JPH03241014A - Carbon fiber having low specific gravity - Google Patents

Carbon fiber having low specific gravity

Info

Publication number
JPH03241014A
JPH03241014A JP3693990A JP3693990A JPH03241014A JP H03241014 A JPH03241014 A JP H03241014A JP 3693990 A JP3693990 A JP 3693990A JP 3693990 A JP3693990 A JP 3693990A JP H03241014 A JPH03241014 A JP H03241014A
Authority
JP
Japan
Prior art keywords
specific gravity
carbon fiber
fiber
hollow
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3693990A
Other languages
Japanese (ja)
Inventor
Yoji Matsuhisa
松久 要治
Masayoshi Washiyama
正芳 鷲山
Toru Hiramatsu
徹 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP3693990A priority Critical patent/JPH03241014A/en
Publication of JPH03241014A publication Critical patent/JPH03241014A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To provide the subject fiber having high carbon content, containing single hollow part in the core part, having low apparent specific gravity and high tensile strength and useful for aerospace material, fishing rod, etc. CONSTITUTION:The objective fiber contains a single hollow part at the core and has a carbon content of >=90%, an apparent specific gravity of <=1.65 and a tensile strength of >=350kg/mm<2>. The hollowness of the fiber is preferably 10-30%.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は低比重炭素繊維、特に芯部に単一の中空部を有
して見掛比重が低く、かつ引張強度の高い低比重炭素繊
維に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to low specific gravity carbon fibers, particularly low specific gravity carbon fibers that have a single hollow part in the core, have low apparent specific gravity, and have high tensile strength. Regarding.

[従来の技術] 近年炭素繊維の用途展開が拡がるとともに、比強度およ
び比弾性率に対する向上要求がますます高まっている。
[Prior Art] In recent years, as the use of carbon fibers has expanded, there has been an increasing demand for improvements in specific strength and specific modulus.

特に重量軽減効果の大きい航空宇宙用途などでは、重量
を少しでも軽くするためにより軽い炭素繊維が求められ
ている。
Particularly in aerospace applications where the weight reduction effect is significant, lighter carbon fibers are required to reduce weight as much as possible.

従来の炭素繊維は、比重が1.75〜2.10程度が主
流であり、樹脂の比重1.2〜1. 4に比べて高く、
炭素繊維強化複合材料の比重を上げる原因となっていた
Conventional carbon fibers mainly have a specific gravity of about 1.75 to 2.10, and the specific gravity of resin is about 1.2 to 1. Higher than 4,
This caused an increase in the specific gravity of carbon fiber reinforced composite materials.

ところで、炭素繊維の見掛比重を低下させる技術として
は、炭素繊維を中空化することが知られている。しかし
ながら、従来公知の中空炭素繊維は主に焼成あるいは後
処理工程において、芯部を分解飛散あるいは溶解して中
空化する技術である(特開昭55−45866号公報、
特公平1−53362号公報)。このためボイド等の欠
陥が発生しゃすく引張強度レベルが300kg/mm2
未満と低いために補強用炭素繊維としては強度が不十分
であるという問題があった。
By the way, as a technique for lowering the apparent specific gravity of carbon fibers, it is known to make carbon fibers hollow. However, conventionally known hollow carbon fibers are made hollow by disassembling or dissolving the core in the firing or post-treatment process (Japanese Patent Laid-Open No. 55-45866,
(Special Publication No. 1-53362). Therefore, defects such as voids occur and the tensile strength level is 300 kg/mm2.
There was a problem that the strength was insufficient as a reinforcing carbon fiber because of the low strength.

一方、600℃以下の温度で熱分解する熱分解性重合体
を混合紡糸し、その熱分解性重合体成分を焼成工程で飛
散させ、多孔質として低比重化することが知られている
(特開平2−140242号公報)。しかしながら、こ
の方法による炭素繊維は内部ボイドが非常に多いために
強度レベルが低く、また焼成工程での分解ガスの発生量
が非常に多いために排ガス処理の負担か大きい。さらに
焼成時に生しるタール状分解物のために単糸間接着を起
しやすいという問題があった。
On the other hand, it is known that a pyrolyzable polymer that decomposes at a temperature of 600°C or less is mixed and spun, and the pyrolyzable polymer component is dispersed in the firing process to make it porous and have a low specific gravity (especially Publication No. 2-140242). However, carbon fiber produced by this method has a low strength level because it has a large number of internal voids, and the amount of decomposed gas generated during the firing process is large, so the burden of exhaust gas treatment is heavy. Furthermore, there is a problem in that the tar-like decomposition products produced during firing tend to cause adhesion between single yarns.

なお、ピッチ系汎用炭素繊維において比重が1゜65前
後の低比重炭素繊維があるが、引張強度が100 kg
/nm+2未満と低く補強用炭素繊維としては不十分な
ものであった。
In addition, among pitch-based general-purpose carbon fibers, there is low specific gravity carbon fiber with a specific gravity of around 1°65, but the tensile strength is 100 kg.
/nm+2, which was low and insufficient as a reinforcing carbon fiber.

[発明が解決しようとする課題] そこで、本発明者らは従来の高強度タイプ炭素繊維並み
の強度を維持し、見掛比重が大幅に低い炭素繊維を鋭意
検討して本発明に至った。すなわち本発明の課題は、上
記従来技術では達成し得なかった見掛比重が低く、かつ
高強度の炭素繊維を提供することにある。
[Problems to be Solved by the Invention] Therefore, the present inventors have intensively studied carbon fibers that maintain strength comparable to conventional high-strength type carbon fibers and have significantly lower apparent specific gravity, and have arrived at the present invention. That is, an object of the present invention is to provide carbon fibers with low apparent specific gravity and high strength, which could not be achieved with the above-mentioned conventional techniques.

[課題を解決するための手段] 本発明の上記課題は炭素含有量が90重量%以上で、芯
部に単一の中空部を有し、見掛比重が↓。
[Means for Solving the Problems] The above object of the present invention is to have a carbon content of 90% by weight or more, a single hollow part in the core, and an apparent specific gravity of ↓.

65以下、引張強度が350kg/mm2以上であるこ
とを特徴とする低比重炭素繊維によって解決することが
できる。
This problem can be solved by using low specific gravity carbon fiber, which is characterized by having a tensile strength of 65 kg/mm2 or less and a tensile strength of 350 kg/mm2 or more.

まず、本発明の低比重炭素繊維について説明する。First, the low specific gravity carbon fiber of the present invention will be explained.

すなわち、本発明の炭素繊維は見掛比重が1゜65以下
と非常に低く、かつ引張強度が350kg/Trm2以
上と従来の高強度炭素繊維並みであるので比強度を大幅
に向上させることができる。従って、本発明の低比重炭
素繊維により複合材料の比重を低くすることが可能とな
り、それによって比強度、比弾性率を大幅に向上させる
ことが可能となる。特に宇宙用途では1gが1万円以上
に匹敵すると言われ、比重は非常に重要なポイントであ
る。しかも、本発明の炭素繊維は芯部に単一の中空部を
有するため、同一断面積の円形断面に対して断面二次モ
ーメントが大幅に向上し、複合材料とした時の曲げ特性
を大幅に向上させることができる。
That is, the carbon fiber of the present invention has a very low apparent specific gravity of 1°65 or less, and a tensile strength of 350 kg/Trm2 or more, which is comparable to conventional high-strength carbon fibers, so the specific strength can be significantly improved. . Therefore, the low specific gravity carbon fiber of the present invention makes it possible to lower the specific gravity of the composite material, thereby making it possible to significantly improve specific strength and specific modulus. Particularly in space applications, 1 gram is said to be equivalent to more than 10,000 yen, and specific gravity is a very important point. Moreover, since the carbon fiber of the present invention has a single hollow part in the core, the moment of inertia of the area is significantly improved compared to a circular cross section with the same cross-sectional area, and the bending properties when made into a composite material are greatly improved. can be improved.

なお炭素繊維は、焼成温度を1000℃以下と低くする
ことによっても比重を1.65以下にすることは可能で
あるが、引張強度が低下するため高強度を得るためには
炭素含有量が90重量%以上になるまで焼成することが
必要である。
Note that it is possible to reduce the specific gravity of carbon fiber to 1.65 or less by lowering the firing temperature to 1000°C or less, but the tensile strength decreases, so in order to obtain high strength, the carbon content must be reduced to 90°C. It is necessary to bake until the amount reaches % by weight or more.

本発明における炭素含有量は元素分析により測定した値
であり、見掛比重はアルキメデス法により求めた値であ
る。すなわち、単位長さの炭素繊維について空気中の重
量(Wl)および液中の重量(W2)を測定し次式より
求めた。
The carbon content in the present invention is a value measured by elemental analysis, and the apparent specific gravity is a value determined by the Archimedes method. That is, the weight in air (Wl) and the weight in liquid (W2) of a unit length of carbon fiber were measured and calculated from the following equation.

なお、液としてはジクロルベンゼンを使用した。Note that dichlorobenzene was used as the liquid.

見掛比重= (Wl/ (Wl−W2)’)X液化量ま
た、引張強度は樹脂含浸ストランド評価法により求めた
。すなわち、”ベークライト”ERL−4221/三フ
ツ化ホウ素モノエチルアミン(BF3 ・MEA)/ア
セトン= 100/3/4部を炭素繊維に含浸し、得ら
れた樹脂含浸ストランドを130℃で30分間加熱して
硬化させ、JIS−R−7601に規定する樹脂含浸ス
トランド試験法に従って測定した。繊維断面積としては
中空を含む断面積を用いた。
Apparent specific gravity = (Wl/(Wl-W2)') x liquefaction amount In addition, the tensile strength was determined by the resin-impregnated strand evaluation method. That is, carbon fiber was impregnated with "Bakelite" ERL-4221/boron trifluoride monoethylamine (BF3/MEA)/acetone = 100/3/4 parts, and the resulting resin-impregnated strand was heated at 130°C for 30 minutes. The resin-impregnated strand was measured according to the resin-impregnated strand test method specified in JIS-R-7601. As the fiber cross-sectional area, the cross-sectional area including hollow space was used.

次に、本発明の低比重炭素繊維について、アクリル系炭
素繊維を例にとってその製法例を説明する。
Next, an example of a manufacturing method for the low specific gravity carbon fiber of the present invention will be explained using acrylic carbon fiber as an example.

すなわち、見掛比重が1.65と低くするためには、芯
部に単一の中空を有することが必要である。また引張強
度を350kg/m112以上と高く維持するためには
、単繊維デニールが好ましくは1.5以下でありかつ中
空のアクリル系繊維を焼成して得られる、欠陥の少ない
中空アクリル系炭素繊維であることが好ましい。
That is, in order to lower the apparent specific gravity to 1.65, it is necessary to have a single hollow in the core. In addition, in order to maintain a high tensile strength of 350 kg/m112 or more, hollow acrylic carbon fibers with a single fiber denier of preferably 1.5 or less and with few defects obtained by firing hollow acrylic fibers are used. It is preferable that there be.

中空率としては、好ましくは4〜40%、より好ましく
は10〜30%である。すなわち、4%未満では中空化
の効果が不十分であり、40%を越えると鞘の肉厚が薄
くなって割れたりつぶれやすくなって、強度が低下する
ことがあり好ましくない。
The hollowness ratio is preferably 4 to 40%, more preferably 10 to 30%. That is, if it is less than 4%, the hollowing effect will be insufficient, and if it exceeds 40%, the sheath will become thinner and more likely to crack or collapse, resulting in a decrease in strength, which is not preferable.

中空アクリル系繊維を製造するための紡糸方法には、湿
式紡糸法、乾湿式紡糸法あるいは乾式紡糸法を採用でき
るが、好ましくは湿式紡糸法あるいは乾湿式紡糸法、さ
らに好ましくは細繊度が得られやすい乾湿式紡糸法がよ
い。安定焼成可能な細繊度でかつ中空部がつぶれたり、
鞘部が破れたりすることのない安定した中空アクリル系
繊維を製造するためには、芯鞘口金を用いて芯部に凝固
A wet spinning method, a wet-dry spinning method, or a dry spinning method can be adopted as the spinning method for producing hollow acrylic fibers, but preferably a wet spinning method or a wet-dry spinning method is used, and more preferably a method that can obtain fine fineness. The easy dry-wet spinning method is preferable. The fineness allows for stable firing, and the hollow part does not collapse.
In order to produce stable hollow acrylic fibers that do not tear the sheath, the core is coagulated using a core-sheath die.

水洗あるいは延伸浴液に可溶なポリマーを入れて、製糸
工程中で芯部を溶解することが有効である。
It is effective to dissolve the core portion during the spinning process by adding a soluble polymer to the water washing or drawing bath solution.

凝固、水洗あるいは延伸浴液に可溶なポリマーとは、凝
固名演に用いられるアセトン、メタノール、アセトニト
リル、ジメチルスルホキシド、ジメチルホルムアミドな
どの有機溶媒あるいは塩化亜鉛、硝酸、ロダンソーダ、
硝酸ロダン塩などの無機溶媒および水洗、延伸浴液に用
いられる水。
Polymers that are soluble in coagulation, water washing, or stretching bath solutions include organic solvents used for coagulation such as acetone, methanol, acetonitrile, dimethyl sulfoxide, and dimethyl formamide, or zinc chloride, nitric acid, rhodan soda,
Inorganic solvents such as rhodan nitrate and water used in washing and stretching bath solutions.

熱水、蒸気、グリセリンなどの溶媒のいずれかに溶解す
るものである。具体的にはポリビニルエーテル、ポリビ
ニルアルコール、ポリエチレングリコール、ポリプロピ
レングリコール、ポリアクリルアミド、ポリアクリル酸
、ポリビニルピロリドン、ポリエチレンイミン、ポリリ
ン酸ソーダなどの合成高分子、およびビスコース、メチ
ルセルロース、エチルセルロース、ヒドロキシエチルセ
ルロース、カルボキシルメチルセルロース、デキストリ
ン、ジアルデヒドデンプン、カルボキシルデンプンなど
の半合成高分子、さらにデンプン、デキストリン、トラ
ガントゴムなどの天然高分子の中から選ばれる1種ない
し2種以上の混合物を示すことができる。
It is soluble in any solvent such as hot water, steam, or glycerin. Specifically, synthetic polymers such as polyvinyl ether, polyvinyl alcohol, polyethylene glycol, polypropylene glycol, polyacrylamide, polyacrylic acid, polyvinylpyrrolidone, polyethyleneimine, and sodium polyphosphate, as well as viscose, methylcellulose, ethylcellulose, hydroxyethylcellulose, and carboxyl It can include one or a mixture of two or more selected from semi-synthetic polymers such as methylcellulose, dextrin, dialdehyde starch, and carboxyl starch, as well as natural polymers such as starch, dextrin, and gum tragacanth.

鞘部に入れるアクリル系重合体としては、少なくとも8
5モル%以上のアクリロニトリルと15モル%以下の共
重合可能なビニル系モノマ、たとえばアクリル酸、メタ
クリル酸、イタコン酸およびそれらのアルカリ金属塩、
アンモニウム塩および低級アルキルエステル類、アクリ
ルアミドおよびその誘導体、アリルスルホン酸、メタリ
ルスルホン酸およびそれらの塩類またはアルキルエステ
ル類などとの共重合体を挙げることができる。
The acrylic polymer to be put into the sheath is at least 8
5 mol% or more of acrylonitrile and 15 mol% or less of a copolymerizable vinyl monomer, such as acrylic acid, methacrylic acid, itaconic acid, and their alkali metal salts;
Examples include copolymers with ammonium salts and lower alkyl esters, acrylamide and its derivatives, allylsulfonic acid, methallylsulfonic acid and their salts or alkyl esters.

その重合法については、従来公知の溶液重合。The polymerization method is conventionally known solution polymerization.

懸濁重合、乳化重合などを適用することができるか、重
合度としては極限粘度([η])で1.0以上、好まし
くは1.5以上にするのが一般的である。
Suspension polymerization, emulsion polymerization, etc. can be applied, and the degree of polymerization is generally set to an intrinsic viscosity ([η]) of 1.0 or more, preferably 1.5 or more.

これら芯および鞘の吐出量を調節することにより、中空
率を調節することができ、目的に応じて調整することが
好ましい。
By adjusting the discharge amount of these cores and sheaths, the hollowness ratio can be adjusted, and it is preferable to adjust it depending on the purpose.

口金としては、公知の芯鞘口金を用いることができるが
、同心タイプの口金が好ましい。口金孔数については3
00〜10000程度が一般的である。延伸倍率につい
ては、2〜15倍程度が一般的であるが、倍率が高すぎ
ると中空がつぶれる場合があるので4〜10倍程度が好
ましい。乾燥緻密化工程においても、急速に乾燥を行な
うと中空がつぶれる場合があるので、60〜150℃。
As the base, a known core/sheath base can be used, but a concentric type base is preferable. Regarding the number of cap holes: 3
Generally, it is about 00 to 10,000. The stretching ratio is generally about 2 to 15 times, but is preferably about 4 to 10 times because if the ratio is too high, the hollow space may be crushed. Also in the drying and densification step, the temperature is 60 to 150°C, as rapid drying may cause the hollow to collapse.

好ましくは100〜130℃の低温で行なうことが好ま
しい。
Preferably, it is carried out at a low temperature of 100 to 130°C.

このようにして得られた中空アクリル系繊維を200〜
300℃の酸化性雰囲気中で緊張下あるいは延伸条件下
において耐炎化した後、不活性雰囲気中1000℃以上
で緊張下あるいは延伸条件下に炭化することが好ましい
The hollow acrylic fibers obtained in this way are
It is preferable to make the film resistant to flame under tension or stretching in an oxidizing atmosphere at 300°C, and then carbonize it under tension or stretching at 1000°C or higher in an inert atmosphere.

高強度を得るためには、不活性雰囲気中の焼成温度を1
200〜1600℃の範囲にすることがさらに好ましい
が、必要に応じて2000℃以上で黒鉛化することがで
きる。
To obtain high strength, the firing temperature in an inert atmosphere must be set to 1.
It is more preferable to set the temperature in the range of 200 to 1600°C, but graphitization can be carried out at 2000°C or higher if necessary.

緻密性を上げて強度および弾性率を向上させるためには
、300〜500℃および2400〜3000℃の領域
で延伸することが一層有効であり、具体的には延伸比で
L  O〜↑、4倍程度にするのがよい。
In order to increase density and improve strength and elastic modulus, it is more effective to stretch in the range of 300 to 500 °C and 2400 to 3000 °C, and specifically, the stretching ratio is LO~↑, 4 It is best to double the amount.

得られた炭素繊維を公知の方法により表面処理およびサ
イジング付与することができる。この炭素繊維を強化繊
維として、熱硬化性および熱可塑性樹脂、セラミックス
、金属等をマトリックスとして低比重で高比強度の複合
材料が得られる。
The obtained carbon fibers can be subjected to surface treatment and sizing by known methods. Using this carbon fiber as a reinforcing fiber and a matrix of thermosetting and thermoplastic resins, ceramics, metals, etc., a composite material with low specific gravity and high specific strength can be obtained.

[実施例] 以下、実施例により本発明をさらに具体的に説明する。[Example] Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 アクリロニトリル(AN)99.6モル%とイタコン酸
0.4モル%からなる共重合体を用いて、濃度が20重
量%のジメチルスルホキシド(DMSO)溶液(ポリマ
ーA)を作製するとともに、重合度3500のポリビニ
ルアルコールの濃度7重量%のDMSO溶液(ポリマー
B)を作製した。
Example 1 A dimethyl sulfoxide (DMSO) solution (polymer A) with a concentration of 20% by weight was prepared using a copolymer consisting of 99.6 mol% acrylonitrile (AN) and 0.4 mol% itaconic acid, and A DMSO solution (polymer B) containing polyvinyl alcohol having a degree of polymerization of 3500 and having a concentration of 7% by weight was prepared.

ポリマーAおよびポリマーBをそれぞれ鞘および芯用ポ
リマーとして、いずれも温度35℃に調整し、孔径0.
12皿φ、ホール数1000の同心タイプの芯鞘口金を
通して一旦空気中に吐出して約4mmの空間を走らせた
後、温度5℃、濃度30%のDMSO水溶液中で凝固さ
せた。引取速度は30m/分であった。吐出量の比は芯
部1に対して鞘部は6であった。凝固糸条を水洗後、4
段の温水延伸浴で2.5倍に延伸しシリコーン系油剤を
付与した後、110℃に加熱されたローラー表面に接触
させて乾燥緻密化し、さらに3. 5kg/dの加圧ス
チーム中で3倍に延伸して単糸繊度0゜8d、トータル
デニール800Dの繊維束を得た。
Polymer A and Polymer B were used as sheath and core polymers, respectively, and the temperature was adjusted to 35°C, and the pore size was 0.
It was once discharged into the air through a concentric core-sheath type cap with 12 dishes φ and 1000 holes, and was allowed to run through a space of about 4 mm, and then coagulated in a DMSO aqueous solution with a concentration of 30% at a temperature of 5°C. The withdrawal speed was 30 m/min. The discharge amount ratio was 1 for the core and 6 for the sheath. After washing the coagulated yarn with water,
After stretching to 2.5 times in a hot water stretching bath and applying a silicone oil agent, it was brought into contact with a roller surface heated to 110°C to dry and densify it, and then 3. The fiber bundle was drawn three times in pressurized steam at 5 kg/d to obtain a fiber bundle with a single yarn fineness of 0°8 d and a total denier of 800 D.

得られたアクリル繊維は芯部に繊維軸方向に連続した中
空部を有していた。
The obtained acrylic fiber had a hollow portion in the core portion that was continuous in the fiber axis direction.

この中空アクリル系繊維を240〜270℃の空気中で
延伸比1.05で耐炎化して耐炎化繊維に転換し、つい
で最高温度1500℃の窒素雰囲気中で焼成することに
より、安定して芯部に繊維軸方向に連続した中空部を有
する中空炭素繊維が得られた。
This hollow acrylic fiber is converted into a flame-resistant fiber by making it flame-resistant in air at 240-270°C at a stretching ratio of 1.05, and then fired in a nitrogen atmosphere at a maximum temperature of 1500°C, thereby stably forming the core. A hollow carbon fiber having a hollow portion continuous in the axial direction of the fiber was obtained.

得られた中空炭素繊維は炭素含有量は96重量%、中空
率は約15%で見掛比重が1.55と低く、かつ引張強
度が560kg/mm2と高強度であった。
The obtained hollow carbon fiber had a carbon content of 96% by weight, a hollowness ratio of about 15%, an apparent specific gravity as low as 1.55, and a high tensile strength of 560 kg/mm2.

比較例1 実施例1において、芯部にもポリマーAを入れた以外は
、実施例1と同様な方法で製糸および焼成したところ、
炭素含有量は実施例1と同等の96重量%であったが、
中空部はできず中実炭素繊維となって見掛比重が1.8
2と高いものしか得られなかった。
Comparative Example 1 The yarn was spun and fired in the same manner as in Example 1, except that Polymer A was also added to the core.
The carbon content was 96% by weight, which is the same as in Example 1, but
There are no hollow parts and it becomes a solid carbon fiber with an apparent specific gravity of 1.8.
I could only get something as high as 2.

実施例2〜4 実施例1において、芯と鞘の吐出量比を表1のように変
える以外は実施例1と同様に製糸および焼成して中空炭
素繊維を得た。得られた炭素繊維の特性を表1に示す。
Examples 2 to 4 Hollow carbon fibers were obtained by spinning and firing in the same manner as in Example 1 except that the discharge rate ratio of the core and sheath was changed as shown in Table 1. Table 1 shows the properties of the obtained carbon fiber.

なお、炭素含有量はいずれも96重量%であった。Note that the carbon content was 96% by weight in all cases.

(以下、余白) 表1 実施例5 実施例1で得られた中空炭素繊維をさらに2800℃ま
で焼成して黒鉛化繊維とした。
(Hereinafter, blank spaces) Table 1 Example 5 The hollow carbon fiber obtained in Example 1 was further fired to 2800°C to obtain a graphitized fiber.

得られた黒鉛化繊維は芯部に繊維軸方向に連続した中空
部を有す・る中空黒鉛化繊維であり、炭素含有量は99
,8重量%で見掛比重が1.58と低く、かっ引張強度
が460kg/mm2と高強度であった。
The obtained graphitized fiber is a hollow graphitized fiber having a hollow part continuous in the fiber axis direction in the core, and the carbon content is 99%.
, 8% by weight, the apparent specific gravity was as low as 1.58, and the tensile strength was as high as 460 kg/mm2.

比較例2 実施例1で得られた中空アクリル系繊維を8゜0℃で焼
成して中空炭素繊維を得た。見掛比重は1.63と低か
ったが、炭素含有率は83%と低く、強度も290kg
/mm2と低いものしか得られなかった。
Comparative Example 2 The hollow acrylic fiber obtained in Example 1 was fired at 8.degree. C. to obtain hollow carbon fiber. Although the apparent specific gravity was low at 1.63, the carbon content was low at 83% and the strength was 290 kg.
Only a low value of /mm2 was obtained.

[発明の効果] 本発明の炭素繊維は、350kg/a2以上と。[Effect of the invention] The carbon fiber of the present invention has a weight of 350 kg/a2 or more.

従来の高強度タイプ炭素繊維と同等の強度を有し、かつ
見掛比重が1.65以下と従来の炭素繊維に比べて非常
に比重の低い炭素繊維であり、航空宇宙材料および釣竿
などのスポーツ材料をより軽く。
It is a carbon fiber that has the same strength as conventional high-strength type carbon fibers, and has an apparent specific gravity of 1.65 or less, which is extremely low compared to conventional carbon fibers, and is suitable for aerospace materials and sports materials such as fishing rods. lighter materials.

より薄くすることを可能にし、炭素繊維の活用範囲を一
層拡大することができる。
This makes it possible to make carbon fiber even thinner, further expanding the scope of use of carbon fiber.

Claims (1)

【特許請求の範囲】[Claims] 炭素含有量が90重量%以上で、芯部に単一の中空部を
有し、見掛比重が1.65以下、引張強度が350kg
/mm^2以上であることを特徴とする低比重炭素繊維
The carbon content is 90% by weight or more, the core has a single hollow part, the apparent specific gravity is 1.65 or less, and the tensile strength is 350kg.
/mm^2 or more low specific gravity carbon fiber.
JP3693990A 1990-02-16 1990-02-16 Carbon fiber having low specific gravity Pending JPH03241014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3693990A JPH03241014A (en) 1990-02-16 1990-02-16 Carbon fiber having low specific gravity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3693990A JPH03241014A (en) 1990-02-16 1990-02-16 Carbon fiber having low specific gravity

Publications (1)

Publication Number Publication Date
JPH03241014A true JPH03241014A (en) 1991-10-28

Family

ID=12483726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3693990A Pending JPH03241014A (en) 1990-02-16 1990-02-16 Carbon fiber having low specific gravity

Country Status (1)

Country Link
JP (1) JPH03241014A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160117620A (en) 2014-03-06 2016-10-10 도레이 카부시키가이샤 Carbon fibres, and production method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160117620A (en) 2014-03-06 2016-10-10 도레이 카부시키가이샤 Carbon fibres, and production method therefor
US10260172B2 (en) 2014-03-06 2019-04-16 Toray Industries, Inc. Carbon fibers, and production method therefor

Similar Documents

Publication Publication Date Title
JP5765420B2 (en) Carbon fiber bundle and method for producing carbon fiber
JP4910729B2 (en) Method for producing carbon fiber precursor fiber, carbon fiber and method for producing the same
JP5720783B2 (en) Carbon fiber bundle and method for producing carbon fiber bundle
KR101467620B1 (en) Manufacturing method of carbon fiber and precursor
JP5313788B2 (en) Carbon fiber precursor fiber bundle and method for producing the same
KR102157184B1 (en) Methode for preparing acrylonitrile based copolymer fiber
JP3892212B2 (en) Carbon fiber precursor fiber bundle
JP4875238B2 (en) Method for producing carbon fiber and precursor thereof, and method for attaching oil agent
JP4216873B2 (en) Method for producing carbon fiber precursor fiber bundle
JP4446991B2 (en) Method for producing acrylonitrile-based precursor fiber for carbon fiber
JPH03241014A (en) Carbon fiber having low specific gravity
JP2004232155A (en) Light-weight polyacrylonitrile-based carbon fiber and method for producing the same
JP2870932B2 (en) Method for producing hollow acrylic carbon fiber
JP2004183194A (en) Carbon fiber bundle, acrylonitrile-based precursor fiber to the carbon fiber and method for producing the same
JP2004060126A (en) Carbon fiber and method for producing the same
KR102197333B1 (en) Polyacrylonitrile-based STABILIZED FIBER, CARBON FIBER, AND PREPARATION METHOD THEREOF
JP5842343B2 (en) Method for producing carbon fiber precursor acrylic fiber bundle
JP2007182645A (en) Method for producing acrylic fiber
JP2007332498A (en) Method for producing carbon fiber bundle
JP2007284807A (en) Fiber bundle of acrylonitrile-based carbon fiber precursor, method for producing the same and carbon fiber bundle
JP2005248358A (en) Precursor fiber for carbon fiber
JPH04202815A (en) Modified cross-sectional carbon yarn and carbon yarn-reinforced composite material
JP2006233360A (en) Carbon fiber and method for producing the carbon fiber
CN112030270A (en) Process for preparing refractory carbon fibers
JPH04272236A (en) Carbon fiber containing fine particle