JP2705993B2 - Design method of radiation shield - Google Patents

Design method of radiation shield

Info

Publication number
JP2705993B2
JP2705993B2 JP3790290A JP3790290A JP2705993B2 JP 2705993 B2 JP2705993 B2 JP 2705993B2 JP 3790290 A JP3790290 A JP 3790290A JP 3790290 A JP3790290 A JP 3790290A JP 2705993 B2 JP2705993 B2 JP 2705993B2
Authority
JP
Japan
Prior art keywords
radiation
dose
shield
shielding
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3790290A
Other languages
Japanese (ja)
Other versions
JPH03239998A (en
Inventor
莊一郎 奥田
隆文 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3790290A priority Critical patent/JP2705993B2/en
Publication of JPH03239998A publication Critical patent/JPH03239998A/en
Application granted granted Critical
Publication of JP2705993B2 publication Critical patent/JP2705993B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、荷電粒子加速器などから放射される放射
線を遮蔽するための放射線遮蔽体の設計方法に関するも
のである。
Description: TECHNICAL FIELD The present invention relates to a method for designing a radiation shield for shielding radiation emitted from a charged particle accelerator or the like.

〔従来の技術〕[Conventional technology]

第2図は例えば、財団法人 放射線安全技術センター
出版、「昭和60年度 科学技術調査資料作成委託 調査
報告書 −高エネルギー加速器施設の安全管理に関する
基礎的調査−」の68−71頁に記されている従来の放射線
遮蔽体の設計方法の原理を示す構成図であり、図におい
て、1はシンクロトロン等の荷電粒子加速器、2は入出
射機器もしくは偏向電磁石などのように、荷電粒子がそ
こで消滅しその際にγ線や中性子などの放射線を発生す
る放射線発生源としての複数の放射線発生機器、3cは放
射線発生機器2の一つから強度が最大になる方向に出る
放射線、3dは放射線発生機器2の一つから出た最大強度
の方向でない放射線である。4bは上記最大強度の放射線
3cが透過する放射線遮蔽体、4aは放射線遮蔽体4bと一体
に形成され、且つ放射線遮蔽体4bとは境界4cを境に異な
る厚さのため遮蔽効果の異なる放射線遮蔽体であり、こ
の放射線遮蔽体4aを上記放射線3dが透過する。5は放射
線管理区域境界や使用室境界等に配される放射線量測定
面、6cは放射線3cと放射線量測定面5との交点に設けら
れた測定点、6dは放射線3dと放射線量測定面5との交点
に設けられた測定点である。
Fig. 2 is described, for example, on pages 68-71 of the Radiation Safety Technology Center, published by the Radiation Safety Technology Center, entitled "Study Report on the Creation of Science and Technology Survey Data for 1985-Basic Survey on Safety Management of High Energy Accelerator Facilities-". FIG. 1 is a configuration diagram showing the principle of a conventional radiation shielding design method. In the figure, reference numeral 1 denotes a charged particle accelerator such as a synchrotron, and 2 denotes a charged particle where it disappears, such as an input / output device or a bending magnet. At this time, a plurality of radiation generators as radiation sources that generate radiation such as γ-rays and neutrons, 3c is radiation emitted from one of the radiation generators 2 in a direction in which the intensity becomes maximum, and 3d is radiation generator 2 Out of the direction of maximum intensity from one of the 4b is the maximum intensity radiation
The radiation shield 3c is transmitted therethrough, and the radiation shield 4a is formed integrally with the radiation shield 4b, and has a different shielding effect from the radiation shield 4b due to a different thickness at the boundary 4c. The radiation 3d penetrates the body 4a. 5 is a radiation dose measuring surface arranged at the boundary of the radiation control area or the use room, 6c is a measuring point provided at the intersection of the radiation 3c and the radiation dose measuring surface 5, 6d is a radiation 3d and a radiation dose measuring surface 5 Is a measurement point provided at the intersection with.

次に従来の放射線遮蔽体の設計方法について説明す
る。
Next, a conventional radiation shielding design method will be described.

放射線発生機器2の一つから出た最大強度の放射線3c
およびそれ以外の放射線3dはそれぞれ放射線遮蔽体4b,4
aを透過して放射線量測定面5上における測定点6c,6dに
達する。
Maximum intensity radiation 3c from one of the radiation generators 2
And other radiation 3d are radiation shields 4b and 4 respectively.
The light passes through a and reaches the measurement points 6c and 6d on the radiation dose measurement surface 5.

次に漏洩放射線量を計算する。放射線発生源の放射線
発生量をR、測定点までの距離をd、この間の放射線遮
蔽体の厚さをt、この放射線遮蔽体の10分の1価層を
λ、および放射線と放射線遮蔽体の放線とがなす角をθ
とすると、測定点6c,6dにおける漏洩放射線量Hは次式
で与えられる。
Next, the leakage radiation dose is calculated. The radiation generation amount of the radiation source is R, the distance to the measurement point is d, the thickness of the radiation shield between them is t, the 1 / 10th layer of the radiation shield is λ, and the radiation and radiation shield are The angle between the radiation and θ
Then, the leakage radiation dose H at the measurement points 6c and 6d is given by the following equation.

測定点6c,6dは以下のような基準で適当に選ばれる。
一般に放射線発生量は方向依存性を持つので、その最大
強度の方向の放射線3cがその線源(放射線発生機器2)
からの最大線量の代表として選ばれる。また、遮蔽効果
の弱い遮蔽体4bを通る放射線3dも強そうなものが選ばれ
る。このようにして選ばれた各放射線3c,3dと対応する
測定点6c,6dが放射線量測定面5上に予め設定され、こ
の設定された測定点6c,6dにおける漏洩放射線量Hが上
記(1)式により求められる。そして、この漏洩放射線
量Hの最大値が規定値より小さくなるように、放射線遮
蔽体4a,4bの厚さ等が設計される。
The measurement points 6c and 6d are appropriately selected based on the following criteria.
In general, the amount of radiation generated has direction dependence, and the radiation 3c in the direction of the maximum intensity is the source (radiation generator 2).
Selected as representative of the maximum dose from In addition, the radiation 3d that passes through the shielding body 4b having a weak shielding effect is selected so as to be likely to be strong. The measurement points 6c and 6d corresponding to the radiations 3c and 3d selected in this way are preset on the radiation dose measurement surface 5, and the leakage radiation dose H at the set measurement points 6c and 6d is calculated by the above (1). ) Expression. The thickness and the like of the radiation shields 4a and 4b are designed so that the maximum value of the leakage radiation amount H is smaller than a specified value.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来の放射線遮蔽体の設計方法は上記のように行われ
ていたので、荷電粒子加速器1のように複数の放射線発
生機器2が近接配置されている場合は、各放射線発生機
器2からの最大強度の放射線3cと放射線量測定面5上で
の最大線量とが必ずしも1:1で対応せず、各放射線発生
機器2の放射線3c,3dが互いに合成された点に最大線量
の測定点が生じることがある。このような最大線量の測
定点を設定するには、全ての放射線発生機器2から出る
全ての放射線について計算を行う必要があるが、各放射
線がどの程度に放射線遮蔽体4a,4bを通過するか、すな
わち減衰効果の過程の判断が困難であるため、コンピュ
ータ等を用いて自動的に計算することができなかった。
この計算の不正確さのために、放射線遮蔽体の設計に際
しては安全率を見込まねばならず、このため過大な放射
線遮蔽体を配備する結果、施設の規模が大きくなり、ま
た高価になるという課題があった。
Since the conventional radiation shield design method is performed as described above, when a plurality of radiation generating devices 2 are arranged close to each other as in the charged particle accelerator 1, the maximum intensity from each radiation generating device 2 is increased. Radiation 3c does not always correspond to the maximum dose on the radiation dose measurement surface 5 at a ratio of 1: 1, and the maximum dose measurement point occurs at the point where the radiations 3c and 3d of each radiation generator 2 are combined with each other. There is. In order to set such a measurement point of the maximum dose, it is necessary to calculate all the radiations emitted from all the radiation generating devices 2, but how much each radiation passes through the radiation shields 4a and 4b That is, since it is difficult to determine the process of the damping effect, the calculation cannot be automatically performed using a computer or the like.
Due to the inaccuracy of this calculation, a safety factor must be taken into account when designing the radiation shield, and as a result of deploying an excessively large radiation shield, the size of the facility becomes large and the cost increases. was there.

この発明は上記のような課題を解消するためになされ
たもので、自動計算を可能にすることによって、放射線
量の予測を正確に行い、小形で安価な放射線遮蔽体を設
計することのできる放射線遮蔽体の設計方法を得ること
を目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems. By enabling automatic calculation, it is possible to accurately predict a radiation dose and to design a small and inexpensive radiation shield. It is an object to obtain a design method of a shield.

〔課題を解決するための手段〕[Means for solving the problem]

この発明に係る放射線遮蔽体の設計方法は、放射線を
放射する複数の放射線発生源、この放射線発生源から放
射される放射線を遮蔽する放射線遮蔽体、及びこの放射
線遮蔽体からの所定位置に放射線量測定面をそれぞれ設
定し、この放射線量測定面を遮蔽効果の異なる放射線遮
蔽体に応じて分割するとともに放射線量測定面上に格子
状に測定点を設定し、この各測定点において複数の放射
線発生源から放射され放射線遮蔽体を透過した漏洩放射
線量を演算し、算出されたこの漏洩放射線量が規定値以
下になるように放射線遮蔽体を設計するようにしたもの
である。
A method of designing a radiation shield according to the present invention includes a plurality of radiation sources that emit radiation, a radiation shield that shields radiation emitted from the radiation source, and a radiation dose at a predetermined position from the radiation shield. Each measurement surface is set, this radiation dose measurement surface is divided according to radiation shields with different shielding effects, and measurement points are set in a grid on the radiation dose measurement surface. The amount of leakage radiation radiated from the source and transmitted through the radiation shield is calculated, and the radiation shield is designed so that the calculated amount of leakage radiation is equal to or less than a specified value.

〔作 用〕(Operation)

この発明における放射線遮蔽体の設計方法は、放射線
測定面上の測定点における漏洩放射線量は、全ての放射
線発生源からの放射線が寄与しているので、正確に漏洩
放射線量の最大値(最大線量)を予測することができ
る。また、最大線量が規定値以下になるように放射線遮
蔽体の厚さ等を変更することによって放射線遮蔽体を設
計することができるので、容易に小形で安価な放射線遮
蔽体を設計することができる。
According to the radiation shielding design method of the present invention, the leakage radiation dose at the measurement point on the radiation measurement surface is accurately determined by the maximum value of the leakage radiation dose (maximum radiation dose) because radiation from all radiation sources contributes. ) Can be predicted. Further, since the radiation shield can be designed by changing the thickness or the like of the radiation shield so that the maximum dose is equal to or less than the specified value, a small and inexpensive radiation shield can be easily designed. .

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第
1図において、第2図と対応する部分には同一符号を付
して説明を省略する。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, parts corresponding to those in FIG. 2 are denoted by the same reference numerals, and description thereof is omitted.

第1図において、3aは全ての放射線発生機器(放射線
発生源)2からの放射線のうち放射線遮蔽体4aを透過す
る放射線、3bは全ての放射線発生機器2からの放射線の
うち放射線遮蔽体4bを透過する放射線である。5は放射
線管理区域境界や使用室境界等に配される放射線量測定
面であり、この放射線量測定面5は放射線遮蔽体4aを透
過する放射線3aを計算する計算面5aと放射線遮蔽体4bを
透過する放射線3bを計算する計算面5bとに境界7で分割
される。6eは放射線量測定面5上に格子状に多数設けら
れた測定点、6aは測定点6eのうちの放射線遮蔽体4aを透
過した放射線3aが集中する測定点、6bは測定点6eのうち
の放射線遮蔽体4bを透過した放射線3bが集中する測定
点、7は放射線遮蔽体4aと4bとの境界4cに対応する放射
線量測定面5上の境界である。
In FIG. 1, reference numeral 3a denotes radiation transmitted through the radiation shield 4a among radiations from all radiation generating devices (radiation sources) 2, and 3b denotes radiation shield 4b among radiations from all radiation generating devices 2. Radiation that is transmitted. Reference numeral 5 denotes a radiation dose measuring surface arranged at a radiation control area boundary or a use room boundary. The radiation dose measuring surface 5 includes a calculation surface 5a for calculating radiation 3a transmitted through the radiation shield 4a and a radiation shield 4b. It is divided at a boundary 7 into a calculation surface 5b for calculating the transmitted radiation 3b. 6e is a large number of measurement points provided in a grid on the radiation dose measurement surface 5, 6a is a measurement point at which the radiation 3a transmitted through the radiation shield 4a of the measurement points 6e is concentrated, and 6b is a measurement point of the measurement point 6e. A measurement point 7 where the radiation 3b transmitted through the radiation shield 4b is concentrated, and 7 is a boundary on the radiation dose measurement surface 5 corresponding to a boundary 4c between the radiation shields 4a and 4b.

次に放射線遮蔽体の設計方法について説明する。 Next, a method of designing a radiation shield will be described.

まず、上記構成により漏洩放射線量を計算する。 First, the leakage radiation dose is calculated by the above configuration.

放射線遮蔽体4aと4bとでは、境界4cを境にして厚さが
異なるため遮蔽効果も異なる。この放射線遮蔽体4a,4b
の遮蔽効果を考慮して漏洩放射線量を計算するため、放
射線遮蔽体4a,4bの遮蔽効果の違いが生じる境界4cに対
応した境界7により放射線量測定面5を計算面5a,5bに
分割する。漏洩放射線量の計算の便宜のため(計算方法
を簡略化するため)、放射線量測定面5上の測定点6eか
ら放射線3a,3bの線源(放射線発生機器2)を見た場合
に、放射線遮蔽体4a,4bは十分大きな物体と考えて、放
射線遮蔽体4a,4bを無限平面で表し計算してもよい。こ
の場合、放射線測定面5上の各計算面5a,5bは互いに重
なり合うようになるが、計算結果の精度としては問題な
く、また放射線遮蔽体4a,4bの大きさについて3次元情
報を入力する必要がなくなりプログラムが簡略化され
る。
The radiation shields 4a and 4b have different thicknesses at the boundary 4c, and therefore have different shielding effects. This radiation shield 4a, 4b
The radiation dose measuring surface 5 is divided into the calculation surfaces 5a and 5b by the boundary 7 corresponding to the boundary 4c where the difference in the shielding effect of the radiation shields 4a and 4b occurs in order to calculate the leakage radiation dose in consideration of the shielding effect of the radiation shielding members 4a and 4b. . For the sake of convenience in calculating the amount of leaked radiation (to simplify the calculation method), when the radiation source (radiation generating device 2) of the radiation 3a, 3b is viewed from the measurement point 6e on the radiation dose measuring surface 5, Assuming that the shields 4a and 4b are sufficiently large objects, the radiation shields 4a and 4b may be represented by an infinite plane for calculation. In this case, the calculation surfaces 5a and 5b on the radiation measurement surface 5 overlap each other, but there is no problem in the accuracy of the calculation result, and it is necessary to input three-dimensional information on the size of the radiation shields 4a and 4b. And the program is simplified.

次に、各計算面5a,5bに多数の測定点6eを格子状に設
定する。測定点6eを多数格子状に設定するのは、放射線
遮蔽体4a,4bの配置によって変わる放射線量分布を調べ
る(測定する)ため、計算面5a,5b上の測定点6eを一様
にすべく均等に配置したものである。各放射線発生機器
2の最大線量方向に格子状の測定点6eがない場合(格子
状の測定点6e間に各放射線発生機器2の最大線量方法が
ある場合)には、格子状の測定点6eの他に、各放射線発
生機器2の最大線量方向にも測定点6eを設ける。
Next, a large number of measurement points 6e are set in a grid on each of the calculation surfaces 5a and 5b. The reason why the measurement points 6e are set in a grid pattern is to examine (measure) the radiation dose distribution that changes depending on the arrangement of the radiation shields 4a and 4b, and to make the measurement points 6e on the calculation surfaces 5a and 5b uniform. They are arranged evenly. When there is no grid-like measurement point 6e in the maximum dose direction of each radiation generating device 2 (when there is a maximum dose method of each radiation generating device 2 between the grid-like measurement points 6e), the grid-like measurement point 6e In addition, a measurement point 6e is also provided in the maximum dose direction of each radiation generating device 2.

i番目の放射線遮蔽体(の遮蔽効果)に対応する放射
線量測定面5上の点j(測定点6e)における漏洩放射線
量Hijは次式で与えられる。
The leakage radiation dose H ij at the point j (measurement point 6e) on the radiation dose measurement surface 5 corresponding to (the shielding effect of) the i-th radiation shield is given by the following equation.

ここにkは放射線発生機器2の番号であり、その他の
変数は前記(1)式と同様である。上記(2)式をコン
ピュータ・プログラム化することは容易であるので、所
定の大きさを有する放射線遮蔽体4a,4bの配置に対する
漏洩放射線量Hijは直ちに求めることができる。
Here, k is the number of the radiation generating apparatus 2, and the other variables are the same as those in the above equation (1). Since it is easy to convert the above equation (2) into a computer program, the leakage radiation dose Hij for the arrangement of the radiation shields 4a and 4b having a predetermined size can be immediately obtained.

上記(2)式で求められた放射線量測定面5上の測定
点6eにおける漏洩放射線量Hijは、それぞれ全ての放射
線発生機器2からの放射線3a,3bが寄与しているもので
ある。従って、漏洩放射線量Hijの最大値の測定点6eの
位置は、各放射線発生機器2からの放射線が互いに合成
されて最大線量となる放射線量測定面5上の測定点6eの
位置となる。そして、この漏洩放射線量Hijの最大値で
ある最大線量が規定値(例えば、放射線管理区域境界、
使用室境界等における法律で定められた放射線量)以下
になるように、放射線遮蔽体4a,4bの厚み、材質等を変
更し、これを繰り返して計算することによって放射線量
測定面5上の各測定点6eにおける漏洩放射線量Hijが指
定値以下になるようにする。
(2) leakage radiation dose H ij at the measurement point 6e on dosimetry surface 5 determined by the formula is one in which the radiation 3a from all of the radiation generating device 2, respectively, 3b contributes. Therefore, the position of the measurement point 6e of the maximum value of the leakage radiation dose H ij is a radiation are combined with each other position of the measuring point 6e on dosimetry surface 5 with the maximum dose from the radiation generating device 2. Then, the maximum dose which is the maximum value of the leakage radiation dose H ij is a specified value (for example, the boundary of the radiation control area,
Change the thickness, material, etc. of the radiation shields 4a, 4b so that they are less than the radiation dose prescribed by law at the boundaries of the use room, etc. leakage radiation dose H ij at the measurement point 6e is set to be below a specified value.

以上のような方法により放射線遮蔽体4a,4bの厚さ等
を設計すれば、放射線発生機器2からの放射線量の予測
を正確に行うことができ、小形で安価な(最適な)放射
線遮蔽体4a,4bの設計をコンピュータの自動計算によっ
て行うことができる。
If the thickness and the like of the radiation shields 4a and 4b are designed by the method described above, the radiation dose from the radiation generator 2 can be accurately predicted, and a small and inexpensive (optimal) radiation shield can be obtained. The design of 4a and 4b can be performed by automatic calculation of a computer.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明によれば、放射線を放射する
複数の放射線発生源、この放射線発生源から放射される
放射線を遮蔽する放射線遮蔽体、及びこの放射線遮蔽体
からの所定位置に放射線量測定面をそれぞれ設定し、こ
の放射線量測定面を遮蔽効果の異なる放射線遮蔽体に応
じて分割するとともに放射線量測定面上に格子状に測定
点を設定し、この各測定点において複数の放射線発生源
から放射され放射線遮蔽体を透過した漏洩放射線量を演
算し、算出されたこの漏洩放射線量が規定値以下になる
ように放射線遮蔽体を設計するようにしたので、放射線
発生源からの放射線量の予測を正確に行うことができ、
最適な放射線遮蔽体の設計を自動計算によって行うこと
ができる効果がある。
As described above, according to the present invention, a plurality of radiation sources that emit radiation, a radiation shield that shields radiation emitted from the radiation source, and a radiation dose measurement at a predetermined position from the radiation shield The radiation dose measurement surface is divided according to radiation shields having different shielding effects, and measurement points are set in a grid on the radiation dose measurement surface. Calculates the amount of leakage radiation emitted from the radiation shield and transmitted through the radiation shield, and designs the radiation shield so that the calculated leakage radiation amount is equal to or less than the specified value. Make accurate predictions,
There is an effect that an optimum radiation shield can be designed by automatic calculation.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例による放射線遮蔽体の設計
方法の原理を示す構成図、第2図は従来の放射線遮蔽体
の設計方法の原理を示す構成図である。 2は放射線発生機器(放射線発生源)、3a,3bは放射
線、4a,4bは放射線遮蔽体、5は放射線量測定面、6a,6
b,6cは測定点。 なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a block diagram showing the principle of a method of designing a radiation shield according to one embodiment of the present invention, and FIG. 2 is a block diagram showing the principle of a conventional method of designing a radiation shield. 2 is a radiation generator (radiation source), 3a and 3b are radiation, 4a and 4b are radiation shields, 5 is a radiation dose measurement surface, 6a and 6
b and 6c are measurement points. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】放射線を放射する複数の放射線発生源、こ
の放射線発生源から放射される放射線を遮蔽する放射線
遮蔽体、及びこの放射線遮蔽体からの所定位置に放射線
量測定面をそれぞれ設定し、この放射線量測定面を遮蔽
効果の異なる放射線遮蔽体に応じて分割するとともに上
記放射線量測定面上に格子状に測定点を設定し、この各
測定点において上記複数の放射線発生源から放射され上
記放射線遮蔽体を透過した漏洩放射線量を演算し、算出
されたこの漏洩放射線量が規定値以下になるように放射
線遮蔽体を設計する放射線遮蔽体の設計方法。
1. A radiation source for emitting radiation, a radiation shield for shielding radiation emitted from the radiation source, and a radiation dose measurement surface set at a predetermined position from the radiation shield. The radiation dose measurement surface is divided according to radiation shields having different shielding effects, and measurement points are set in a grid on the radiation dose measurement surface.At each measurement point, the radiation is emitted from the plurality of radiation sources. A radiation shielding design method for calculating a radiation radiation amount transmitted through a radiation shielding body and designing the radiation shielding body such that the calculated leakage radiation amount becomes a specified value or less.
JP3790290A 1990-02-19 1990-02-19 Design method of radiation shield Expired - Lifetime JP2705993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3790290A JP2705993B2 (en) 1990-02-19 1990-02-19 Design method of radiation shield

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3790290A JP2705993B2 (en) 1990-02-19 1990-02-19 Design method of radiation shield

Publications (2)

Publication Number Publication Date
JPH03239998A JPH03239998A (en) 1991-10-25
JP2705993B2 true JP2705993B2 (en) 1998-01-28

Family

ID=12510476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3790290A Expired - Lifetime JP2705993B2 (en) 1990-02-19 1990-02-19 Design method of radiation shield

Country Status (1)

Country Link
JP (1) JP2705993B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101471892B1 (en) * 2013-06-13 2014-12-12 한국원자력의학원 Radiation profile system
JP6443987B2 (en) * 2014-05-08 2018-12-26 有限会社 川原商会 Radiation shielding ability test method and container used therefor

Also Published As

Publication number Publication date
JPH03239998A (en) 1991-10-25

Similar Documents

Publication Publication Date Title
Aynutdinov et al. Search for a diffuse flux of high-energy extraterrestrial neutrinos with the NT200 neutrino telescope
Aliaga Soplin Neutrino flux prediction for the NuMI beamline
WO2017002231A1 (en) Dose distribution calculation apparatus, particle radiotherapy apparatus, and dose distribution calculation method
JP6444532B2 (en) Particle beam therapy apparatus and treatment plan correction method
CN104933652A (en) Cloud-computing based dose verification system and method of tumor radiotherapy
US20230125411A1 (en) Exposure dose measurement simulation device and method
CN109325282A (en) A kind of reactor decommissioning three dimensional radiation field emulation mode and system
JP2705993B2 (en) Design method of radiation shield
Schwenker Development and validation of a model for the response of the Belle II vertex detector
Zhang Monte Carlo simulation of mixed neutron-gamma radiation fields and dosimetry devices
Zhang et al. Muon tracking with the fastest light in the JUNO central detector
Achasov et al. Measurement of the e^+ e^-→ K^+ K^-π^ 0 e+ e-→ K+ K-π 0 cross section with the SND detector: The SND Collaboration
Kim et al. Improvement of statistics in proton beam range measurement by merging prompt gamma distributions: a preliminary study
Brown Sensitivity study for low mass dark matter search at DUNE
Degtyarev et al. Numerical modeling and development of the prototype of the bragg peak position detector working in real time mode for hadron therapy facilities prometheus
Ayyangar et al. Monte Carlo simulation of a multi-leaf collimator design for telecobalt machine using BEAMnrc code
Beaudette FAMOS, a FAst MOnte-Carlo Simulation for CMS
Zhang et al. Benchmarking of electron beam parameters based on Monte Carlo linear accelerator simulation
Perera ρ'Photoproduction in Ultra-Peripheral Heavy Ion Collisions with the ALICE Detector
Collaboration Sensitivity of the SHiP experiment to dark photons decaying to a pair of charged particles
Youssef et al. Fusion Integral Experiments and Analysis and the Determination of Design Safety Factors–I: Methodology
CN106153307A (en) A kind of apparatus and method utilizing beam intensity ratio to measure the Airy beam attenuation factor
Grosa et al. ALICE: A Large Ion Collider Experiment
Hastings Evaluation of Neutron Skyshine Contributions During Injection at an Electron Synchrotron Facility Using FLUKA
Heidt First Measurements of Transverse Emittance Reduction in MICE Step IV