the difference in signal intensity from the focal point height at the nearby position delayed by the stage movement time difference,
The wiring forming apparatus is characterized by comprising a signal processing unit that performs feedback control of the emission intensity of the laser light source or the moving speed of the stage so that the thickness is constant.

〔作用〕[Effect]

レーザ光の集光照射により生ずる温度上昇を利用して原
料ガスの熱分解を起こし、配線を遣損する場合に、基板
の熱特性の変化等の影響を受けることなく安定に配線を
描画するには、何らかの方法でレーザ光照射部の温度も
しくは熱拡散定数もしくは、結果として生ずる堆積量な
どを反映する信号をS/N比よく検出し、この信号をも
とに温度上昇が所定の範囲内に収まるようにレーザ光の
照射強度などのフィードバック制御することが必要であ
る。
How to stably draw wiring without being affected by changes in the thermal characteristics of the substrate when the temperature rise caused by focused laser beam irradiation is used to thermally decompose the raw material gas and damage the wiring. , a signal reflecting the temperature or thermal diffusion constant of the laser beam irradiated part or the resulting amount of deposition is detected by some method with a good S/N ratio, and based on this signal, the temperature rise is kept within a predetermined range. Therefore, it is necessary to perform feedback control of the irradiation intensity of the laser beam, etc.

本発明では、レーザ光照射部の遣損線の厚みを直接実時
間に測定しながら、その測定値を遣損安定化するための
フィードバック制御信号として用いていることが特徴で
ある。基板上の特定の微小スポットの表面高さを非接触
的に計る方法としては、集光したレーザ光の浅い焦点深
度を利用する方法が自動焦点検出法の一手法としてよく
知られている。この測定法については、例えば1987
年の精密光学会誌2月号のベージ136より三井等によ
る報告があり、この測定法によれば、基板上に集光した
レーザ光からの戻り光に円筒レンズと4分割ダイオード
を組み合わせた非点収差検出法を適用して、基板上の数
μmのスポット上の領域の高さを2nmの精度で測定で
きることが記述されている0本発明では、この表面高さ
計測法を、堆積した遣損線の厚みを精度良く計測するた
めに改良した。即ち、堆積を起こさせるレーザ光の照射
位置と、そのレーザ光照射位置から配線描画方向に離れ
た基板表面上の描画予定位置の2点の高さをまず実時間
で計測し、後者の高さの信号に関しては、この2点のス
テージの移動時間分遅れた時点までの信号を記憶、ある
時点のレーザ光照射位置での堆積物の無いときの表面高
さを予め求めておき、堆積物の表面高さとの差を求めて
堆積の厚みを実時間に測定することを特徴とする。
The present invention is characterized in that the thickness of the loss line of the laser beam irradiation section is directly measured in real time, and the measured value is used as a feedback control signal for stabilizing the loss. As a method for non-contactly measuring the surface height of a specific minute spot on a substrate, a method that utilizes the shallow depth of focus of a focused laser beam is well known as an automatic focus detection method. Regarding this measurement method, for example, in 1987
There is a report by Mitsui et al. in Page 136 of the February issue of the Journal of Precision Optics, and according to this measurement method, the return light from the laser beam focused on the substrate is detected using an astigmatic method that combines a cylindrical lens and a 4-part diode. It is described that by applying an aberration detection method, the height of a spot on a spot of several μm on a substrate can be measured with an accuracy of 2 nm. In the present invention, this surface height measurement method is applied to Improved to accurately measure line thickness. That is, first, the heights of two points, the irradiation position of the laser beam that causes deposition and the planned drawing position on the substrate surface that is distant from the laser beam irradiation position in the wiring drawing direction, are measured in real time, and the height of the latter is measured in real time. Regarding the signal, the signal up to the point in time delayed by the movement time of the stage at these two points is memorized, the surface height at the laser beam irradiation position at a certain point when there is no deposit is determined in advance, and the height of the surface when there is no deposit is determined. The feature is that the thickness of the deposit is measured in real time by determining the difference from the surface height.

2点の高さの差から堆積の厚みを求めることは、特にレ
ーザ直描法のように凹凸のある基板上の任意の位置に配
線を遣損する場合、不可欠と考えられる。基板表面の正
確な高さを遣損線の描画直前に測定しておくことにより
、基板上の局所的な凹凸や、ゆるやかな起伏、もしくは
、時間経過などにより生ずる膜厚の測定誤差の発生を最
小限に抑えることが出来る。この方法では、表面の反射
率は戻り光の強度には影響するものの、高さ検出には、
4分割ダイオードの出力間の相対強度比を用いるので高
さ測定精度にはほとんど影響を受けずにフィードバック
信号を検出できるので、下地の反射率の変化による帰還
制御の困難さを生ずる問題がない、また、直接膜厚をモ
ニタしているので遣損線の膜厚の制御性が大幅に向上す
る。また、線幅も膜厚の変化に追従して変化するので、
線幅についても同様に制御性を向上できる利点もある。
Determining the deposition thickness from the difference in height between two points is considered essential, especially when wiring is lost at an arbitrary position on an uneven substrate as in the case of direct laser writing. By measuring the exact height of the substrate surface immediately before drawing the loss line, it is possible to avoid film thickness measurement errors caused by local irregularities, gentle undulations, or the passage of time on the substrate. It can be kept to a minimum. In this method, although the reflectance of the surface affects the intensity of the returned light, it is difficult to detect the height.
Since the relative intensity ratio between the outputs of the four-division diode is used, the feedback signal can be detected with almost no effect on the height measurement accuracy, so there is no problem of difficulty in feedback control due to changes in the reflectance of the base. Furthermore, since the film thickness is directly monitored, the controllability of the film thickness of the lost wire is greatly improved. In addition, the line width also changes according to the change in film thickness, so
There is also the advantage that controllability regarding line width can be similarly improved.

第1図は、本発明の堆積膜の膜厚測定の原理を説明する
図である。第1図<a)は、時刻T=Toの時の基板上
の堆積物と測定用のレーザスポットの位置関係を示し、
(b)は時刻T=To 十dtの時の基板上の位置関係
を示す図である0時間幅dtは、ステージがレーザスポ
ットAとBの間隔を移動するに要する時間であり、T−
70時の測定される高さをレーザスポットA、Bそれぞ
れについて、ZA  (T) 、ZB  (T)と表わ
すと、時刻T”To +dtでの堆積の厚みは、2^(
To +at)−Za  (To )と求めることが出
来る。このように基板表面と堆積表面の2箇所で高さを
モニタしておくことで、正確に堆積する遣損線の厚みを
測定することができ、その信号と参照値との差を誤差信
号として、CVD用のレーザ光強度もしくは、ステージ
移動速度にフィードバックすることにより基板上に熱伝
導率の局所的な変動等に伴う、遣損線の線幅や厚みのバ
ラつきを抑え、安定な描画を実現することが可能となる
FIG. 1 is a diagram illustrating the principle of measuring the thickness of a deposited film according to the present invention. FIG. 1<a) shows the positional relationship between the deposit on the substrate and the measurement laser spot at time T=To,
(b) is a diagram showing the positional relationship on the substrate at time T=To 10 dt. The 0 time width dt is the time required for the stage to move the distance between laser spots A and B, and T-
If the heights measured at 70 o'clock are expressed as ZA (T) and ZB (T) for laser spots A and B, respectively, then the deposition thickness at time T''To +dt is 2^(
It can be calculated as To +at)-Za (To). By monitoring the height at two locations, the substrate surface and the deposition surface, it is possible to accurately measure the thickness of the deposited loss wire, and the difference between this signal and the reference value is used as an error signal. By feeding back to the CVD laser light intensity or stage movement speed, it suppresses variations in the line width and thickness of the damaged line due to local fluctuations in thermal conductivity on the substrate, achieving stable drawing. It becomes possible to do so.

フィードバックの向きは、厚みが基準値より薄くなれば
、レーザパワーを増すもしくは、ステージ移動速度を遅
くする方向で、逆に厚みが基準値より大きくなればレー
ザパワーを下げる、もしくは、ステージ移動速度を上げ
る方向に制御する。
The direction of the feedback is to increase the laser power or slow down the stage movement speed if the thickness becomes thinner than the reference value, and to decrease the laser power or slow down the stage movement speed if the thickness becomes larger than the reference value. control in the upward direction.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第2図は、本発明の配線形成方法及び装置の一実施例の
構成図である6基板1は、窓2を有するCVDチェンバ
ー3内に置かれ、CVDの原料ガスを供給する原料ガス
供給ユニット4と、排気ポンプ5がCVDチェンバー3
に接続されている。
FIG. 2 is a block diagram of an embodiment of the wiring forming method and apparatus of the present invention. 6 The substrate 1 is placed in a CVD chamber 3 having a window 2, and a raw material gas supply unit supplies raw material gas for CVD. 4 and exhaust pump 5 are CVD chamber 3
It is connected to the.

レーザCVDと堆積と高さ測定用光源を兼ねるArレー
ザからなる第1のレーザ光源6からの出射光は、第1の
音波ミラー7で折り曲げられ、第2の合波ミラー8、λ
/4板1板金2り、対物レンズ13で集光されて、窓2
を通り、CVDチェンバー3内の基板1にビーム径1μ
mの集光スポットとなって照射される。一方、照明用の
ランプ10と第3の合波ミラー9、第2の合波ミラー8
、λ/4板1板金2物レンズ13、TV14からなる光
学系は、基板1の表面形状を観察する顕微鏡光学系を構
成している。また、第1のレーザ光源からの出射光の集
光位置から3μm離れた基板の表面にビーム径1μmの
集光スポットを形式する第2のレーザ光源17は波長6
33nmのHe−Neレーザから成り、その出射光は、
偏光スプリッター16で折り曲げられ、XY偏向器15
でステージ11の移動方向に集光スポットが向くようわ
ずかに偏向され、第1の合波ミラー7、第2の合波ミラ
ー8、λ/4板1板金2物レンズ13、窓2を通り、基
板1に照射される。第1のレーザ光源6からのレーザ光
と、第2のレーザ光17がらの光の中で、基板で反射し
た光は、入射光路を逆にたどって、偏光スプリッタ16
で入射光路から別れて、焦点高さ検出ユニットに入る。
The emitted light from a first laser light source 6 consisting of a laser CVD and an Ar laser that also serves as a light source for deposition and height measurement is bent by a first acoustic mirror 7, and then reflected by a second multiplexing mirror 8, λ
/4 plate 1 sheet metal 2, focused by objective lens 13, window 2
The beam diameter is 1 μm to the substrate 1 in the CVD chamber 3.
It is irradiated as a condensed spot of m. On the other hand, an illumination lamp 10, a third multiplexing mirror 9, a second multiplexing mirror 8
, an optical system consisting of one λ/4 plate, one sheet metal lens 13, and a TV 14 constitutes a microscope optical system for observing the surface shape of the substrate 1. In addition, the second laser light source 17 forms a condensed spot with a beam diameter of 1 μm on the surface of the substrate 3 μm away from the condensing position of the emitted light from the first laser light source.
It consists of a 33 nm He-Ne laser, and its emitted light is
It is bent by the polarization splitter 16, and the XY deflector 15
The light beam is slightly deflected so that the focused spot faces in the moving direction of the stage 11, and passes through the first multiplexing mirror 7, the second multiplexing mirror 8, one λ/4 plate, two sheet metal lenses 13, and the window 2. The substrate 1 is irradiated. Among the laser light from the first laser light source 6 and the light from the second laser light 17, the light reflected by the substrate retraces the incident optical path and passes through the polarization splitter 16.
It separates from the incident optical path and enters the focal height detection unit.

焦点高さ検出ユニットは、第1のレーザ光源6と第2の
レーザ光源17の光を分離する合波ミラー18と、第1
の円筒レンズ19、第1の4分割ダイオード21、第2
の円筒レンズ20、第2の円筒レンズ22からなる。円
筒レンズと4分割ダイオードの組み合わせは、非点収差
法により基板上のレーザ光が焦点位置にあれば出力がO
1焦点位置から外れると、外れる方向と外れの大きさに
応じて、正負の出力電圧を発生する6高さの検出感度と
しては、300A程度が再現性よく得られ、遣損厚みの
モニタとして、十分な精度が得られた。
The focal height detection unit includes a combining mirror 18 that separates the light from the first laser light source 6 and the second laser light source 17, and a first
, a cylindrical lens 19, a first four-division diode 21, a second
It consists of a cylindrical lens 20 and a second cylindrical lens 22. The combination of a cylindrical lens and a 4-split diode uses the astigmatism method to reduce the output to 0 if the laser beam on the substrate is at the focal position.
When it deviates from one focal position, it generates positive and negative output voltages depending on the direction and size of the deviation.As for the detection sensitivity of 6 heights, about 300A can be obtained with good reproducibility, and it can be used as a monitor for the thickness of damage. Sufficient accuracy was obtained.

この構成では、第1の円筒レンズ1つと第1の4分割ダ
イオード21の組み合わせが第1のレーザ光源からの集
光スポット即ち、堆積の先端部の高さの測定に用いられ
、焦点高さ測定ユニットのもう一方が、堆積から僅かに
離れた基板表面上の描画予定位置の高さを測定する。信
号処理ユニット23は、第1の4分割ダイオード21及
び、第2の4分割ダイオード22の出力信号と、ステー
ジ11の動作状態を入力として、レーザ遣損部の堆積を
厚みを実時間で求め、参照値との差を演算して、その結
果から、第1のレーザ光源6の出力を増減させる信号も
しくは、ステージ11の移動速度を増減させる信号を出
力するとともに、対物レンズの高さが、基板面に対して
一定となるように、対物レンズの高さを増減する機能を
有している。CVDに使用した原料ガスは、I Tor
rのW(Co)6で、大気圧のArガスをキャリアガス
として用いた。
In this configuration, a combination of one first cylindrical lens and a first four-part diode 21 is used to measure the height of the focused spot from the first laser light source, that is, the tip of the deposit, and is used to measure the focal height. The other unit measures the height of the intended writing position on the substrate surface slightly away from the deposition. The signal processing unit 23 uses the output signals of the first 4-division diode 21 and the second 4-division diode 22 and the operating state of the stage 11 as input, and calculates the thickness of the deposit in the laser-damaged portion in real time. The difference from the reference value is calculated, and based on the result, a signal to increase or decrease the output of the first laser light source 6 or a signal to increase or decrease the moving speed of the stage 11 is output, and the height of the objective lens is It has the function of increasing or decreasing the height of the objective lens so that it remains constant with respect to the surface. The raw material gas used for CVD was I Tor
r W(Co) 6 and atmospheric pressure Ar gas was used as the carrier gas.

次にこの装置の動作のシーケンスを説明する。Next, the sequence of operation of this device will be explained.

基板1をCVDチェンバー3にマウントし、C■Dチェ
ンバー内の残留ガスを排気ポンプ5で排気し、その後原
料ガスを原料ガス供給ユニット4からCVDチェンバー
3に流す、基板1の配線を描画したい位置の開始点にス
テージ11を移動し、第1のレーザ光源6よりレーザ光
を出射し、描画を開始する。描画を開始すると同時に、
焦点高さ検出ユニットは、CVD用のレーザビームの集
光位置の堆積の高さと、そこから僅かに離れた、描画方
向の基板表面の高さを測定する。後者に間しては、−旦
データを記憶する。ステージ11が動いて、次の測定点
に動いたときにこの点での基板の高さデータを呼び出し
、堆積の高さデータとの差を求め、その点での堆積の厚
みを求め、参照値との比較を行い、堆積圧が参照値より
低ければレーザパワーを増加する方向もしくは、ステー
ジ移動速度を減少する方向に、逆に堆積圧が参照値より
厚くなれば、レーザパワーを下げるもしくは、ステージ
移動速度を上げる方向にフィードバック制御を行う、ま
た、1サイクルの焦点高さの測定が終了した時点で、堆
積の表面に集光点がくるよう対物レンズ13の高さを上
下させる自動焦点機構を動作させて、基板上のレーザ光
の集光状態の安定化を図る。
Mount the substrate 1 in the CVD chamber 3, exhaust the residual gas in the CD chamber with the exhaust pump 5, and then flow the source gas from the source gas supply unit 4 to the CVD chamber 3.The position where you want to draw the wiring on the substrate 1. The stage 11 is moved to the starting point, and a laser beam is emitted from the first laser light source 6 to start drawing. As soon as you start drawing,
The focal height detection unit measures the height of the deposition at the focal point of the CVD laser beam and the height of the substrate surface in the writing direction slightly away from the focal point. During the latter period, data is stored for -1 times. When the stage 11 moves to the next measurement point, the height data of the substrate at this point is called up, the difference with the deposition height data is determined, the thickness of the deposition at that point is determined, and the reference value is calculated. If the deposition pressure is lower than the reference value, increase the laser power or decrease the stage movement speed; conversely, if the deposition pressure becomes thicker than the reference value, decrease the laser power or decrease the stage movement speed. Feedback control is performed in the direction of increasing the moving speed, and an automatic focusing mechanism is provided that raises and lowers the height of the objective lens 13 so that the focal point is on the surface of the deposit when one cycle of focal height measurement is completed. The laser beam is operated to stabilize the convergence state of the laser beam on the substrate.

このようにして、遣損の安定化を図った結果、LSIを
模擬した基板上で、堆積厚3000A、線幅、1.5μ
mの線を下地配線の有無に関わらず±10%の高い精度
で、配線が段差部等で途切れたりする事なく、安定にW
配線を描画することができた。
In this way, as a result of stabilizing the loss, the deposition thickness was 3000A and the line width was 1.5μ on a substrate simulating an LSI.
W.m wires with a high accuracy of ±10% regardless of the presence or absence of underlying wiring, without the wiring being interrupted at steps etc.
I was able to draw the wiring.

このことは、従来法の基板からの反射率をフィードバッ
ク信号として遣損する方法に比べ、本発明によれば、下
地に配線があって、熱伝導率が局所的に大きく変化して
いる場合でも、直横線の、線幅や、厚みの変化のほとん
どない、制御性に優れる配線形成方法及び配線形成装置
を提供できることを示している。
This means that, compared to the conventional method of using the reflectance from the substrate as a feedback signal, according to the present invention, even if there is wiring underneath and the thermal conductivity varies greatly locally, This shows that it is possible to provide a wiring forming method and a wiring forming apparatus with excellent controllability, with almost no change in the line width or thickness of straight and horizontal lines.

以上述べた、一実施例では、レーザCVD用の光源と、
焦点位置検出用の光源を一部兼用する場合に付いて延べ
たが、焦点高さ検出には、専用のレーザ光源を用いても
良いことは、言うまでもない、その場合、光源の波長の
選択の自由度が上がるので、短波長の光源を選択すれば
、集光点の焦点深度が浅くなるので高さ測定制度をさら
に向上させることかできる。
In one embodiment described above, a light source for laser CVD,
Although we have discussed the case where a part of the light source is also used for focal position detection, it goes without saying that a dedicated laser light source may also be used for focal height detection. Since the degree of freedom is increased, if a light source with a short wavelength is selected, the depth of focus of the converging point becomes shallower, and the accuracy of height measurement can be further improved.

またCVD用の光源としては、CW光源を用いた場合に
ついて延べたが、高繰り返しのパルス光源を用いてもよ
い。この場合、パルス幅を基板の熱拡散時間程度以下に
とれば基板の熱伝導率の変化の影響を相対的に受けにく
くなる事や、基板表面での熱拡散が抑えられることから
細い遣損線の描画が容易になる利点があり、本発明を適
用して、現実的な配線として求められる細く且つ厚い配
線を安定に描画することができる利点が生まれる。
Furthermore, although the case where a CW light source is used as the light source for CVD has been described, a high repetition rate pulsed light source may also be used. In this case, if the pulse width is set to less than the thermal diffusion time of the substrate, it will be relatively less susceptible to changes in the thermal conductivity of the substrate, and heat diffusion on the substrate surface will be suppressed, so thin wires can be used. There is an advantage that the drawing of the wiring becomes easy, and by applying the present invention, there is an advantage that thin and thick wiring required as a realistic wiring can be stably drawn.

なお、本発明に用いる信号処理ユニット、対物レンズの
位置調整機構(自動焦点機構)、ステージ移動機構はコ
ンパクトディスク装置、光デイスク装置等で用いている
ものが利用できるので詳しい説明は省略した。
Note that the signal processing unit, objective lens position adjustment mechanism (automatic focus mechanism), and stage movement mechanism used in the present invention can be those used in compact disk devices, optical disk devices, etc., and therefore detailed explanations are omitted.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、従来の配線描画方
法及び装置に比べ、レーザ光照財部の堆積の厚みを直接
実時間でモニタし、フィードバック制御を行うことから
、遣損配線を基板上の場所による、反射率や熱特性の変
動に起因する断線や、線幅の変動の発生を抑えることが
可能となり、制御性に優れた実用的な配線形成方法及び
その装置を提供することが出来る。
As described above, according to the present invention, compared to the conventional wiring drawing method and apparatus, the thickness of the deposited laser beam part is directly monitored in real time and feedback control is performed, so that the damaged wiring can be removed from the board. It is possible to suppress the occurrence of wire breakage and fluctuations in line width due to changes in reflectance and thermal characteristics depending on the location of the wire, and it is possible to provide a practical wiring formation method and device with excellent controllability. .

・・・原料ガス供給ユニット、5・・・排気ポンプ、6
・・・第1のレーザ光源、7・・・第1の合波ミラー、
8・・・第2の合波ミラー、9・・・第3の合波ミラー
、10・・・照明、11・・・ステージ、12・・・^
/4板、13・・対物レンズ、14・・・TV、15・
・・XY偏向器、16・・・偏光スプリッター、17・
・・第2のレーザ光源、18・・・分波ミラー、19・
・・第1の円筒レンズ、20・・・第2の円筒レンズ、
21・・・第1の4分割ダイオード、22・・・第2の
4分割ダイオード、23・・・信号処理ユニット。
... Raw material gas supply unit, 5... Exhaust pump, 6
... first laser light source, 7... first multiplexing mirror,
8... Second multiplexing mirror, 9... Third multiplexing mirror, 10... Lighting, 11... Stage, 12...^
/4 plate, 13...objective lens, 14...TV, 15...
・・XY deflector, 16・・Polarization splitter, 17・
...Second laser light source, 18...Demultiplexing mirror, 19.
...first cylindrical lens, 20...second cylindrical lens,
21... First 4-division diode, 22... 2nd 4-division diode, 23... Signal processing unit.

Claims (1)

【特許請求の範囲】 1、熱分解反応により導電性物質を堆積する化合物気体
を含む原料ガス雰囲気中の基板に堆積用レーザ光を集光
しながら、基板を堆積用レーザ光に対し相対的に走査し
て配線を描画する配線形成方法において、堆積用レーザ
光の照射位置の堆積物の高さと、近傍の描画予定地点の
基板表面高さをレーザ焦点検出法により検出し、堆積用
レーザ光の照射位置の高さと先に求めた同位置での基板
表面高さとの差が一定になるよう、この差を誤差信号と
して、堆積用レーザ光の照射強度もしくは基板走査速度
をフィードバック制御することを特徴とする配線形成方
法。 2、窓を有するチェンバと、熱分解反応により導電性物
質を堆積する原料気体を前記チェンバに導入する原料ガ
ス供給ユニットと、原料気体雰囲気にさらされるチャン
バ内に配置した基板上に、レーザ光源からの堆積用レー
ザ光を集光して照射しながら、該基板表面を観察するこ
とのできる照射観察光学系と、該堆積用レーザ光に対し
て基板を相対的に走査するステージとからなる配線形成
装置において、基板上のレーザ光源からの堆積用レーザ
光の集光位置での堆積物表面の高さ、及び近傍の配線描
画予定方向の基板表面の高さを実時間で各々計測する焦
点高さ検出ユニットと、該堆積用レーザ光の集光位置の
焦点高さ信号の強度と、該近傍の基板位置とのステージ
移動時間差分遅延させた該近傍の位置の焦点高さからの
信号強度の差から堆積用レーザ光照射位置の堆積厚みを
求め、この厚みが一定となるよう該レーザ光源の出射強
度もしくは、ステージの移動速度をフィードバック制御
する信号処理ユニットとを備えたことを特徴とする配線
形成装置。
[Claims] 1. While focusing the deposition laser light on the substrate in a raw material gas atmosphere containing a compound gas on which a conductive substance is deposited by a thermal decomposition reaction, the substrate is placed relative to the deposition laser light. In a wiring formation method that draws wiring by scanning, the height of the deposit at the irradiation position of the deposition laser beam and the substrate surface height of the nearby drawing point are detected using a laser focus detection method. The feature is that the irradiation intensity of the deposition laser beam or the substrate scanning speed is feedback-controlled using this difference as an error signal so that the difference between the height of the irradiation position and the previously determined substrate surface height at the same position is constant. Wiring formation method. 2. A chamber having a window, a source gas supply unit that introduces a source gas into the chamber for depositing a conductive material through a pyrolysis reaction, and a source gas supply unit that introduces a source gas into the chamber that is exposed to the source gas atmosphere from a laser light source. Wiring formation consisting of an irradiation observation optical system that can observe the surface of the substrate while focusing and irradiating the deposition laser beam, and a stage that scans the substrate relative to the deposition laser beam. In the device, the height of the deposit surface at the focal point of the deposition laser beam from the laser light source on the substrate and the height of the substrate surface in the direction in which nearby wiring is planned to be drawn are measured in real time. Difference between the intensity of the focal height signal of the detection unit and the focal position of the deposition laser beam, and the signal strength from the focal height of the neighboring position delayed by the stage movement time difference between the detection unit and the neighboring substrate position. Wiring formation characterized by comprising: a signal processing unit that determines the deposition thickness at the deposition laser beam irradiation position from the above and feedback-controls the emission intensity of the laser light source or the moving speed of the stage so that the thickness is constant. Device.
JP4015390A 1990-02-20 1990-02-20 Wiring forming method and apparatus Expired - Lifetime JP2890616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4015390A JP2890616B2 (en) 1990-02-20 1990-02-20 Wiring forming method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4015390A JP2890616B2 (en) 1990-02-20 1990-02-20 Wiring forming method and apparatus

Publications (2)

Publication Number Publication Date
JPH03241834A true JPH03241834A (en) 1991-10-29
JP2890616B2 JP2890616B2 (en) 1999-05-17

Family

ID=12572822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4015390A Expired - Lifetime JP2890616B2 (en) 1990-02-20 1990-02-20 Wiring forming method and apparatus

Country Status (1)

Country Link
JP (1) JP2890616B2 (en)

Also Published As

Publication number Publication date
JP2890616B2 (en) 1999-05-17

Similar Documents

Publication Publication Date Title
JP2659429B2 (en) Photoacoustic signal detection method and apparatus, and semiconductor element internal defect detection method
TWI447468B (en) Autofocus method and apparatus for wafer scribing
US6188478B1 (en) Method and apparatus for film-thickness measurements
JPS61116360A (en) Laser beam lithography
JP2003075134A (en) Shape measuring method and shape measuring device using optical interference
JP2009276269A (en) Surface profile measuring device and exposure device
CN108549124A (en) A kind of device and method using pulse laser machining holography golden light grid
JPH03241834A (en) Wiring formation method and device
CN114878593A (en) Wafer surface defect detection device and method
JPH05228671A (en) Excimer laser machine
JPH0438833B2 (en)
US10751832B2 (en) Optical non-destructive inspection method and optical non-destructive inspection apparatus
CN110899988B (en) Laser marking focusing control method
US8724116B2 (en) Scanning mirrors in near field optical microscope having super resolution
JP3082208B2 (en) Photoacoustic signal detection method and apparatus, and semiconductor element internal defect detection method
JPH1019693A (en) Method of measuring stress of semiconductor device
JPH0348104A (en) Measuring method of overlapping deviation and measuring apparatus thereof
JP2507409B2 (en) Interference fringe generator
JPH11248955A (en) Optical waveguide, method for aligning lens and optical waveguide, device for aligning lens and optical waveguide, wireless optical communication equipment and recording medium
JP2647543B2 (en) Shape measurement method
JP2869143B2 (en) Substrate tilt detector
JP2022117055A (en) Device and method for detecting cracks
JP2002107120A (en) Position detector for surface and rear, and apparatus and method for marking
JP2024105017A (en) Optical measurement device and optical measurement method
JPS5920650Y2 (en) Laser beam diameter measuring device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080226

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090226

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100226

Year of fee payment: 11

EXPY Cancellation because of completion of term