JPH03239668A - Air source device for rolling stock - Google Patents

Air source device for rolling stock

Info

Publication number
JPH03239668A
JPH03239668A JP2036647A JP3664790A JPH03239668A JP H03239668 A JPH03239668 A JP H03239668A JP 2036647 A JP2036647 A JP 2036647A JP 3664790 A JP3664790 A JP 3664790A JP H03239668 A JPH03239668 A JP H03239668A
Authority
JP
Japan
Prior art keywords
air
valve
pressure
chamber
air compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2036647A
Other languages
Japanese (ja)
Other versions
JPH0737229B2 (en
Inventor
Norio Enohata
榎畑 周夫
Osamu Akamatsu
修 赤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabco Ltd
Original Assignee
Nabco Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabco Ltd filed Critical Nabco Ltd
Priority to JP2036647A priority Critical patent/JPH0737229B2/en
Publication of JPH03239668A publication Critical patent/JPH03239668A/en
Publication of JPH0737229B2 publication Critical patent/JPH0737229B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Valves And Accessory Devices For Braking Systems (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)

Abstract

PURPOSE:To prevent extreme drop of the duty ratio of an air compressor by constituting a check valve so that flow of pressure air is admitted in the direction from a main air sump to a discharge valve within a certain restricted time of period after the air compressor is stopped. CONSTITUTION:When the air pressure value in a main air sump 104 has attained the upper limit value, an air compressor 101 stops, and a discharge valve 110 is put in the opened state. A check valve 103, whose regular direction of air flow is toward the air sump 104, is so constructed to admit flow of the pressure air in the direction from the air sump 104 to discharge valve 110 within a certain while after the air compressor 100 stops, so that a certain amount of pressure air counter-flows from the air sump 104 within this period of time to be exhausted from the discharge valve 110. Thereby the air pressure value within the air sump 104 sinks by a certain value even though there is no air consumption due to air compressor 105, and the difference from the lower limit value decreases by a portion corresponding to the drop. Accordingly the downtime of compressor 100 is shortened, while its service times remain unchanged, that should enhance the duty ratio.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本考案は鉄道車両用空気源装置に係り、特に、当該装置
の吐出弁と元空気溜との間に設けられる逆止弁の機能及
び構造の改良に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an air source device for a railway vehicle, and in particular, to the function and structure of a check valve provided between a discharge valve and a source air reservoir of the device. Regarding the improvement of

〔従来の技術〕[Conventional technology]

一般に実用化されているこの種の鉄道車両用空気源装置
は、例えば第5図に示すように、空気圧縮機100の稼
働により得られた圧力空気を、クーラ101、除湿器1
02及び逆止弁103を介して元空気溜104に蓄圧し
、この蓄圧された圧力空気を必要に応じて、ブレーキ装
置、空気バネ及び扉開閉用シリンダ等の各種空気圧機器
105に送給するものである。前記除湿器102は、ク
ーラ101に接続された除湿材106と、逆止弁103
に接続された再生空気溜107とを有し、この両者を連
通ずる通路には除湿器内逆止弁108と絞り109とが
並列に接続され、且つ除湿材106とクーラ101とを
連通ずる通路には吐出弁110が接続されている。そし
て、前記元空気溜104には調圧器111が接続されて
おり、この調圧器111からは前記吐出弁110及び空
気圧縮機100に指令信号2が送出される構成である。
For example, as shown in FIG.
02 and a check valve 103 to accumulate pressure in a source air reservoir 104, and send this accumulated pressure air to various pneumatic devices 105 such as a brake device, an air spring, and a door opening/closing cylinder as necessary. It is. The dehumidifier 102 includes a dehumidifying material 106 connected to the cooler 101 and a check valve 103.
A dehumidifier check valve 108 and a throttle 109 are connected in parallel to a passageway that communicates the two, and a passageway that communicates the dehumidifying material 106 and the cooler 101. A discharge valve 110 is connected to. A pressure regulator 111 is connected to the source air reservoir 104, and a command signal 2 is sent from the pressure regulator 111 to the discharge valve 110 and the air compressor 100.

このような構成によれば、各種空気圧機器105の空気
消費により元空気溜104内の空気圧力値が入圧設定値
(下限値)Pz以下となった時には、この事を示す指令
信号2が調圧器111から送出され、空気圧縮機100
が稼働すると同時に吐出弁110が閉鎖されて除湿器1
02が除湿作用状態となり、これにより空気圧縮機10
0にて生成された圧力空気が、クーラ101にて冷却さ
れ且つ除湿器102にて水分等の異物を除去された後、
逆止弁103を通過して元空気溜104内に蓄圧される
。そして、元空気溜104内の空気圧力値が上昇して初
圧設定値(上限値)P2に達した時には、この事を示す
指令信号2が調圧器111から送出され、空気圧縮機1
00が停止すると同時に吐出弁110が開放されて除湿
器102が再生作用状態となり、これにより再生空気溜
107内の圧力空気が逆流して除湿材106に付着して
いる異物を吸い取った後に吐出弁110から排出される
。この時、元空気溜104内の圧力空気は、逆止弁10
3が元空気溜104方向を順方向としていることにより
、除湿器102側に逆流することが阻止される。この再
生作用が完了した後、当該鉄道車両が運行して各種空気
圧機器105により圧力空気が消費され元空気溜104
内の空気圧力値が前記入圧設定値P1以下となった時に
は、再び上記と同様にして空気圧縮機100の稼働及び
餘湿作用更には元空気溜104内への圧力空気の蓄圧が
行われ、且つこの後に前記初圧設定値P2に達した時に
は同様に再生作用が行われる。尚、この種の装置として
は、第5図に示す構成のもの以外に、除湿器を具備せず
にクーラ101と逆止弁103との間の通路に吐出弁1
10のみを接続させたものや、同じく除湿器を具備せず
にクーラ101と逆止弁103とを単なる通路のみで接
続してクーラ101の内部に吐出弁110を設けたもの
等がある。
According to such a configuration, when the air pressure value in the source air reservoir 104 becomes equal to or less than the input pressure setting value (lower limit value) Pz due to air consumption of the various pneumatic devices 105, the command signal 2 indicating this is adjusted. The air is sent out from the pressure device 111 and is sent to the air compressor 100.
At the same time as the dehumidifier 1 starts operating, the discharge valve 110 is closed and the dehumidifier 1
02 enters the dehumidifying state, and as a result, the air compressor 10
After the pressurized air generated at 0 is cooled by a cooler 101 and foreign substances such as moisture are removed by a dehumidifier 102,
The air passes through the check valve 103 and is accumulated in the source air reservoir 104 . Then, when the air pressure value in the source air reservoir 104 increases and reaches the initial pressure setting value (upper limit value) P2, a command signal 2 indicating this is sent from the pressure regulator 111, and the air compressor 1
At the same time as 00 stops, the discharge valve 110 is opened and the dehumidifier 102 enters the regeneration operation state, whereby the pressurized air in the regeneration air reservoir 107 flows backwards and sucks up foreign matter adhering to the dehumidifying material 106, and then the discharge valve 110 is opened. 110. At this time, the pressure air in the source air reservoir 104 is transferred to the check valve 10
3 has the direction of the original air reservoir 104 as the forward direction, thereby preventing the air from flowing back to the dehumidifier 102 side. After this regeneration action is completed, the railway vehicle is operated and the pressurized air is consumed by the various pneumatic equipment 105 and the former air reservoir 104
When the air pressure value in the air reservoir becomes equal to or less than the input pressure setting value P1, the air compressor 100 is operated again in the same manner as described above, the humidity is removed, and the pressure air is accumulated in the source air reservoir 104. , and after this, when the initial pressure set value P2 is reached, the regeneration action is similarly performed. Note that this type of device, other than the one having the configuration shown in FIG.
10 is connected to the cooler 101, and the cooler 101 and the check valve 103 are connected only by a passage without a dehumidifier, and the discharge valve 110 is provided inside the cooler 101.

ところで、前記空気圧縮機100には稼働率αの概念が
存在し、この稼働率αは、走行及び停車が繰り返し行わ
れる運行時全般にわたる空気圧縮機100の稼働時間を
T1、同じく運行時全般にわたる空気圧縮機100の停
止時間をT2とすれば、下記の(1)式で現わされる。
By the way, the air compressor 100 has the concept of an operating rate α, and this operating rate α is defined as the operating time of the air compressor 100 throughout the entire operating period in which running and stopping are repeated, T1, and the operating time T1 also throughout the operating operation. If the stop time of the air compressor 100 is T2, it is expressed by the following equation (1).

α” (Tt / (Tt +72 ) ) X100
  (%)・・・(1)そして、この稼働率αは、空気
圧縮機100の温度上昇、効率及び寿命等を考慮すれば
、約30%が最適であるとされている。
α” (Tt / (Tt +72) ) X100
(%) (1) It is said that the optimum operating rate α is about 30%, considering the temperature rise, efficiency, life span, etc. of the air compressor 100.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記の稼働率αは、各種空気圧機器10
5の空気消費量に左右されるものであるため、通常の運
行状態に対応させてこの稼働率αを最適値に調整してお
いても、運行状態が変化した場合例えば停車回数が通常
よりも少なくなって各種空気圧機器105であるブレー
キ装置や扉開閉用シリンダの作動回数が少なくなった場
合には、前記稼働率αが著しく低下する。このような事
態は、主として、駅停車回数が少ない路線用の鉄道車両
についても、駅停車回数が多い路線に対応させて空気消
費量を見積もることに起因して生じる。つまり、この空
気源装置を鉄道車両に取り付ける際の空気消費量の予測
に反して、使用時における実際の空気消費量が少ないこ
とにより生しるのである。
However, the above operation rate α is
5. Therefore, even if the operating rate α is adjusted to the optimal value in accordance with normal operating conditions, if operating conditions change, for example, the number of stops may be higher than normal. When the number of operations of the brake device and the door opening/closing cylinder, which are various pneumatic devices 105, decreases, the operation rate α decreases significantly. This situation arises mainly because the air consumption of railway vehicles for routes with fewer station stops is estimated in accordance with routes with many station stops. In other words, this problem occurs because the actual air consumption during use is smaller than the predicted air consumption when installing the air source device on a railway vehicle.

そして、前述のように稼働率αが低下すると、空気圧縮
fi100のクランクケース内の温度が稼働時と停止時
とで大きく異なることになり、これに起因して空気中の
水分が結露して潤滑油に混合され、潤滑油の乳化を促進
し、この結果、空気圧縮機100の潤滑効果の低下、ひ
いては各摺動部に焼付が生じる等の不具合を招く。この
ような不具合は、稼働率αが10〜15%を下回った時
に一層顕著となる。
As mentioned above, when the operating rate α decreases, the temperature inside the crankcase of the air compressor FI100 will differ greatly between when it is in operation and when it is stopped, which causes moisture in the air to condense and lubricate it. When mixed with oil, it promotes emulsification of the lubricating oil, resulting in a decrease in the lubricating effect of the air compressor 100 and, in turn, causing problems such as seizure of each sliding part. Such problems become more noticeable when the operating rate α falls below 10 to 15%.

尚、前記調圧器111における入圧設定値PLを通常よ
りも低い値とすれば、空気圧縮機100の一回当たりの
稼働時間は長くなるものの、これに伴って、初圧設定値
P2に達するまでの間に元空気溜104に蓄圧される圧
力空気の増量分が多くなり、この増量分を消費して再び
入圧設定値以下となるまでの空気圧縮機100の停止時
間が長くなり、従って、運行時全般にわたる空気圧縮機
100の稼働時間と停止時間との比率は実質的に変化せ
ず、前記(11式からも明らかなように稼働率αは変化
しない。また、前記初圧設定値P2を通常よりも高い値
としても、同様にして稼働率αは変化しない。
Note that if the input pressure set value PL in the pressure regulator 111 is set to a lower value than usual, the operating time per operation of the air compressor 100 becomes longer, but the initial pressure set value P2 is reached accordingly. In the meantime, the increased amount of pressurized air accumulated in the source air reservoir 104 increases, and the stop time of the air compressor 100 becomes longer until the increased amount is consumed and the input pressure falls below the input pressure set value again. , the ratio between the operating time and the stopping time of the air compressor 100 throughout the operation does not substantially change, and as is clear from equation 11, the operating rate α does not change. Even if P2 is set to a higher value than usual, the operating rate α does not change in the same way.

本発明は、上記事情に鑑みてなされたものであり、吐出
弁と元空気溜との間に設けられる逆止弁に改良を加える
ことにより、各種空気圧機器による空気消費量が予測に
反して少ない場合であっても空気圧縮機の稼働率が極端
に低下しないようにし、もって空気圧縮機内における空
気中水分の結露、潤滑効果の低下及び各摺動部の焼付等
を防止し、当該空気源装置の動作不良を消失せしめるこ
とを技術的課題とするものである。
The present invention was made in view of the above circumstances, and by improving the check valve provided between the discharge valve and the source air reservoir, the amount of air consumed by various pneumatic equipment is lower than expected. Even if the operating rate of the air compressor is The technical challenge is to eliminate malfunctions in the system.

〔課題を解決するための手段〕[Means to solve the problem]

上記技術的課題を遠戚するための具体的手段とするとこ
ろは、空気圧縮機と接続されて空気圧機器に圧力空気を
供給する元空気溜と、前記空気圧縮機と元空気溜との間
に設けられて開放時にドレンを排出する吐出弁と、この
吐出弁と前記元空気溜との間に設けられて元空気溜方向
を順方向とする逆止弁とを備え、前記空気圧縮機の停止
に同期して吐出弁を開放させるように構成した鉄道車両
用空気源装置において、前記逆止弁を、空気圧縮機の停
止後における所定時間内に限り元空気溜から吐出弁に向
かう方向への圧力空気の流れを許容する構成としたとこ
ろにある。
A concrete means for solving the above technical problem is that a source air reservoir is connected to an air compressor and supplies pressurized air to pneumatic equipment, and a space between the air compressor and the source air reservoir is A discharge valve is provided to discharge drain when opened, and a check valve is provided between the discharge valve and the source air reservoir and whose forward direction is the direction of the source air reservoir, and the check valve is configured to stop the air compressor. In the air source device for a railway vehicle, the check valve is configured to open the discharge valve in synchronization with the air compressor, and the check valve is opened in the direction from the source air reservoir to the discharge valve only within a predetermined time after the air compressor is stopped. The structure is such that it allows the flow of pressurized air.

より具体的には、前記逆止弁は、その本体内部に形成さ
れて空気圧縮機側が接続される一次室及び元空気溜側か
接続される二次室と、この一次室と二次室との連通部に
形成された弁座と、この弁座に着座、離座することによ
り前記連通部を閉鎖、開放させ前記一次室から二次室へ
向かう方向を順方向とし着座方向に付勢された弁体と、
この弁体に離座方向への力を付与するパイロットピスト
ンと、前記一次室又は二次室に連通されて当該室から導
かれた圧力空気をパイロットピストンの受圧面に対して
離座方向に作用させる圧力室と、この圧力室内の圧力空
気と対抗する方向にパイロ7トピストンを付勢するバネ
部材とを有し、前記空気圧縮機の稼働により前記弁体が
弁座から離座して圧力空気が一次室から二次室に向かっ
て流れた後に空気圧縮機が停止して吐出弁が開放状態と
なり一次室から吐出弁に向かって圧力空気の排出が開始
された後の所定時間内は、前記圧力室内に導かれる圧力
空気に基づきパイロットピストンに作用する離座方向へ
の付勢力が、前記弁体を着座方向に付勢している付勢力
と前記バネ部材の付勢力との総和に打ち勝って、前記弁
体が弁座から離座するように構成されているものである
More specifically, the check valve has a primary chamber formed inside its main body to which the air compressor side is connected, a secondary chamber to which the former air reservoir side is connected, and the primary chamber and the secondary chamber. A valve seat is formed in a communicating portion of the valve seat, and by seating and leaving the valve seat, the communicating portion is closed and opened, and the valve seat is biased in the seating direction with the direction from the primary chamber to the secondary chamber as the forward direction. and a valve body,
A pilot piston that applies a force to the valve body in the unseating direction, and a pilot piston that communicates with the primary chamber or the secondary chamber and applies pressure air led from the chamber to the pressure receiving surface of the pilot piston in the unseating direction. and a spring member that biases a pyro piston in a direction opposed to the pressurized air in the pressure chamber, and when the air compressor operates, the valve body is separated from the valve seat and the pressurized air is released. During the predetermined period of time after the air compressor stops after the air has flowed from the primary chamber toward the secondary chamber, the discharge valve is in an open state, and discharge of pressurized air from the primary chamber toward the discharge valve has started. The biasing force acting on the pilot piston in the unseating direction based on the pressure air guided into the pressure chamber overcomes the sum of the biasing force biasing the valve body in the seating direction and the biasing force of the spring member. , the valve body is configured to be separated from a valve seat.

(作用) 上記手段によると、空気圧機器の空気消費により元空気
溜内の空気圧力値が入圧設定値(下限値〉以下となった
時には、空気圧縮機が稼働して元空気溜内に逆止弁を介
して圧力空気が供給され、元空気溜内の空気圧力値が初
圧設定値(上限値)に達した時点で、空気圧縮機が停止
し且つ吐出弁が開放状態となる。この場合、前記逆止弁
は、元空気溜方向を順方向としているにも拘わらず、上
述のように空気圧縮機が停止した後の所定時間内におい
ては、元空気溜から吐出弁に向かう方向への圧力空気の
流れを許容する構成とされているため、この所定時間内
に限り元空気溜から所定量の圧力空気が逆流して吐出弁
から排出される。これにより、元空気溜内の空気圧力値
は、空気圧機器による空気消費が無いにも拘わらず所定
値だけ低下し、この低下分だけ前記入圧設定値との差が
少なくなる。従って、この後における当該車両の運行に
よって空気圧機器による空気消費がなされた場合、元空
気溜内の空気圧力値が前記入圧設定値以下に低下するま
での時間即ち空気圧縮機の停止時間が短くなるのに対し
て、空気圧縮機の稼働時間は従来と同様に入圧設定値か
ら初圧設定値に至るまでの時間となり、この結果、空気
圧縮機の稼働率が高められることになる。
(Function) According to the above means, when the air pressure value in the source air reservoir becomes less than the input pressure setting value (lower limit value) due to air consumption of the pneumatic equipment, the air compressor operates and the air is pumped back into the source air reservoir. Pressure air is supplied through the stop valve, and when the air pressure value in the source air reservoir reaches the initial pressure setting value (upper limit value), the air compressor stops and the discharge valve becomes open. In this case, although the check valve has its forward direction pointing toward the source air reservoir, within a predetermined period of time after the air compressor has stopped as described above, the check valve does not move in the direction from the source air reservoir toward the discharge valve. Since the structure is configured to allow a flow of pressurized air of 1,000 yen, a predetermined amount of pressurized air flows backwards from the source air reservoir and is discharged from the discharge valve only within this predetermined time.As a result, the air in the source air reservoir The pressure value decreases by a predetermined value even though there is no air consumption by the pneumatic equipment, and the difference from the pressure setting value decreases by this drop. When air is consumed, the time it takes for the air pressure value in the source air reservoir to drop below the pressure setting value, that is, the time the air compressor is stopped, is shortened, whereas the operating time of the air compressor is The time taken from the input pressure set value to the initial pressure set value is the same as in the past, and as a result, the operating rate of the air compressor is increased.

以上の動作を逆止弁の具体的構成に基づいて説明すると
、先ず元空気溜内の空気圧力値が入圧設定値以下となっ
た時には、空気圧縮機の稼働により得られた圧力空気が
、逆止弁の本体内部における一次室に導かれ、弁体を着
座方向への付勢力に抗して弁座より離座させて連通部を
開放状態として二次室に至り、この二次室から流出して
元空気溜内に供給される。そして、このように−大室と
二次室とが連通された状態で、元空気溜内の空気圧力値
が初圧設定値に達して空気圧縮機が停止し且つ吐出弁が
開放状態となった時には、−大室から吐出弁に向かって
圧力空気が排出され始め、前記弁体は弁座に着座しよう
とするが、この−大室からの圧力空気の排出が開始され
た後の所定時間内においては、−大室又は二次室から圧
力室に導かれた圧力空気に基づきパイロットピストンに
作用する離座方向への付央力が、弁体を着座方向に付勢
している付勢力とバネ部材の付勢力との総和に打ち勝ち
、パイロットピストンから弁体に離座方向に対して必要
な大きさの力が付与されて、弁体は前記所定時間だけ弁
座より離座した状態となり、従って元空気溜内の圧力空
気は所定量だけ二次室から一次室を介して吐出弁に向か
って排出される。そして、前記所定時間経過後において
は、元空気溜内の空気圧力値ひいては一次室及び二次室
の空気圧力値が所定値だけ低下することにより、この−
大室又は二次室から圧力室に導かれた圧力空気に基づき
パイロットピストンに作用する離座方向への付勢力が、
弁体を着座方向に付勢している付勢力とバネ部材の付勢
力との総和に打ち勝つことができなくなって、パイロッ
トピストンが弁体を離座させておくことができなくなり
、このため弁体が弁座に着座して一次室と二次室との間
が遮断され、元空気溜から吐出弁への圧力空気の逆流が
阻止される。
To explain the above operation based on the specific configuration of the check valve, first, when the air pressure value in the source air reservoir becomes less than the input pressure setting value, the pressurized air obtained by operating the air compressor will The water is guided to the primary chamber inside the main body of the check valve, the valve body is moved away from the valve seat against the biasing force in the seating direction, the communication part is opened, and the flow reaches the secondary chamber, and from this secondary chamber It flows out and is supplied into the original air reservoir. In this way, with the large chamber and the secondary chamber communicating with each other, the air pressure value in the source air reservoir reaches the initial pressure setting value, the air compressor stops, and the discharge valve becomes open. - Pressurized air starts to be discharged from the large chamber toward the discharge valve, and the valve body tries to sit on the valve seat, and this - for a predetermined period of time after the discharge of pressurized air from the large chamber starts. - The central force acting on the pilot piston in the unseating direction based on the pressurized air led from the large chamber or secondary chamber to the pressure chamber is the urging force that urges the valve body in the seating direction. The pilot piston overcomes the sum of the biasing force of the spring member and the necessary force is applied to the valve body in the unseating direction, and the valve body remains unseated from the valve seat for the predetermined period of time. Therefore, a predetermined amount of the pressurized air in the original air reservoir is discharged from the secondary chamber through the primary chamber toward the discharge valve. After the predetermined time has elapsed, the air pressure in the source air reservoir and the air pressure in the primary and secondary chambers decrease by a predetermined value.
The biasing force in the unseating direction that acts on the pilot piston based on the pressure air guided from the large chamber or secondary chamber to the pressure chamber is
The pilot piston is no longer able to overcome the sum of the biasing force urging the valve body in the seating direction and the biasing force of the spring member, and the pilot piston is unable to keep the valve body unseated. is seated on the valve seat, the primary chamber and the secondary chamber are cut off, and the backflow of pressurized air from the source air reservoir to the discharge valve is prevented.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図乃至第4図に基づいて説
明する。尚、以下の実施例においては鉄道車両用空気源
装置の逆止弁の構成のみを示すこととし、当該装置の全
体構成は前述の第5図に示す従来例と同一であるのでそ
の説明を省略し、以下の説明において必要がある時には
第5図に示す各構成要件及びその符号を用いることとす
る。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 4. In the following examples, only the structure of the check valve of the air source device for railway vehicles will be shown, and the overall structure of the device is the same as the conventional example shown in FIG. 5, so the explanation thereof will be omitted. However, in the following explanation, each component and its symbols shown in FIG. 5 will be used when necessary.

先ず本発明の第1実施例を説明すると、第1図に示すよ
うに、当該鉄道車両用空気源装置の逆止弁103は、そ
の本体1の内部に、既述の空気圧縮機lOO側つまり除
湿器102内の吐出弁110側が接続される一次室21
と、元空気溜104側が接続される二次室22とを有し
、この両室の接続開口縁には夫々シールリング31.3
2が装着されている。前記−大室21と二次室22との
間にはこの両者を連通ずる連通部4が形成され、且つこ
の連通部4の二次室22側開ロ縁には弁座5が形成され
ていると共に、その上方には該弁座5に着座、離座する
ことにより前記連通部4を閉鎖、開放する弁体6が備え
られている。この弁体6は、本体lの上部に形成された
弁嵌装孔7に摺動自在に内嵌されて補助バネ部材8によ
り下方(着座方向〉に付勢されているが、図示のように
一次音2Lが下方となり二次室22が上方となるように
この逆止弁103が取り付けられる場合には、補助バネ
部材8を廃止して弁体6の自重のみにより該弁体6が着
座方向に付勢されるようにしてもよい。また、本体lの
内部における中央部から下部にわたる部位にはパイロッ
トピストン9が配設されており、このパイロットピスト
ン9の小径ロンド部9aは本体1の仕切壁1aに形成さ
れた貫通孔に摺動自在に(気密性を保持されて)内嵌さ
れ、その先端は弁体6の下面に当接、離反可能とれてい
ると共に、このパイロットピストン9の下端における大
径ピストン部9bは本体1の下部に回動可能に保持され
た筒体IO内に摺動自在に内嵌保持されている。そして
、前記大径ピストン部9bの下面つまり受圧面9xと筒
体10の底部との間には圧力室11が形成されており、
この圧力室11は、パイロットピストン9に穿設された
内部通路12を介して前記−大室2Lに連通されている
。また、前記大径ピストン部9bと本体l内部に螺合さ
れた調整ねじ筒13との間にはバネ部材(コイルスプリ
ング)14が介装されており、このバネ部材14は、前
記圧力室ll内の圧力空気に対抗してパイロットピスト
ン9を付勢するものである。前記調整ねじ筒13の一端
部13aとこれに対向する筒体10の一端部10aとは
上下方向に相対移動可能に係合されており、筒体10の
下端に固設されたナツト部材15を回動せしめた場合に
は、筒体lOは上下動することなく回動するのに対し、
調整ねし筒13はその回動に伴って上下動することとな
り、これにより前記バネ部材14の付勢力(初期設定力
)が変化するものである。
First, a first embodiment of the present invention will be described. As shown in FIG. Primary chamber 21 to which the discharge valve 110 side in the dehumidifier 102 is connected
and a secondary chamber 22 to which the source air reservoir 104 side is connected, and a seal ring 31.3 is provided at the edge of the connection opening of both chambers.
2 is installed. A communication section 4 is formed between the large chamber 21 and the secondary chamber 22 to communicate the two, and a valve seat 5 is formed at the opening edge of the communication section 4 on the side of the secondary chamber 22. A valve body 6 is provided above the valve seat 5 and closes and opens the communication portion 4 by sitting on and leaving the valve seat 5. The valve body 6 is slidably fitted into a valve fitting hole 7 formed in the upper part of the main body l and is urged downward (seating direction) by an auxiliary spring member 8. When this check valve 103 is installed so that the primary sound 2L is downward and the secondary chamber 22 is upward, the auxiliary spring member 8 is eliminated and the valve body 6 is moved in the seating direction only by its own weight. In addition, a pilot piston 9 is disposed inside the main body 1 at a portion extending from the center to the lower part, and the small diameter rond portion 9a of the pilot piston 9 is connected to the partition of the main body 1. It is slidably fitted into a through hole formed in the wall 1a (while maintaining airtightness), and its tip is able to come into contact with and separate from the lower surface of the valve body 6, and the lower end of the pilot piston 9 The large-diameter piston portion 9b is slidably held inside a cylindrical body IO rotatably held at the lower part of the main body 1.The lower surface of the large-diameter piston portion 9b, that is, the pressure receiving surface 9x, A pressure chamber 11 is formed between the cylinder body 10 and the bottom part,
This pressure chamber 11 is communicated with the large chamber 2L via an internal passage 12 formed in the pilot piston 9. Further, a spring member (coil spring) 14 is interposed between the large diameter piston portion 9b and an adjusting screw cylinder 13 screwed into the main body l, and this spring member 14 is connected to the pressure chamber l. The pilot piston 9 is urged against the pressure air inside the piston. One end 13a of the adjustment screw cylinder 13 and one end 10a of the cylinder 10 opposing thereto are engaged so that they can move relative to each other in the vertical direction, and a nut member 15 fixed to the lower end of the cylinder 10 is engaged When it is rotated, the cylindrical body lO rotates without moving up and down, whereas
The adjustment screw cylinder 13 moves up and down as it rotates, thereby changing the biasing force (initial setting force) of the spring member 14.

以上の構成によれば、当該鉄道車両の運行時に空気バネ
、ブレーキ装置及び扉開閉用シリンダ等の各種空気圧機
器105による空気消費に伴って元空気溜104内の空
気圧力値が入圧設定値(下限値〉以下となった場合には
、この事を示す指令信号2が調圧器111から送出され
て空気圧縮機100が稼働すると同時に吐出弁110が
閉鎖され(第5図参照)、空気圧縮機100の稼働によ
り得られた圧力空気は、第1図に示す逆止弁103の一
次音21に流入し、補助バネ部材8の付勢力に抗して弁
体6を弁座5より離座させて二次室22に至り、この二
次室22から元空気溜104内に供給される。そして、
前記空気圧縮機100の稼働に従って元空気溜104内
の空気圧力値ひいては一次音21及び二次室22の空気
圧力値が徐々に上昇し、これに伴って一次音21に連通
されている圧力室11内の空気圧力値も徐々に上昇して
、パイロットピストン9がバネ部材14の付勢力に抗し
て上方(弁体6の離座方向〉に持ち上げられる。これに
より、弁体6及びパイロントビストン9は例えば第2図
に示すように上動端位置に保持されることになるが、こ
のような状態で元空気溜104内の空気圧力値が初圧設
定値(上限値)に達した時には、この事を示す指令信号
2が調圧器111より送出されて空気圧縮機100が停
止すると同時に吐出弁110が開放され、前記−改宗2
1内の圧力空気が吐出弁110に向かって逆流する。こ
の時、弁体6は、第2図に示す状態から弁座5に着座し
ようとするが、前記−大室21には二次室22の圧力空
気ひいては元空気溜104内の圧力空気が流入しており
、而もこの圧力空気は一次音21から圧力室11に導か
れるので、この圧力室11に導かれた圧力空気に基づき
パイロットピストン9に作用する上方への付勢力(大径
ピストン部9bの受圧面9xに作用する圧力空気の上方
への付勢力と小径ロンド部9aに作用する圧力空気の下
方への付勢力との差分に相当する上方への付勢力〉が、
補助バネ部材8により弁体6に作用する下方への付勢力
とバネ部材14によりパイロットピストン9に作用する
下方への付勢力との総和に打ち勝ち、弁体6は弁座5よ
り離座した状態に保持される。このため、元空気溜10
4内の圧力空気は前記二次室22及び−大室21を通過
して吐出弁110に逆流するが、この逆流に伴って元空
気溜104内の空気圧力値ひいては前記二次室22及び
−大室21の空気圧力値が低下し、前記圧力室ll内の
圧力空気に基づきパイロットピストン9に作用する上方
への付勢力が、前記補助バネ部材8及びバネ部材14に
よる下方への付勢力の総和に打ち勝つことができなくな
り、弁体6が弁座5に着座して連通部4を閉鎖し、二次
室22から一大室21への圧力空気の逆流が阻止される
According to the above configuration, when the railway vehicle is in operation, the air pressure value in the source air reservoir 104 changes to the input pressure setting value ( When the lower limit value is below, a command signal 2 indicating this is sent from the pressure regulator 111, and the air compressor 100 starts operating. At the same time, the discharge valve 110 is closed (see Fig. 5), and the air compressor 100 starts operating. The pressurized air obtained by the operation of the valve 100 flows into the primary sound 21 of the check valve 103 shown in FIG. It reaches the secondary chamber 22, and is supplied from this secondary chamber 22 into the source air reservoir 104.
As the air compressor 100 operates, the air pressure value in the source air reservoir 104 and, in turn, the air pressure values in the primary sound 21 and the secondary chamber 22 gradually increase, and as a result, the pressure chambers communicating with the primary sound 21 gradually increase. The air pressure value inside 11 also gradually increases, and the pilot piston 9 is lifted upward (in the direction of unseating of the valve body 6) against the biasing force of the spring member 14. As a result, the valve body 6 and the pylon piston 9 For example, the stone 9 is held at the upper moving end position as shown in FIG. Sometimes, a command signal 2 indicating this is sent from the pressure regulator 111 and the air compressor 100 is stopped, and at the same time the discharge valve 110 is opened, and the above-mentioned -conversion 2
1 flows back toward the discharge valve 110. At this time, the valve body 6 attempts to sit on the valve seat 5 from the state shown in FIG. Moreover, since this pressure air is guided from the primary sound 21 to the pressure chamber 11, an upward biasing force (large diameter piston part The upward biasing force corresponding to the difference between the upward biasing force of the pressurized air acting on the pressure receiving surface 9x of the pressure receiving surface 9b and the downward biasing force of the pressurized air acting on the small diameter Rondo portion 9a> is
The state in which the valve body 6 is separated from the valve seat 5 by overcoming the sum of the downward force acting on the valve body 6 by the auxiliary spring member 8 and the downward force acting on the pilot piston 9 by the spring member 14. is maintained. For this reason, the original air reservoir 10
4 passes through the secondary chamber 22 and large chamber 21 and flows back to the discharge valve 110, but with this backflow, the air pressure value in the source air reservoir 104 and the secondary chamber 22 and - The air pressure value in the large chamber 21 decreases, and the upward biasing force acting on the pilot piston 9 based on the pressure air in the pressure chamber 11 is increased by the downward biasing force by the auxiliary spring member 8 and the spring member 14. It becomes impossible to overcome the total sum, and the valve body 6 seats on the valve seat 5 to close the communication portion 4, and the backflow of pressurized air from the secondary chamber 22 to the large chamber 21 is prevented.

この時点においては、各種空気圧機器105による空気
消費が無いにも拘わらず、前記逆流した圧力空気の量に
対応する分だけ元空気溜104内の空気圧力値が低下し
ており、この低下分だけ前記入圧設定値との差が少なく
なっている。従って、この後の当該鉄道車両の運行に伴
って各種空気圧機器105による空気消費がなされた場
合には、元空気溜104内の空気圧力値が前記入圧設定
値以下となるなるまでの時間が、前記逆流した空気圧力
の量に対応する時間だけ短くなる。この事は、空気圧縮
機100の停止時間が短くなることを意味するものであ
り、而も空気圧縮機100の稼働時間は空気圧力値が前
記入圧設定値から初圧設定値に達するまでの時間であり
従来通りとなり、この結果、前述の従来の技術の欄で示
した(1)式から明らかなように稼働率αが高められる
。尚、稼働率αを変更するには、ナンド部材15 (筒
体10)を適宜回動せしめて調整ねじ筒13を上下動さ
せることによりバネ部材14の付勢力(初期設定力)を
変化させればよい。
At this point, even though there is no air consumption by the various pneumatic devices 105, the air pressure value in the source air reservoir 104 has decreased by an amount corresponding to the amount of pressure air that has flowed back, and by this decrease. The difference from the pressure setting value is small. Therefore, when air is consumed by the various pneumatic devices 105 as the railway vehicle continues to operate, it will take time until the air pressure value in the source air reservoir 104 falls below the pressure setting value. , is shortened by a time corresponding to the amount of air pressure reversed. This means that the stop time of the air compressor 100 is shortened, and the operating time of the air compressor 100 is the time from when the air pressure value reaches the initial pressure setting value from the input pressure setting value. As a result, as is clear from equation (1) shown in the prior art section mentioned above, the operating rate α is increased. In addition, in order to change the operating rate α, the urging force (initial setting force) of the spring member 14 can be changed by appropriately rotating the NAND member 15 (cylindrical body 10) and moving the adjusting screw cylinder 13 up and down. Bye.

第3図及び第4図は本発明の第2実施例を示すものであ
り、この第2実施例が上記第1実施例と大きく相違して
いるところは、パイロットピストン9の小径ロフト部9
aの上端に大径ピストン部9bを形成し且つ下端に中径
ピストン部9cを形成した点と、前記大径ピストン部9
bと本体1の仕切壁1aとの間に圧力室11を形成した
点と、前記中径ピストン部9cを弁体6の内孔6aに上
下相対移動可能に内嵌させ且つ前記中径ピストン部9c
の上面が当接する当接部材6bを弁体6に固設した点と
、前記圧力室11を本体1に穿設された内部通路12を
介して二次室22に連通させた点と、本体1の上端部に
調整ねし筒13を螺合させた点とである。尚、第3図及
び第4図において、上記第1実施例と共通の構成要件に
ついては同一符号を付してその説明を省略する。
3 and 4 show a second embodiment of the present invention, and this second embodiment is largely different from the first embodiment described above in the small diameter loft portion 9 of the pilot piston 9.
The large diameter piston part 9b is formed at the upper end of a, and the medium diameter piston part 9c is formed at the lower end, and the large diameter piston part 9
b and the partition wall 1a of the main body 1; 9c
A contact member 6b with which the upper surface abuts is fixed to the valve body 6, the pressure chamber 11 is communicated with the secondary chamber 22 via an internal passage 12 bored in the main body 1, and the main body The adjustment thread cylinder 13 is screwed onto the upper end of the 1. In FIGS. 3 and 4, constituent elements common to those of the first embodiment are designated by the same reference numerals and their explanations will be omitted.

従って、この第2実施例においても、元空気溜104内
の空気圧力値が入圧設定値以下となった場合には、空気
圧縮機100の稼働により得られた圧力空気が、−大室
21に流入して弁体6を弁座5より離座させ、二次室2
2を通過して元空気溜104内に供給される。そして、
元空気溜104内の空気圧力値が初圧設定値に達して空
気圧縮機100が停止し且つ吐出弁110が開放された
場合に、二次室22の空気圧力値つまり圧力室11内の
空気圧力値が所定値に低下するまでの所定時間内におい
ては、圧力室ll内の圧力空気に基づきパイロットピス
トン9に作用する上方への付勢力が、補助バネ部材8及
びバネ部材14による下方への付勢力の総和に打ち勝ち
、弁体6は弁座5より離座した状態(例えば第4図に示
す状態)に保持される。とれにより、元空気溜104内
の空気圧力値が所定値だけ低下することになって、入圧
設定値との差が少なくなり、この結果、空気圧縮機10
0の停止時間が短くなって稼働率αが高められることに
なる。
Therefore, also in this second embodiment, when the air pressure value in the source air reservoir 104 becomes less than the input pressure setting value, the pressurized air obtained by operating the air compressor 100 is , the valve body 6 is separated from the valve seat 5, and the secondary chamber 2
2 and is supplied into the source air reservoir 104. and,
When the air pressure value in the primary air reservoir 104 reaches the initial pressure set value, the air compressor 100 is stopped, and the discharge valve 110 is opened, the air pressure value in the secondary chamber 22, that is, the air in the pressure chamber 11 During a predetermined period of time until the pressure value decreases to a predetermined value, the upward biasing force acting on the pilot piston 9 based on the pressure air in the pressure chamber 11 is reduced by the downward biasing force exerted by the auxiliary spring member 8 and the spring member 14. Overcoming the sum of the biasing forces, the valve body 6 is maintained in a state separated from the valve seat 5 (for example, the state shown in FIG. 4). Due to this, the air pressure value in the source air reservoir 104 decreases by a predetermined value, and the difference from the input pressure setting value becomes smaller, and as a result, the air pressure value in the air compressor 10
The zero stop time is shortened, and the operating rate α is increased.

尚、以上の実施例で示した逆止弁103は、第5図に示
す構成の鉄道車両用空気源装置のみならず、他の構成で
あっても調圧器111と吐出弁110が連動する空気源
装置であれば適用可能であることは言うまでもない。
Note that the check valve 103 shown in the above embodiment is applicable not only to the railway vehicle air source device having the configuration shown in FIG. Needless to say, the present invention is applicable to any source device.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、空気圧縮機の稼働により
得られた圧力空気が逆止弁を通過して元空気溜内に蓄圧
されて元空気溜内の空気圧力値が初圧設定値(上限値〉
に達することにより空気圧縮機が停止した後の所定時間
内においては、元空気溜から逆止弁を介して吐出弁に圧
力空気が逆流することになり、空気圧機器による空気消
費が無いにも拘わらず、元空気溜内の空気圧力値が所定
値だけ低下して入圧設定値(下限値)との差が少なくな
り、これに起因して空気圧縮機の停止時間が短くなって
稼働率が高められることになるので、空気圧MIINに
よる空気消費量が予測に反して少ない場合であっても稼
働率が極端に低下することはなく、この結果、空気圧縮
機内における空気中水分の結露、潤滑油の乳化促進によ
る潤滑効果の低下及び各摺動部の焼付等が効果的に防止
されて、動作不良等を来たさない鉄道車両用空気源装置
が実現されることになる。
As described above, according to the present invention, the pressurized air obtained by operating the air compressor passes through the check valve and is accumulated in the source air reservoir, so that the air pressure value in the source air reservoir becomes the initial pressure setting value. (upper limit>
During a predetermined period of time after the air compressor stops due to reaching , pressurized air flows back from the source air reservoir to the discharge valve via the check valve, even though there is no air consumption by the pneumatic equipment. First, the air pressure value in the source air reservoir decreases by a predetermined value, and the difference between it and the input pressure set value (lower limit value) decreases, which shortens the air compressor's stop time and reduces its operating rate. As a result, even if the air consumption due to air pressure MIIN is lower than expected, the operating rate will not be drastically reduced, and as a result, the condensation of moisture in the air and the lubricating oil inside the air compressor will be reduced. This effectively prevents the deterioration of the lubrication effect due to the promotion of emulsification and the seizure of each sliding part, thereby realizing an air source device for a railway vehicle that does not cause malfunctions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の第1実施例を示すもので、
第1図は鉄道車両用空気源装置の構成要素である逆止弁
の縦断正面図、第2図はこの第1実施例の作用を示す縦
断正面図である。また、第3図及び第4図は本発明の第
2実施例を示すもので、第3図は鉄道車両用空気源装置
の構成要素である逆止弁の縦断正面図、第4図はこの第
2実施例の作用を示す縦断正面図である。更に、第5図
は従来例を示す鉄道車両用空気源装置の全体概略構成図
である。 ■・・・本体 21・・・−改宗 22・・・二次室 4・・・連通部 5・・・弁座 6・・・弁体 9・・・パイロットピストン 9x・・・受圧面 11・・・圧力室 14・・・バネ部材 100・・・空気圧縮機 103・・・逆止弁 104・・・元空気溜 105・・・空気圧機器 110・・・吐出弁
1 and 2 show a first embodiment of the present invention,
FIG. 1 is a longitudinal sectional front view of a check valve which is a component of an air source device for a railway vehicle, and FIG. 2 is a longitudinal sectional front view showing the operation of this first embodiment. 3 and 4 show a second embodiment of the present invention, in which FIG. 3 is a longitudinal sectional front view of a check valve that is a component of an air source device for a railway vehicle, and FIG. FIG. 7 is a longitudinal sectional front view showing the operation of the second embodiment. Furthermore, FIG. 5 is an overall schematic diagram of a conventional air source device for a railway vehicle. ■...Body 21...-Conversion 22...Secondary chamber 4...Communication section 5...Valve seat 6...Valve body 9...Pilot piston 9x...Pressure receiving surface 11.・・Pressure chamber 14 ・・Spring member 100 ・・Air compressor 103 ・・Check valve 104 ・・Source air reservoir 105 ・・Pneumatic equipment 110 ・・Discharge valve

Claims (2)

【特許請求の範囲】[Claims] (1)空気圧縮機と接続されて空気圧機器に圧力空気を
供給する元空気溜と、前記空気圧縮機と元空気溜との間
に設けられて開放時にドレンを排出する吐出弁と、この
吐出弁と前記元空気溜との間に設けられて元空気溜方向
を順方向とする逆止弁とを備え、前記空気圧縮機の停止
に同期して吐出弁を開放させるように構成した鉄道車両
用空気源装置において、 前記逆止弁は、空気圧縮機の停止後における所定時間内
に限り元空気溜から吐出弁に向かう方向への圧力空気の
流れを許容するように構成されていることを特徴とする
鉄道車両用空気源装置。
(1) A source air reservoir that is connected to an air compressor and supplies pressurized air to pneumatic equipment, a discharge valve that is provided between the air compressor and the source air reservoir and discharges condensate when opened, and this discharge valve. A railway vehicle comprising a check valve provided between the valve and the source air reservoir and with the direction of the source air reservoir as the forward direction, and configured to open the discharge valve in synchronization with the stop of the air compressor. In the air source device, the check valve is configured to allow pressurized air to flow from the source air reservoir to the discharge valve only within a predetermined time after the air compressor is stopped. Characteristic air source device for railway vehicles.
(2)逆止弁は、その本体内部に形成されて空気圧縮機
側が接続される一次室及び元空気溜側が接続される二次
室と、この一次室と二次室との連通部に形成された弁座
と、この弁座に着座、離座することにより前記連通部を
閉鎖、開放させ前記一次室から二次室へ向かう方向を順
方向とし着座方向に付勢された弁体と、この弁体に離座
方向への力を付与するパイロットピストンと、前記一次
室又は二次室に連通されて当該室から導かれた圧力空気
をパイロットピストンの受圧面に対して離座方向に作用
させる圧力室と、この圧力室内の圧力空気と対抗する方
向にパイロットピストンを付勢するバネ部材とを有し、
前記空気圧縮機の稼働により前記弁体が弁座から離座し
て圧力空気が一次室から二次室に向かって流れた後に空
気圧縮機が停止して吐出弁が開放状態となり一次室から
吐出弁に向かって圧力空気の排出が開始された後の所定
時間内は、前記圧力室内に導かれる圧力空気に基づきパ
イロットピストンに作用する離座方向への付勢力が、前
記弁体を着座方向に付勢している付勢力と前記バネ部材
の付勢力との総和に打ち勝って、前記弁体が弁座から離
座するように構成されていることを特徴とする請求項(
1)記載の鉄道車両用空気源装置。
(2) The check valve is formed inside the main body, and is formed in the primary chamber to which the air compressor side is connected, the secondary chamber to which the source air reservoir side is connected, and the communication part between the primary chamber and the secondary chamber. a valve seat, and a valve body that closes and opens the communication portion by seating and leaving the valve seat, and is biased in the seating direction with the direction from the primary chamber to the secondary chamber as the forward direction; A pilot piston that applies a force to the valve body in the unseating direction, and a pilot piston that communicates with the primary chamber or the secondary chamber and applies pressure air led from the chamber to the pressure receiving surface of the pilot piston in the unseating direction. and a spring member that biases the pilot piston in a direction opposed to the pressure air in the pressure chamber,
When the air compressor is operated, the valve body is unseated from the valve seat and pressurized air flows from the primary chamber to the secondary chamber, and then the air compressor is stopped and the discharge valve is opened and discharged from the primary chamber. During a predetermined period of time after the discharge of pressurized air toward the valve begins, the urging force in the unseating direction that acts on the pilot piston based on the pressure air introduced into the pressure chamber causes the valve body to move in the seating direction. Claim: wherein the valve body is configured to move away from the valve seat by overcoming the sum of the biasing force and the biasing force of the spring member.
1) The air source device for a railway vehicle as described above.
JP2036647A 1990-02-17 1990-02-17 Air source device for railway vehicles Expired - Lifetime JPH0737229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2036647A JPH0737229B2 (en) 1990-02-17 1990-02-17 Air source device for railway vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2036647A JPH0737229B2 (en) 1990-02-17 1990-02-17 Air source device for railway vehicles

Publications (2)

Publication Number Publication Date
JPH03239668A true JPH03239668A (en) 1991-10-25
JPH0737229B2 JPH0737229B2 (en) 1995-04-26

Family

ID=12475645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2036647A Expired - Lifetime JPH0737229B2 (en) 1990-02-17 1990-02-17 Air source device for railway vehicles

Country Status (1)

Country Link
JP (1) JPH0737229B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107813807A (en) * 2017-11-13 2018-03-20 四川江淮汽车有限公司 A kind of gas brake electric car inflating pump control method and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107813807A (en) * 2017-11-13 2018-03-20 四川江淮汽车有限公司 A kind of gas brake electric car inflating pump control method and device
CN107813807B (en) * 2017-11-13 2024-02-06 四川江淮汽车有限公司 Method and device for controlling air pump of air brake electric vehicle

Also Published As

Publication number Publication date
JPH0737229B2 (en) 1995-04-26

Similar Documents

Publication Publication Date Title
US4362475A (en) Compressor inlet valve
RU2509016C2 (en) Composite pressure-bypass valve
US8925577B2 (en) Throttling structure for use in a fluid pressure device
JP4682666B2 (en) Master cylinder
JPH03239668A (en) Air source device for rolling stock
JP2007138903A (en) Fuel supply pressure adjusting device
US5820112A (en) Leveling valve apparatus for controlling vehicle cab leveling
KR20060100101A (en) Check valve
US8286427B2 (en) Master cylinder
JP3400902B2 (en) Safety valve with built-in air release valve
US4917148A (en) Load dependent valve for railway vehicles
JP3054996B2 (en) safety valve
US20050006190A1 (en) Brake control device with a check valve for a motor vehicle
US20030040391A1 (en) Check ball filter for transmissions
US1046548A (en) Flush-valve.
US4875739A (en) Independent continual quick service valve device
JP2001182771A (en) Device for adjusting vehicle height
JPS5921820B2 (en) Master cylinder for vehicle hydraulic brakes
GB2186717A (en) Pressure regulator
US4586754A (en) Load compensating valve with check valve
KR960005529B1 (en) Hydraulic pressure control device for an antilock brake system
KR19990070837A (en) Car braking system
KR200162344Y1 (en) In line valve spring device
EP0000806B1 (en) Fluid pressure circuit protection valves
JP3064454U (en) Constant pressure valve