JPH03239998A - Designing method for radiation shielding body - Google Patents

Designing method for radiation shielding body

Info

Publication number
JPH03239998A
JPH03239998A JP3790290A JP3790290A JPH03239998A JP H03239998 A JPH03239998 A JP H03239998A JP 3790290 A JP3790290 A JP 3790290A JP 3790290 A JP3790290 A JP 3790290A JP H03239998 A JPH03239998 A JP H03239998A
Authority
JP
Japan
Prior art keywords
radiation
dose
shielding
shield
radiation dose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3790290A
Other languages
Japanese (ja)
Other versions
JP2705993B2 (en
Inventor
Soichiro Okuda
奥田 莊一郎
Takafumi Nakagawa
隆文 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3790290A priority Critical patent/JP2705993B2/en
Publication of JPH03239998A publication Critical patent/JPH03239998A/en
Application granted granted Critical
Publication of JP2705993B2 publication Critical patent/JP2705993B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To exactly and quickly execute the calculation by constituting the radiation shielding body so that many measuring points are set onto the radiation dose measuring surface, and a leak radiation dose contributed by all radiation generation sources is calculated with regard to each measuring point. CONSTITUTION:The radiation dose measuring surface 5 is divided by a boundary 7 in accordance with a difference of shielding effects of radiation shielding bodies 4a, 4b. This division is taken widely so that the corresponding shielding body 4a or 4b covers a radiation generating apparatus 2, and to each divided surface, many measuring points 6e are set like a lattice. In such a way, a leak radiation dose in the measuring point 6e on the measuring surface corresponding to the shielding bodies 4a, 4b can be derived by a prescribed expression. Accordingly, from the derived leak ration does, the maximum dose in the measuring points 6a, 6b is derived, and based on this maximum dose, a size such as optimal thickness, etc., of the shielding bodies 4a, 4b can be designed.

Description

【発明の詳細な説明】 〔産業上の利用分野] この発明は、荷電粒子加速器などから放射される放射線
を遮蔽するための放射線遮蔽体の設計方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of designing a radiation shield for shielding radiation emitted from a charged particle accelerator or the like.

〔従来の技術〕[Conventional technology]

第2図は例えば、財団法人放射線安全技術センター出版
、「昭和60年度 科学技術調査資料作成委託調査報告
書−高エネルギー加速器施設の安全管理に関する基礎的
調査−」の68−71頁に記されている従来の放射線遮
蔽体の設計方法の原理を示す構成図であり、図において
、■はシンクロトロン等の荷電粒子加速器、2は入出射
機器もしくは偏向電磁石などのように荷電粒子がそこで
消滅しその際にγ線や中性子などの放射線を発生する放
射線発生源としての複数の放射線発生機器、3Cは放射
線発生機器2の一つから強度が最大になる方向に出る放
射線、4bは上記最大強度の放射線3cが透過する放射
線遮蔽体、4aは放射線遮蔽体4bと一体に形成され且
つ放射線遮蔽体4bとは境界4cを境に異なる厚さを有
し従って遮蔽効果の異なる放射線遮蔽体、3dは放射線
遮蔽体4aを透過する放射線、5は放射線管理区域境界
や使用室境界等に配される放射線量測定面、6cは放射
線3cと放射線量測定面5との交点に設けられた測定点
、6dは放射線3dと放射線量測定面5との交点に設け
られた測定点である。
For example, Figure 2 is written on pages 68-71 of ``FY1985 Scientific and Technical Research Data Creation Commissioned Survey Report - Basic Survey on Safety Management of High Energy Accelerator Facilities'' published by Radiation Safety Technology Center Foundation. This is a configuration diagram showing the principle of the conventional radiation shielding design method. 3C is the radiation emitted from one of the radiation generation devices 2 in the direction of maximum intensity, and 4b is the radiation with the maximum intensity. 3c is a transmitting radiation shield, 4a is a radiation shield that is formed integrally with the radiation shield 4b and has a different thickness from the radiation shield 4b at the boundary 4c, and therefore has a different shielding effect, and 3d is a radiation shield. Radiation passing through the body 4a, 5 is a radiation dose measurement surface placed at the boundary of a radiation control area or a room used, 6c is a measurement point provided at the intersection of the radiation 3c and the radiation dose measurement surface 5, 6d is a radiation dose measurement surface This is a measurement point provided at the intersection of 3d and the radiation dose measurement surface 5.

次に動作について説明する。Next, the operation will be explained.

放射線発生II器2の一つから出た最大強度の放射線3
cおよびそれ以外の放射線3dはそれぞれ放射線遮蔽体
4b、4aを透過して放射線量測定面5上における測定
点6c、6dに達する。
Maximum intensity radiation 3 emitted from one of the radiation generators 2
c and other radiation 3d pass through radiation shields 4b and 4a, respectively, and reach measurement points 6c and 6d on radiation dose measurement surface 5.

次に従来の漏洩放射線量の計算方法について説明する。Next, a conventional method of calculating leakage radiation dose will be explained.

放射線発生源の放射線発生量をR1測定点までの距離を
d、この間の放射線遮蔽体の厚さをし、この放射線遮蔽
体の10分の1価層をλ、および放射線と放射線遮蔽体
の法線とがなす角をθとすると、測定点6c、6dにお
ける漏洩放射線量Hは次式で与えられる。
The amount of radiation generated by the radiation source is expressed as: d is the distance to the measurement point R1, is the thickness of the radiation shield between this distance, is λ is the 1/10th valence layer of this radiation shield, and is the method of radiation and radiation shield. When the angle between the line and the line is θ, the leakage radiation dose H at the measurement points 6c and 6d is given by the following equation.

H=−10λS′nθ    ・・・・・・・・・ (
1)2 測定点6c、6dは以下のような基準で適当に選ばれる
。一般に放射線発生量は方向依存性を持つので、その最
大強度の方向の放射線3cがその線源からの最大線量の
代表として選ばれる。また、異なる遮蔽効果を持つ遮蔽
体4bを通る放射線も強そうなものが選ばれる。このよ
うにして選ばれた各放射線3c、3dと対応する測定点
6c、6dが放射線量測定面5上に予め設定され、この
設定された測定点6c、6dにおける漏洩放射線量Hが
上記(1)式により求められる。そしてこの漏洩放射線
量Hが規定値より小さくなるように、放射線遮蔽体4a
、4bの厚さ等が設計される。
H=-10λS'nθ ・・・・・・・・・ (
1)2 The measurement points 6c and 6d are appropriately selected based on the following criteria. Since the amount of radiation generated generally has direction dependence, the radiation 3c in the direction of maximum intensity is selected as a representative of the maximum dose from the source. Further, a shielding body 4b having different shielding effects that is likely to have strong radiation passing through it is also selected. Measurement points 6c and 6d corresponding to the respective radiations 3c and 3d thus selected are set in advance on the radiation dose measurement surface 5, and the leakage radiation dose H at the set measurement points 6c and 6d is ) is obtained by the formula. Then, the radiation shield 4a
, 4b, etc. are designed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の放射線遮蔽体の設計方法は上記のように行われて
いたので、荷電粒子加速器1のように複数の放射線発生
機器2が近接配置されている場合は、各放射線発生機器
2からの最大強度の放射線3cと放射線量測定面5上で
の最大線量とが必ずしもl:1で対応せず、各放射線発
生機器2の放射線3c、3dが互いに合成された点に最
大線量の測定点が生しることがある。このような最大線
量の測定点を設定するには、全ての放射線発生機器2か
ら出る全ての放射線について計算を行う必要があるが、
各放射線がどの程度に放射線遮蔽体4a、4bを通過す
るか、すなわち減衰効果の程度の判断が困難であるため
、コンピュータ等を用いて自動的に計算することができ
なかった。この計算の不正確さのために、放射線遮蔽体
の設計に際5ては安全率を見込まねばならず、このため
過大な放射線遮蔽体を配備する結果、施設の規模が大き
くなり、また高価になるという課題があった。
The conventional radiation shield design method was performed as described above, so when multiple radiation generating devices 2 are arranged in close proximity, such as in a charged particle accelerator 1, the maximum intensity from each radiation generating device 2 is The radiation 3c and the maximum dose on the radiation dose measurement surface 5 do not necessarily correspond at a l:1 ratio, and the measurement point of the maximum dose occurs at the point where the radiation 3c and 3d of each radiation generating device 2 are combined with each other. Sometimes. In order to set such a maximum dose measurement point, it is necessary to calculate all the radiation emitted from all the radiation generating devices 2.
Since it is difficult to judge how much each radiation passes through the radiation shields 4a and 4b, that is, the degree of attenuation effect, it has not been possible to automatically calculate it using a computer or the like. Due to the inaccuracy of this calculation, a safety factor must be taken into account when designing radiation shields, which results in the deployment of excessively large radiation shields, resulting in larger and more expensive facilities. There was an issue of becoming.

この発明は上記のような課題を解消するためになされた
もので、自動計算を可能にすることによって、放射線量
の予測を正確に行い、小形で安価な放射線遮蔽体を設計
することのできる放射線遮蔽体の設計方法を得ることを
目的とする。
This invention was made to solve the above-mentioned problems, and by enabling automatic calculation, it is possible to accurately predict the radiation dose and design a small and inexpensive radiation shield. The purpose is to obtain a design method for shielding bodies.

〔課題を解決するための手段] この発明に係る放射線遮蔽体の設計方法は、遮蔽効果の
異なる放射線遮蔽体に応じて分割した放IIt線星測定
面上に多数の測定点を設定し、各測定点について、放射
線遮蔽体を無限平面で表し前記(1)式を通用して各放
射線発生源からの漏洩放射線量を算出し、これら漏洩放
射線量を合算して各測定点の漏洩放射線量を計算するよ
うにしたものである。
[Means for Solving the Problems] A method for designing a radiation shield according to the present invention involves setting a large number of measurement points on a radiation star measurement surface divided according to radiation shields having different shielding effects, and For the measurement point, the radiation shielding body is expressed as an infinite plane, and the leakage radiation dose from each radiation source is calculated using the equation (1) above, and the leakage radiation dose at each measurement point is calculated by adding up the leakage radiation doses. It is designed to be calculated.

〔作 用〕[For production]

この発明における放射線遮蔽体の設計方法は、上記多数
の測定点に対して放射線発生源からの漏洩放射線量の計
算に上記(1)式を適用することは、コンピュータ・プ
ログラムにより実行することができ、また合算された各
測定点の漏洩放射線量は全ての放射線発生源が寄与する
ものであるため、それらのうちの最大線量に基づいて放
射線遮蔽体を設計することができる。
In the method of designing a radiation shield according to the present invention, applying the above equation (1) to the calculation of the amount of leaked radiation from the radiation source to the large number of measurement points can be executed by a computer program. Furthermore, since all the radiation sources contribute to the summed leakage radiation dose at each measurement point, the radiation shield can be designed based on the maximum dose among them.

〔実施例〕 以下、この発明の一実施例を図について説明する。第1
図においては、第2図と対応する部分には同一符号を付
して説明を省略する。
[Example] Hereinafter, an example of the present invention will be described with reference to the drawings. 1st
In the figure, parts corresponding to those in FIG. 2 are designated by the same reference numerals, and their explanation will be omitted.

第1図において、3aは全ての放射線発生機器2からの
放射線のうち放射線遮蔽体4aを透過する放射線、3b
は全ての放射線発生機器2からの放射線のうち放射線遮
蔽体4bを透過する放射線、6eは放射線量測定面5上
に格子状に多数設けられた測定点、6aは測定点6eの
うちの放射線遮蔽体4aを透過した放射線3aが集中す
る測定点、6bは測定点6eのうちの放射線遮蔽体4b
を透過した放射線3bが集中する測定点、7は放射線遮
蔽体4aと4bとの境界4cに対応する放射線量測定面
5上の境界である。
In FIG. 1, 3a is the radiation that passes through the radiation shield 4a among the radiation from all the radiation generating devices 2, and 3b is the radiation that passes through the radiation shield 4a.
6e is the radiation that passes through the radiation shield 4b among the radiation from all the radiation generating devices 2, 6e is the measurement point provided in a grid pattern on the radiation dose measurement surface 5, and 6a is the radiation shield among the measurement points 6e. Measurement point where radiation 3a transmitted through body 4a is concentrated, 6b is radiation shielding body 4b of measurement point 6e
A measurement point 7 on which the radiation 3b that has passed through is concentrated is a boundary on the radiation dose measurement surface 5 corresponding to the boundary 4c between the radiation shields 4a and 4b.

次に上記構成による漏洩放射線量の計算方法について説
明する。
Next, a method of calculating the leakage radiation dose using the above configuration will be explained.

先ず、放射線量測定面5を、放射線遮蔽体4a。First, the radiation dose measurement surface 5 is covered with the radiation shield 4a.

4bの遮蔽効果の違いに応じて境界7により分割する。It is divided by the boundary 7 according to the difference in the shielding effect of 4b.

この分割は対応する放射線遮蔽体4aまたは4bが各放
射線発生機器2を覆うように広(取り、場合によっては
境界7が生しないように各分割面が互いに重なり合って
もよい。次に各分割面に多数の測定点6eを格子状に設
定する。この他に各放射線発生機器2の最大線量方向に
も測定点を設ける。
This division is made wide so that the corresponding radiation shield 4a or 4b covers each radiation generating device 2, and in some cases, each division plane may overlap each other so that the boundary 7 is not formed.Next, each division plane A large number of measurement points 6e are set in a grid pattern.In addition, measurement points are also provided in the maximum dose direction of each radiation generating device 2.

i番目の放射線遮蔽体に対応する放射線量測定面5上の
点j(測定点6e)における漏洩放射線量Hi jは次
式で与えられる。
The leakage radiation dose Hi j at point j (measurement point 6e) on the radiation dose measurement surface 5 corresponding to the i-th radiation shield is given by the following equation.

ここにkは放射線発生機器2の番号であり、その他の変
数は前記(1)式と同様である。上記(2)式をコンピ
ュータ・プログラム化することは容易であるので、所定
の大きさを有する放射線遮蔽体4a、4bの配置に対す
る漏洩放射線量は直ちに求めることができる。
Here, k is the number of the radiation generating device 2, and the other variables are the same as in equation (1) above. Since it is easy to program the above equation (2) into a computer program, the amount of leakage radiation for the arrangement of the radiation shields 4a, 4b having a predetermined size can be immediately determined.

上記(2)式で求められた全ての放射線漏洩量Hi j
はそれぞれ全ての放射線発生機器2が寄与しているもの
である。従って、この放射線漏洩量Hi jから例えば
測定点6a、6bにおけるような最大線量を求め、この
最大線量に基づいて、放射線遮蔽体4a、4bの最適な
厚さ等の大きさを設計することができる。
All the radiation leakage amounts Hi j determined by the above equation (2)
are the contributions of all the radiation generating devices 2, respectively. Therefore, it is possible to determine the maximum dose, such as at the measurement points 6a and 6b, from this radiation leakage amount Hij, and design the optimal thickness and other sizes of the radiation shields 4a and 4b based on this maximum dose. can.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、放射線量測定面上に多
数の測定点を設定し、各測定点について全ての放射線発
生源が寄与する漏洩放射線量を算出するように構成した
ので、コンピュータを用いて正確且つ迅速に計算を行う
ことができ、これによって放射線遮蔽体を必要最小限の
大きさに設計することが可能になり、荷電粒子加速器等
の放射線発生装置の設備を小型化し且つ安価なものにす
ることができる効果が得られる。
As described above, according to the present invention, a large number of measurement points are set on the radiation dose measurement surface, and the leakage radiation dose contributed by all radiation sources is calculated for each measurement point. This makes it possible to design radiation shields to the minimum necessary size, making it possible to miniaturize and inexpensively make equipment for radiation generating devices such as charged particle accelerators. You can get effects that can be made into something.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による放射線遮蔽体の設計
方法の原理を示す構成図、第2図は従来の放射線遮蔽体
の設計方法の原理を示す構成図である。 ■は荷電粒子加速器、2は放射線発生機器、3a、3b
は放射線、4a、4bは放射線遮蔽体、5は放射線量測
定面、6a、6b、6eは放射線量測定点。 なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a block diagram showing the principle of a radiation shield design method according to an embodiment of the present invention, and FIG. 2 is a block diagram showing the principle of a conventional radiation shield design method. ■Charged particle accelerator, 2 radiation generation equipment, 3a, 3b
4a and 4b are radiation shields, 5 is a radiation dose measurement surface, and 6a, 6b, and 6e are radiation dose measurement points. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims]  複数の放射線発生源から出た放射線が所定の大きさの
放射線遮蔽体を透過し、所定位置に配された放射線量測
定面上に達した点における漏洩放射線量を所定の演算に
より予測し、この予測された漏洩放射線量に基づいて上
記放射線遮蔽体を設計する放射線遮蔽体の設計方法にお
いて、上記遮蔽効果の異なる放射線遮蔽体に応じて分割
した放射線測定面上に多数の測定点を設定し、各測定点
について、放射線遮蔽体を無限平面で表し上記所定の演
算を行って算出した上記各放射線発生源からの漏洩放射
線量を合算して、各測定点の漏洩放射線量としたことを
特徴とする放射線遮蔽体の設計方法。
The leakage radiation dose at the point where radiation emitted from multiple radiation sources passes through a radiation shielding body of a predetermined size and reaches a radiation dose measurement surface placed at a predetermined position is predicted by a predetermined calculation. In the radiation shield design method of designing the radiation shield based on the predicted leakage radiation dose, a large number of measurement points are set on the radiation measurement surface divided according to the radiation shield with different shielding effects, For each measurement point, the leakage radiation dose from each of the radiation sources calculated by representing the radiation shield as an infinite plane and performing the above-mentioned predetermined calculations is summed to determine the leakage radiation dose at each measurement point. A method of designing a radiation shield.
JP3790290A 1990-02-19 1990-02-19 Design method of radiation shield Expired - Lifetime JP2705993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3790290A JP2705993B2 (en) 1990-02-19 1990-02-19 Design method of radiation shield

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3790290A JP2705993B2 (en) 1990-02-19 1990-02-19 Design method of radiation shield

Publications (2)

Publication Number Publication Date
JPH03239998A true JPH03239998A (en) 1991-10-25
JP2705993B2 JP2705993B2 (en) 1998-01-28

Family

ID=12510476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3790290A Expired - Lifetime JP2705993B2 (en) 1990-02-19 1990-02-19 Design method of radiation shield

Country Status (1)

Country Link
JP (1) JP2705993B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101471892B1 (en) * 2013-06-13 2014-12-12 한국원자력의학원 Radiation profile system
JP2015227868A (en) * 2014-05-08 2015-12-17 有限会社 川原商会 Radiation shield capability testing method, and container and plate body used for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101471892B1 (en) * 2013-06-13 2014-12-12 한국원자력의학원 Radiation profile system
JP2015227868A (en) * 2014-05-08 2015-12-17 有限会社 川原商会 Radiation shield capability testing method, and container and plate body used for the same

Also Published As

Publication number Publication date
JP2705993B2 (en) 1998-01-28

Similar Documents

Publication Publication Date Title
US20150177712A1 (en) Computation of Radiating Particle and Wave Distributions using a Generalized Discrete Field Constructed from Representative Ray Sets
CN110110456B (en) Nuclear facility retired human body irradiated dose evaluation method
Larsen et al. Electron dose calculations using the method of moments
KR101545035B1 (en) Reactor dosimetry applications using a parallel 3-d radiation transport code
JP2021528627A (en) Three-dimensional reconstruction method based on half-value probability density distribution
Stasica et al. A simple approach for experimental characterization and validation of proton pencil beam profiles
JPH03239998A (en) Designing method for radiation shielding body
US20230214542A1 (en) Static device for use in radiotherapy treatment and design method for such a device
Zhang et al. Resolution analysis of thermal neutron radiography based on accelerator-driven compact neutron source
Arnold Geometrical theories of wave propagation: a contemporary review
Arce et al. CPU time optimization and precise adjustment of the Geant4 physics parameters for a VARIAN 2100 C/D gamma radiotherapy linear accelerator simulation using GAMOS
CN113804285B (en) Method and system for determining low-frequency harmonic noise propagation sound field of power transformer group
Bahadir Improved PWR radial reflector modeling with simulate5
Pautz et al. Adjoint-enabled Multidimensional Optimization of Satellite Electron/Proton Shields.
Ayyangar et al. Monte Carlo simulation of a multi-leaf collimator design for telecobalt machine using BEAMnrc code
R. Stevenson Shielding high energy accelerators
Lu et al. Dynamic Exposure Model of Scanning Beam Interference Lithography
Longoni et al. Reactor dosimetry applications using RAPTOR-M3G: a new parallel 3-D radiation transport code
Zhang et al. Benchmarking of electron beam parameters based on Monte Carlo linear accelerator simulation
CN106908067A (en) A kind of sun sensor and the method for determining solar vector
Singhal Development and implementation of first level event selection process on heterogeneous systems for high energy heavy ion collision experiments
Larsen et al. The atomic mix approximation for charged particle transport
Yang et al. Soller slits automatic focusing method for multi-element fluorescence detector
Yi et al. A hybrid block-oriented discrete ordinates and characteristics method algorithm for solving linear boltzmann equation
Lamrabet et al. GEANT4 modeling of the international MEGAPIE experiment