JPH032393A - Production of copper-coated iron powder - Google Patents

Production of copper-coated iron powder

Info

Publication number
JPH032393A
JPH032393A JP13162789A JP13162789A JPH032393A JP H032393 A JPH032393 A JP H032393A JP 13162789 A JP13162789 A JP 13162789A JP 13162789 A JP13162789 A JP 13162789A JP H032393 A JPH032393 A JP H032393A
Authority
JP
Japan
Prior art keywords
iron powder
copper
powder
plating
bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13162789A
Other languages
Japanese (ja)
Other versions
JP2673829B2 (en
Inventor
Kiyoshi Takatsu
高津 清
Takahiro Fujii
孝浩 藤井
Yoshiaki Watanabe
渡辺 義昭
Eiki Takeshima
鋭機 竹島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP13162789A priority Critical patent/JP2673829B2/en
Publication of JPH032393A publication Critical patent/JPH032393A/en
Application granted granted Critical
Publication of JP2673829B2 publication Critical patent/JP2673829B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To form a uniform copper plating layer on the surface of iron powder in appropriate thickness without causing flocculation of powder and its deposition on a cathode by rotating an inclined cylindrical vessel on its axis and electroplating the Ni-coated iron powder in a copper plating soln. CONSTITUTION:A copper plating soln. of copper phosphate and the Ni-coated iron powder having 10mum to 1mm grain diameter are charged to the cylindrical vessel 1 provided with a cathode plate 2 at its bottom. The inclination of the center axis of the vessel 1 and the turning rate of the vessel 1 are appropriately adjusted so that the aggregate of iron powder descending due to the sp.gr. difference forms an appropriate fluidized region 10 in the lower part of the bath, and collison of the iron powder with the total area of the cathode plate 2 is repeated by the mixing effect of the rotation of the vessel 1 and a baffle 9 in the fluidized region 10. The iron powder is not floated up into the upper region 11, hence a nonfluidized region of the turning flow of only the soln. is formed at the upper part of the bath, an anode 3 is arranged in the upper soln. 11, a current is applied, and the powder is electroplated to produce copper- coated iron powder.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、鉄粉に銅をコーティングした複合粉末の製造
方法に関し9回転容器中で鉄粉に銅の電気めっきを行な
うことによって鉄粉表面に均一かつ適当な厚さの銅めっ
き層を形成する方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for producing a composite powder in which iron powder is coated with copper. This invention relates to a method for forming a copper plating layer of uniform and appropriate thickness.

〔従来の技術と問題点〕[Conventional technology and problems]

粉末へのめっきは、無電、解めっき (例えば特開昭6
1−258868号公報)によって行われることが多い
0例えば「実務表面技術、 1980年9月号8〜12
頁には、無機物への無電解めっきが解説されている。し
かしながら、無電解めっきでは反応が不安定になり易い
、めっき厚のコントロールが難しい。
Plating on powder can be done by electroless plating or electrolytic plating (for example, JP-A No. 6
1-258868)) 0 For example, "Practical Surface Technology, September 1980 Issue 8-12
The page explains electroless plating on inorganic materials. However, with electroless plating, the reaction tends to be unstable and it is difficult to control the plating thickness.

めっき液の寿命が短く、多量の廃液が発生し、公害防止
のための廃液処理費用がコストに大きく影響する。とい
った問題があり、しかも、粉末の一粒一粒にむらなくコ
ーティングすることが困難である。
The life of the plating solution is short, a large amount of waste solution is generated, and the cost of processing the waste solution to prevent pollution has a large impact on costs. Moreover, it is difficult to uniformly coat each grain of powder.

塩化銅溶液からイオン化傾向を利用して銅を置換析出さ
せる方法(例えば特開昭61−79706号公報や特開
昭61−79707号公報)の場合も1析出により浴組
成が著しく変化するため、目的とするめっき厚さにコン
トロールすることが著しく困難であるばかりでなく、浴
の劣化に伴い生じる廃液の量も膨大なものとなる。
In the case of a method in which copper is precipitated by displacement from a copper chloride solution using its ionization tendency (for example, JP-A-61-79706 and JP-A-61-79707), the bath composition changes significantly after one precipitation. Not only is it extremely difficult to control the desired plating thickness, but the amount of waste liquid generated as the bath deteriorates is also enormous.

小ネジや小形の座金などのように、数ミリ以上の比較的
小径の部品に対しては、外部陽極式水平バレルを用いて
電気めっきすることが行われているが、これより小さい
数ミリ未満の粉末の場合に対してはこの従来技術でめっ
きすることはできなかった0例えばバレルの隙間から粉
末が落下してしまい、この隙間を小さくすると粉末の落
下はある程度防止できるものの、めっき液の循環が悪く
なってめっき液組成がくずれ、良好なめっきが出来なく
なる。バレルの底面に数カ所の陰極を配置した内部陽極
式傾斜バレルでも、粉末に対しては効率よくめっきする
ことが出来ない、すなわち。
For parts with a relatively small diameter of a few millimeters or more, such as machine screws and small washers, electroplating is carried out using an external anode type horizontal barrel, but for parts smaller than a few millimeters. For example, the powder would fall through the gap in the barrel, and although reducing the gap could prevent the powder from falling to some extent, it would not be possible to plate the powder with this conventional technique. This deteriorates the plating solution composition and makes it impossible to perform good plating. Even internally anode tilted barrels with several cathodes placed on the bottom of the barrel cannot plate powder efficiently, ie.

そのままでは、めっき速度が遅くて効率が著しく悪いば
かりでなく、めっき膜厚のむらち大きくなり、陰極に粉
末が付着してコブ状になったり粉末が内壁に沿って滑る
だけで良好に流動しないといった構造上の問題もある。
If left as is, not only will the plating speed be slow and the efficiency will be extremely poor, but the plating film thickness will be uneven, the powder will adhere to the cathode and form a lump, and the powder will simply slide along the inner wall and not flow properly. There are also structural issues.

特、公開61−40319号公報は、粉末をインペラー
で撹拌しながら電気めっきする方法を開示しているが、
粉末の凝集や陰極への堆積といった問題がつきまとう。
In particular, Publication No. 61-40319 discloses a method of electroplating while stirring powder with an impeller.
Problems such as powder agglomeration and deposition on the cathode are common.

特開昭63−18096号公報には粒径が100オング
ストローム〜1μmの微粉末に対して懸濁状態で金属を
被覆する方法が開示されているが、 10AIm以上の
粉末には適さない。
JP-A-63-18096 discloses a method of coating fine powder with a particle size of 100 angstroms to 1 μm with metal in a suspended state, but this method is not suitable for powders with a particle size of 10 AIm or more.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前述のような問題を解決し。 The object of the present invention is to solve the above-mentioned problems.

鉄粉の一粒一粒にむらなく銅を所定の厚さにコーティン
グすることができる安価な銅被覆鉄粉の製造法を提供す
るにある。
To provide an inexpensive method for producing copper-coated iron powder that can evenly coat each grain of iron powder with copper to a predetermined thickness.

〔発明の構成〕[Structure of the invention]

本発明による銅被覆鉄粉の製造法は、底面に陰極板を配
し且つ内周壁に邪魔板を配した筒状容器内に、ビロリン
政調を溶解した銅めっき液と粒径がlOμmから1−一
の範囲の鉄粉を装填し、この筒状容器をその中心軸を傾
斜させて軸回りに回転させ、この回転によって該陰極板
の実質上全面積に対して該めっき浴中の鉄粉が繰返し衝
突する流動状態を浴上方に形成させると共に鉄粉の流動
が実質上到達しない非流動域を浴上方に形成させながら
、この非流動域に陽極を配して該陰極板との間で通電す
ることを特徴とする。そのさい、陰極板は筒状容器の底
面部の全面積若しくは大部分の面積を占めるような大き
さのものを使用し1周速が2〜30m+/sinとなる
ように筒状容器の回転速度を制御するのがよく、また本
発明による銅被覆処理に供する鉄粉は、その表面に無電
解ニッケルめっき処理によってニッケル薄膜を形成して
おくのがよい。
The method for producing copper-coated iron powder according to the present invention involves placing a copper plating solution in which bilorin is dissolved in a cylindrical container having a cathode plate on the bottom and a baffle plate on the inner peripheral wall, and a particle size ranging from 10 μm to 1-1 μm. This cylindrical container is rotated around the axis with its central axis tilted, and this rotation spreads the iron powder in the plating bath over substantially the entire area of the cathode plate. A fluid state of repeated collisions is formed above the bath, and a non-flow region is formed above the bath where the flow of iron powder does not substantially reach. An anode is disposed in this non-flow region and electricity is applied between the anode and the cathode plate. It is characterized by At that time, use a cathode plate large enough to occupy the entire area or most of the bottom area of the cylindrical container, and adjust the rotational speed of the cylindrical container so that the one circumferential speed is 2 to 30 m+/sin. Moreover, it is preferable to form a nickel thin film on the surface of the iron powder to be subjected to the copper coating treatment according to the present invention by electroless nickel plating treatment.

〔作用〕[Effect]

本発明によれば、傾斜した筒状容器の軸回りの回転によ
って、その底部の陰極板に対して浴中の鉄粉が高密度で
且つ均等に衝突する流動状態が形成されるので、陰極板
にめっき液中の銅イオンが還元析出するというた現象が
防止されながら、陰極板に衝突した各鉄粉粒子が陰極板
から放電を受けて負に帯電し、その結果、めっき液中の
銅イオンが鉄粉表面に電気めっきされる。また9粒径が
10AI−からl+emの範囲と云った比較的粒径が大
きい鉄粉を対象とするので、各鉄粉はその自重でめっき
液中に下降する作用が働き、筒状容器の回転速度を適切
にすることによって、鉄粉の流動域の上方には鉄粉が舞
い上がらないめっき液だけの非流動域が形成される。こ
の上方のめっき液だけの帯域に陽極を浸漬することによ
って、陽極には鉄粉が触れる事態が避けられ、この結果
、鉄粉や銅被膜が溶解するような現象も防止され、鉄粉
の一粒一粒の表面に均等に銅めっきが施される。まため
っきされる銅の膜厚のコントロールも通電量や処理時間
によって任意に且つ正確に行うことができるし、陰極板
に衝突する鉄粉の適正な流動状態は筒状容器の内周面に
設けた邪魔板によって−層良好に助成される。さらに、
筒状容器の傾斜角度と回転数を任意に調整できる装置に
構成することによって、該流動状態を一層適正且つ簡易
に制御ができる。
According to the present invention, rotation of the inclined cylindrical container around its axis creates a fluid state in which the iron powder in the bath collides with the cathode plate at the bottom of the bath in a high density and evenly. While the reduction and precipitation of copper ions in the plating solution is prevented, each iron powder particle that collides with the cathode plate is negatively charged by being discharged from the cathode plate, and as a result, the copper ions in the plating solution are is electroplated on the iron powder surface. In addition, since we are targeting iron powder with a relatively large particle size in the range of 10AI- to l+em, each iron powder has the effect of descending into the plating solution due to its own weight, and the rotation of the cylindrical container By setting the speed appropriately, a non-flowing region containing only the plating solution is formed above the flowing region of the iron powder, where the iron powder does not fly up. By immersing the anode in the upper zone containing only the plating solution, it is possible to avoid the iron powder from coming into contact with the anode, and as a result, the phenomenon of dissolving the iron powder and copper coating is also prevented, and the iron powder is completely absorbed. Copper plating is applied evenly to the surface of each grain. In addition, the thickness of the copper film to be plated can be arbitrarily and precisely controlled by the amount of current applied and the processing time, and the proper flow state of the iron powder that collides with the cathode plate can be controlled by setting it on the inner peripheral surface of the cylindrical container. The layer is well assisted by the baffle plate. moreover,
By configuring the device to be able to arbitrarily adjust the inclination angle and rotation speed of the cylindrical container, the flow state can be controlled more appropriately and easily.

この銅の電気めっきに供する鉄粉は、前処理として、無
電解ニッケルめっきを行ったものを使用すると、めっき
液中の銅イオンが鉄粉によって還元されるのを良好に防
止できる。すなわち9w4イオンが共存するめっき液中
に鉄粉を投入するとイオン化傾向の差によって鉄粉が液
に溶解し銅が析出する置換析出反応が起こるが、無電解
ニッケルめっきによってニッケルの薄膜を鉄粉の表面に
形成させておくと、この鉄粉の溶解を防止することがで
きる。無電解ニッケルめっきの代わりに無電解銅めっき
を行ワても、粉末からの鉄分の溶出とこれに伴う銅の析
出という置換反応を防ぎきれないため、皮膜がポーラス
となり良好な電気めっきが出来ない、無電解銅めっきで
多量に銅をコーティングすれば電気めっきできるように
なるが、無電解めっきの廃液が多量に発生するために、
電気めっきによるメリットがなくなってしまう。
When the iron powder used for this copper electroplating is subjected to electroless nickel plating as a pretreatment, it is possible to effectively prevent copper ions in the plating solution from being reduced by the iron powder. In other words, when iron powder is introduced into a plating solution in which 9w4 ions coexist, a displacement precipitation reaction occurs in which the iron powder dissolves in the solution and copper is precipitated due to the difference in ionization tendency. By forming it on the surface, it is possible to prevent the iron powder from dissolving. Even if electroless copper plating is performed instead of electroless nickel plating, the substitution reaction of iron elution from the powder and accompanying copper precipitation cannot be prevented, resulting in a porous film and failure to achieve good electroplating. , electroplating becomes possible by coating a large amount of copper with electroless copper plating, but because a large amount of waste liquid is generated from electroless plating,
The benefits of electroplating will be lost.

電気めっきのめっき浴としては、ピロリン酸銅浴がよい
6g酸銅浴や硼ふづ化銅浴では前処理した鉄粉でも溶解
することがあるので良好なめっきが出来ない、ピロリン
酸銅浴では前記のように無電解ニッケルめっきした鉄粉
は溶解することはない。
As a plating bath for electroplating, a copper pyrophosphate bath is recommended.A 6g acid copper bath or a copper borofluoride bath may dissolve even the pretreated iron powder, so good plating cannot be achieved. As mentioned above, iron powder plated with electroless nickel does not dissolve.

〔発明の具体的開示〕[Specific disclosure of the invention]

本発明においては、ビロリン酸銅を溶解した銅めっき液
中に鉄粉が所定の懸濁濃度をもって懸濁した粉末懸濁流
を傾斜回転容器中において強制的に形成させ、この粉末
懸濁流を陽極には実質上接触させないで所定の速度成分
をもって容器底部の陰極板の実質上全面積に対して循環
衝突させるのであり、具体的には、底面に陰極板を配し
た筒状容器内に該めっき浴と粉末を装填し、この筒状容
器をその中心軸を傾斜させて軸回りに回転させることに
よってめっき浴中の粉末が陰極板に繰返し衝突する流動
状態を浴上方に形成させると共に粉末の流動が実質上到
達しない非流動域を浴上方に形成させ、この非流動域に
陽極を配して鉄粉表面に銅の電気めっきを行うのである
。そのさい、!気めっき液中の下方に形成される粉末の
流動域の懸濁濃度が30vo1.%から55vo1.%
の範囲となるようにするのが望ましく、また、この流動
域は陽極板には接触しないように形成させることが必要
である。そして、この流動域の粉末懸濁流が陰極板に対
して2領/■in〜30m/sinの流速をもって衝突
するようにするのよく、これは1回転容器の周速を2s
/sin〜3(Is/■Inの範囲となるように制御す
ればよい、これによって、電気めっき液中の銅イオンの
濃度には実質上無関係に鉄粉の一粒づつに均一にかつ高
収率(90%以上の高収率)で銅が電気めっきできる。
In the present invention, a powder suspension flow in which iron powder is suspended at a predetermined suspension concentration in a copper plating solution in which copper birophosphate is dissolved is forcibly formed in an inclined rotating container, and this powder suspension flow is applied to the anode. The plating bath is cyclically collided with substantially the entire area of the cathode plate at the bottom of the container at a predetermined velocity component without substantially contacting the plating bath. By loading this cylindrical container with powder and tilting its center axis and rotating it around the axis, a fluid state is formed above the bath in which the powder in the plating bath repeatedly collides with the cathode plate, and the flow of the powder is A non-flowing region is formed above the bath, which is virtually unreachable, and an anode is disposed in this non-flowing region to perform copper electroplating on the surface of the iron powder. At that time! The suspension concentration in the flow region of the powder formed in the lower part of the plating solution is 30vol. % to 55vol. %
It is desirable that the flow area be within the range of 200 to 3000, and it is also necessary to form this flow region so that it does not come into contact with the anode plate. It is recommended that the powder suspension flow in this flow region collides with the cathode plate at a flow velocity of 2 areas/inch to 30 m/sin, which increases the circumferential speed of the container by 2 seconds per revolution.
/sin to 3 (Is/■In). This allows iron powder to be coated uniformly and with a high yield on each grain of iron powder, substantially regardless of the concentration of copper ions in the electroplating solution. Copper can be electroplated at a high yield of 90% or more.

また陰極板の全面積が粉末の流動流の投射を連続的に受
けている状態を維持することによって陰極には液中のC
uイオンが電析することが防止されると共に、粉末の流
動域が陽極に接触しない状態を維持することによって、
鉄粉およびその表面に電析した銅が溶解することも防止
される。
In addition, by maintaining the state in which the entire area of the cathode plate is continuously exposed to the flow of powder, the cathode is exposed to the C in the liquid.
By preventing U ions from being electrolytically deposited and maintaining a state in which the flow region of the powder does not contact the anode,
The iron powder and the copper electrodeposited on its surface are also prevented from dissolving.

なお5本発明で対象とする鉄粉は粒径が10μm以上の
ものが適する。これより細かいとめっき浴中に舞い上が
って浮遊するような現象が生じ、めっきされなかったり
、陽極に接触して溶解してしまう等の問題が生じるから
である。回転を遅くすれば舞い上がらなくなるものの、
今度は凝集、陰極への析出といった問題が生じる。また
、陰極の全面積にわたって密な衝突状態を維持させるに
は粒径があまり大きくなってもよくない、このため粒径
が1mm以下のものが本発明法には適する。容器を回転
させるさいの周速については1既述の理由から2〜30
m/sinが適当であるが、他方の理由としてこれより
速すぎると粉末が遠心力で容器内壁に押さえつけられて
均一な撹拌ができなかったり、粉末が舞い上がって陽極
と接触して溶解してしまったりするし、これより遅すぎ
る場合も、撹拌不足のためにa簗や陰極への析出といっ
た問題が生じるので、この範囲の周速が適切となる。な
お、処理対象とする鉄粉の粒径が前記範囲内において小
さいか比重が軽い場合は周速を小さくシ。
Note that the iron powder targeted in the present invention has a particle size of 10 μm or more. This is because if the particles are finer than this, they may fly up into the plating bath and float, causing problems such as not being plated or melting on contact with the anode. Although it will stop flying if you slow down the rotation,
This time, problems such as aggregation and precipitation on the cathode arise. Further, in order to maintain a dense collision state over the entire area of the cathode, the particle size does not need to be too large, so particles with a particle size of 1 mm or less are suitable for the method of the present invention. The circumferential speed when rotating the container should be 2 to 30 for the reasons mentioned above.
m/sin is appropriate, but on the other hand, if the speed is too high, the powder may be pressed against the inner wall of the container by centrifugal force and uniform stirring may not be possible, or the powder may fly up and come into contact with the anode and dissolve. If it is slower than this, problems such as precipitation on the agglomerates and cathode will occur due to insufficient stirring, so a circumferential speed within this range is appropriate. Note that if the particle size of the iron powder to be treated is small within the above range or the specific gravity is light, reduce the peripheral speed.

鉄粉粉末の粒径が大きいか比重が重い場合は周速を大き
くすると良い、いずれにせよ鉄粉の特性により9周速と
傾斜角度を制御して、常に容器底面の陰極根回りに安定
した流動層を形成することが重要である。
If the particle size of the iron powder is large or the specific gravity is heavy, it is better to increase the peripheral speed.In any case, the peripheral speed and inclination angle can be controlled depending on the characteristics of the iron powder to ensure stable flow around the cathode base at the bottom of the container. It is important to form layers.

第1図は1本発明の電気めっき法を実施する装置の要部
を示したものであり、処理鉄粉およびめっき液を収容す
るための円筒形の筒状容器lと。
FIG. 1 shows the main parts of an apparatus for carrying out the electroplating method of the present invention, including a cylindrical container L for containing treated iron powder and a plating solution.

この筒状容器1の底部において容器軸と直交する方向に
配置された陰極板2と、筒状容器1内のめっき液の液面
近くに配した陽極3と、陰極板2と陽極3との間に所定
の電位を付与する電源装置4と、からなっており、筒状
容器lはその中心軸が鉛直よりも傾斜して(図示の例で
は垂直に対して45°の傾きをもって)中心軸回りに回
転可能に設置されている。すなわち、容器1の底部をそ
の中心で回転軸5によって外側から支持し、これによっ
て容器1を中心軸回りに回転可能とし、この回転軸5に
回転動力を付与するモータ6を基台7に固定する。そし
て、この基台7の水平に対する傾きを調整自在とするこ
とによって、容器1の傾き角を調整する。また、容器1
が傾いたさいの荷重を受けるために、容器1の外周に接
して回動する遊転ローラ8が設けられ、この遊転ローラ
8の荷重点も基台7に一体的に接続されている。モータ
6は変速モータであり、容器1の軸回りの回転速度を自
在に調整できるものである。一方、容器lの内周面には
処理粉末の流動を促進させる邪魔板9が設けである。こ
の邪魔板9は1図示の例では。
A cathode plate 2 disposed at the bottom of the cylindrical container 1 in a direction perpendicular to the container axis, an anode 3 disposed near the surface of the plating solution in the cylindrical container 1, and a connection between the cathode plate 2 and the anode 3. and a power supply device 4 that applies a predetermined potential between the cylindrical container 1 and the cylindrical container 1. It is installed so that it can rotate around it. That is, the bottom of the container 1 is supported from the outside by a rotating shaft 5 at its center, thereby making the container 1 rotatable around the central axis, and a motor 6 that applies rotational power to the rotating shaft 5 is fixed to a base 7. do. By making the inclination of the base 7 adjustable with respect to the horizontal, the inclination angle of the container 1 is adjusted. Also, container 1
An idling roller 8 that rotates in contact with the outer periphery of the container 1 is provided to receive the load when the container 1 is tilted, and the load point of this idling roller 8 is also integrally connected to the base 7. The motor 6 is a variable speed motor, and can freely adjust the rotational speed of the container 1 around its axis. On the other hand, a baffle plate 9 is provided on the inner peripheral surface of the container 1 to promote the flow of the treated powder. This baffle plate 9 is shown in the example shown in FIG.

容器1の内壁から半径方向に内側に若干突き出した板を
、その長手方向が容器の軸方向に沿うようにして、該内
壁に取付けたものであり、第2図に示すように、 90
’間隔で四枚取付けである。
A plate protruding slightly inward in the radial direction from the inner wall of the container 1 is attached to the inner wall with its longitudinal direction along the axial direction of the container, as shown in FIG.
'Four pieces are installed at intervals.

このように構成された電気めっき装置に、銅めっき液と
鉄粉を入れ、その装填量並びに量比に応じて容器1の傾
き角とモータ6の回転速度を適切に調整することによっ
て、比重差によってめっき液中を下降する粉末の集合体
がめつき液下方において適正な流動域10を形成するよ
うに制御することができる。すなわち、粉末の流動域1
0が容器1の自転と邪魔板2による掻き混ぜ効果によっ
て旋回流動しながら陰極板2の全面積を覆うように常に
衝突を繰返し、且つめっき液の上方域11には粉末が舞
い上がることがなく、液だけの旋回流が形成するような
定常状態が維持できる。この定常状態が形成されたなら
、液だけの旋回流が形成されているめっき液の上方液1
1に陽極3を配置し1通電を開始し、所定の時間電気め
っき処理を行ったあと9通電を止め、めっき品を回収す
る。この回収は、基台7を回動することによって、容器
lをさらに傾斜させて内容物を別の容器に移し換えて行
えばよい。
By putting copper plating solution and iron powder into the electroplating apparatus configured in this way, and appropriately adjusting the inclination angle of the container 1 and the rotational speed of the motor 6 according to the loading amount and quantity ratio, the specific gravity difference can be reduced. Accordingly, the powder aggregate descending in the plating solution can be controlled to form an appropriate flow region 10 below the plating solution. That is, the powder flow area 1
0 constantly repeats collisions so as to cover the entire area of the cathode plate 2 while swirling and flowing due to the rotation of the container 1 and the stirring effect of the baffle plate 2, and no powder flies up into the upper region 11 of the plating solution. A steady state in which a swirling flow of only liquid is formed can be maintained. Once this steady state has been formed, the upper liquid 1 of the plating liquid where a swirling flow of liquid only is formed.
The anode 3 is placed on the plate 1, 1 electricity is started, electroplating is performed for a predetermined period of time, 9 the electricity is stopped, and the plated product is recovered. This recovery can be accomplished by rotating the base 7 to further tilt the container l and transferring the contents to another container.

以下に、この装置を用いて本発明法を実施した代表例を
挙げる。
Representative examples in which the method of the present invention was carried out using this apparatus are listed below.

〔実施例1〕 第1表に示す川崎製鉄■製のにIP300Aの鉄粉を用
いて銅めっきを施す、まず、前処理として、該鉄粉1k
gを2Ilのトールビーカーに入れ、東京理化器械■製
口Cスターラ−(DC−2RT型)を用いて。
[Example 1] Copper plating is performed using IP300A iron powder made by Kawasaki Steel Corporation shown in Table 1.First, as a pretreatment, 1k of the iron powder is applied.
g into a 2Il tall beaker and using a Tokyo Rikakikai Seiku C stirrer (DC-2RT model).

テフロン製のプロペラで撹拌しながら塩酸60−1を少
しずつ加えて酸洗する0次に、水洗を3回行ったのち、
 DCスターラー(DC−2RT型)を用いて560r
pmにて撹拌しながら、−奥野製薬工業■製のアルカリ
性無電解ニッケルめっき液r TMP化学ニッケル」に
て無電解めっきを行う0次に、水洗を3回行う。
While stirring with a Teflon propeller, add hydrochloric acid 60-1 little by little for pickling.Next, after washing with water three times,
560r using a DC stirrer (DC-2RT type)
While stirring at pm, electroless plating is performed using an alkaline electroless nickel plating solution R TMP Chemical Nickel manufactured by Okuno Pharmaceutical Co., Ltd. Next, washing with water is performed three times.

一方、めっき液として9次に示す液組成のピロリン酸銅
浴1.51を調整する。
On the other hand, as a plating solution, a copper pyrophosphate bath 1.51 having the liquid composition shown below is prepared.

めっき液組成 ビロリン酸銅 (CutP got ・3 )(to 
)  29g/j!ビロリン酸カリウム(K、PオO?
)    254g/ j!クエン酸カリウム (KH
tC1sOヮ)   23g/lこのめっき浴と前記の
前処理した鉄粉を既述の図示の容器1に装填し、容器1
の傾斜角度を45゜としてモーター6(シンポ工業■製
リングコーンRXM−40−GSM型)にて容器1を周
速9.1m/sinで回転させてめっき処理を行った。
Plating solution composition Copper birophosphate (CutP got 3) (to
) 29g/j! Potassium birophosphate (K, PO?
) 254g/j! Potassium citrate (KH
tC1sOヮ) 23 g/l This plating bath and the above-mentioned pretreated iron powder were loaded into the illustrated container 1, and
The plating process was carried out by rotating the container 1 at a circumferential speed of 9.1 m/sin using a motor 6 (ring cone RXM-40-GSM type manufactured by Shinpo Kogyo ■) at an inclination angle of 45 degrees.

そのさい、陽極3はピロリン酸銅めっき浴用銅板(住友
金属鉱山■製tlP−CM47 /−ド)を用い、陰極
2には直径l10m−のステンレス(SUS304)を
用いた。容器の内径は直径120mmである。各邪魔板
9は高さ5II11長さ120−一の板を容器1の内壁
に90°間隔で設けたものである。直流電源4には、■
三社電機製作所製5ANREXDCAUTO15300
型を用いた0通電量を260AHとしてめっきを行った
At this time, the anode 3 used was a copper plate for copper pyrophosphate plating bath (tlP-CM47/-do, manufactured by Sumitomo Metal Mining), and the cathode 2 was made of stainless steel (SUS304) with a diameter of 110 m. The inner diameter of the container is 120 mm in diameter. Each baffle plate 9 has a height of 5II11 and a length of 120-1, which are provided on the inner wall of the container 1 at 90° intervals. DC power supply 4 has ■
5ANREXDCAUTO15300 manufactured by Sansha Denki Seisakusho
Plating was performed using a mold with a zero current flow of 260AH.

めっきが終了したのち、水洗し、ブフナーロートにて減
圧濾過した後、エタノールで洗浄し、室温の真空乾燥機
にて、エジェクター付きの水封ポンプで一昼夜、真空引
きを続けて乾燥させた。乾燥後の粉末は1302gであ
った。この粉末を分析すると23.2wt、XCuであ
った。電流効率は98%と高い値を示した。またこの粉
末を篩にかけたところ+ 80meshが0373%で
あった。これは原料の鉄粉に比較して僅か0.33%の
増加であり、したがって殆んど凝集が認められなかった
After plating was completed, it was washed with water, filtered under reduced pressure using a Buchner funnel, washed with ethanol, and dried in a vacuum dryer at room temperature by continuously drawing a vacuum with a water ring pump equipped with an ejector all day and night. The powder after drying weighed 1302 g. When this powder was analyzed, it was found to be 23.2wt and XCu. The current efficiency showed a high value of 98%. When this powder was sieved, +80 mesh was found to be 0.373%. This was an increase of only 0.33% compared to the raw material iron powder, and therefore almost no agglomeration was observed.

第3図に、得られためつき粉末の断面写真を示した。FIG. 3 shows a cross-sectional photograph of the obtained milling powder.

〔実施例2〕 粒径20μmの鉄粉300gを脱脂し、実施例1と同様
に無電解銅ニッケルめっきを施した後、直流電源に■高
砂製作所TM01B−3型を用い、既述のめつき装置で
周速2IIノl1inで銅めっきした。無酸素銅を陽極
とし、銅めっき液には次のものを用いて257AHめっ
きを行った。
[Example 2] After degreasing 300 g of iron powder with a particle size of 20 μm and applying electroless copper-nickel plating in the same manner as in Example 1, plating was performed as described above using Takasago Seisakusho TM01B-3 type as a DC power source. Copper plating was performed using a device at a circumferential speed of 2II/1 inch. 257AH plating was performed using oxygen-free copper as an anode and using the following copper plating solution.

めっき液組成 ヒCI IJ 7酸$M  (CLl、P、O,・3 
HtO)  80g/lビOIJ 7酸力IJウム(K
、Pt0t)    255g/j!アンモニア水  
           4m l / 1硝酸カリウム
 (K N Os)        12g/j!以下
、実施例1と同様に処理した結果、乾燥後の粉末は60
1gであった。この粉末を分析すると。
Plating solution composition HCI IJ 7 acid $M (CLl, P, O, ・3
HtO) 80g/l BiOIJ 7 acid power IJum (K
, Pt0t) 255g/j! ammonia water
4ml/1 Potassium nitrate (KNOs) 12g/j! Hereinafter, as a result of processing in the same manner as in Example 1, the powder after drying was 60%
It was 1g. Analyzing this powder.

50.1wt、XCuであった。電流効率は99%と高
し1(直を示した。
It was 50.1wt, XCu. The current efficiency was as high as 99%.

〔実施例3〕 粒径0,7mmの鉄粉300gを実施例2と同様に前処
理した後、既述の装置で周速30s/winとした他は
実施例2と同様にして14^■銅めっきを施した。
[Example 3] After pre-treating 300 g of iron powder with a particle size of 0.7 mm in the same manner as in Example 2, it was processed in the same manner as in Example 2 except that the circumferential speed was set to 30 s/win using the device described above. Copper plated.

以下、実施例1と同様に処理した結果、乾燥後の粉末は
316gであった。この粉末を分析すると。
Thereafter, the powder was treated in the same manner as in Example 1, and the amount of powder after drying was 316 g. Analyzing this powder.

5.1wt、XCuであった。電流効率は99%と高い
値を示した。
It was 5.1wt, XCu. The current efficiency showed a high value of 99%.

〔比較例1〕 次に比較のため、特公昭61−40319号公報に記載
の方法に準じてめっきを行った結果を示す、既述の第1
表に示す鉄粉500gを12のトールビーカーに入れ、
実施例1と同様に酸洗を行い、無電解ニッケルめつきを
行った後、めっき槽底面に陰極を備えためっき槽に入れ
、実施例1と同一組成のめっき液を入れて、東京理化器
械■製DCスターラー(DC−2RT型)を用いて、テ
フロン製のプロペラで粉末を撹拌しながら、直流電源に
■高砂製作所製TM018−3型を用いて、12B−6
AI+めっきを行った。ところが、底面の陰極に粉末が
付着、堆積して徐々に厚くなって行き、堆積した粉末と
撹拌プロペラが接触してゴシゴシ音がしていた。めっき
終了後。
[Comparative Example 1] Next, for comparison, the results of plating according to the method described in Japanese Patent Publication No. 61-40319 are shown.
Put 500g of iron powder shown in the table into 12 tall beakers,
After pickling and electroless nickel plating in the same manner as in Example 1, the plating tank was placed in a plating tank equipped with a cathode on the bottom, and a plating solution with the same composition as in Example 1 was added. While stirring the powder with a Teflon propeller using a DC stirrer (model DC-2RT) manufactured by
AI+plating was performed. However, powder adhered to the cathode on the bottom and gradually became thicker, and the stirring propeller came into contact with the accumulated powder, making a grinding noise. After plating is completed.

粉末は445g、陰極への堆積物は184gあった。す
なむち収率は71%と著しく悪<、シかも粉末の中には
、摩耗したプロペラから発生したプラスチックの粉が混
入しており、使用できるものではなかった。
There were 445 g of powder and 184 g of deposits on the cathode. The yield was extremely poor at 71%, and the powder contained plastic powder generated from the worn propeller, making it unusable.

〔比較例2〕 第1表に示す鉄粉を酸洗し、無電解ニッケルを施すこと
な〈実施例1と同様にして、直流電源に■高砂製作所T
M018−3型を用いて銅めっきしようとしたところ、
鉄粉が溶解し始め、めっき液が急に濁りはじめ3分解し
てしまった。
[Comparative Example 2] The iron powder shown in Table 1 was pickled, and without applying electroless nickel.
When I tried to plate copper using M018-3 type,
The iron powder began to dissolve, and the plating solution suddenly became cloudy and decomposed.

〔比較例3〕 第1表に示す鉄粉を実施例1と同様に酸洗を行ったうえ
、奥野製薬工業■製の高速無電解銅めっき液r opc
カッパー」にて無電解めっきを施した後1 直流電源に
■高砂製作所TM018−3型を用いて実施例1と同様
にして銅めっきしようとしたところ、めっき液が君、に
濁りはじめ1分解してしまった。
[Comparative Example 3] The iron powder shown in Table 1 was pickled in the same manner as in Example 1, and then treated with high-speed electroless copper plating solution ROPC manufactured by Okuno Pharmaceutical Co., Ltd.
After electroless plating with ``Copper'' 1 When I tried to plate copper in the same manner as in Example 1 using Takasago Seisakusho TM018-3 as a DC power supply, the plating solution started to become cloudy and decomposed. It happened.

(比較例4〕 第1表に示す鉄粉を、めっき浴だけ硫酸銅浴に変えた以
外は実施例1と同様にして電気めっきしようとしたとこ
ろ、粉末からの鉄分の溶出とこれに伴う銅の析出という
置換反応が著しく、電気めっきを継続することが出来な
かった。
(Comparative Example 4) When electroplating the iron powder shown in Table 1 in the same manner as in Example 1 except that the plating bath was changed to a copper sulfate bath, iron was eluted from the powder and copper The substitution reaction of precipitation was so severe that electroplating could not be continued.

〔比較例5〕 第1表に示す鉄粉を、めっき浴だけ硼ぶつ化銅浴に変え
た以外は実施例1と同様にして電気めっきしようとした
ところ、粉末からの鉄分の溶出とこれに伴う銅の析出と
いう置換反応が著しく、電気めっきを継続することが出
来なかった。
[Comparative Example 5] When electroplating was performed using the iron powder shown in Table 1 in the same manner as in Example 1 except that the plating bath was changed to a copper boride bath, iron was eluted from the powder and The accompanying substitution reaction of copper precipitation was so severe that electroplating could not be continued.

〔効果] 本発明法によれば、無電解めっきや置換析出の場合のよ
うなめっき浴の劣化の問題がなく1浴寿命も長いため、
廃液の発生が著しく少なく、ひいては安価に鉄粉に銅を
コーティングができる。さらに、を流動率が良く、−安
定しためっきが可能であるから、めっきの膜厚、めっき
量を通電量によって容易にコントロールすることができ
る。また良好且つ安定した粉末の流動状態が陰極板の全
面積にわたって維持できるので粉末の凝集や陰極への堆
積といった間闘がなく、鉄粉の溶解といったこともない
ので、粉末の一粒一粒にむらなく銅被膜を形成できる。
[Effects] According to the method of the present invention, there is no problem of deterioration of the plating bath as in the case of electroless plating or displacement deposition, and the life of one bath is long.
The generation of waste liquid is extremely small, and copper can be coated on iron powder at low cost. Furthermore, since it has a good fluidity and enables stable plating, the thickness of the plating and the amount of plating can be easily controlled by changing the amount of current applied. In addition, since a good and stable powder fluidity state can be maintained over the entire area of the cathode plate, there is no struggle such as powder aggregation or deposition on the cathode, and there is no melting of iron powder, so each particle of powder is Copper coating can be formed evenly.

さらに容器底面の面積に対して相当大きな円形の陰極を
配置することにより粉末が陰極に付着することがなくな
り、効率よく銅被膜が形成される。
Furthermore, by arranging a circular cathode that is considerably large relative to the area of the bottom surface of the container, powder does not adhere to the cathode, and a copper coating can be efficiently formed.

【図面の簡単な説明】 第1図は本発明のめっき装置例の要部を示す略断面図、
第2図は第1図のn−n’線矢視断面図。 第3図は実施例1で得られた銅被覆鉄粉の金属組織を示
す断面写真である。 1・・筒状容器1 2・・陰極、  3・・陽掻。 4・・電源装置、  5・・回転軸、6・・モータ。 7 ・ 動域。 ・基台。 邪魔板。 lO・ ・粉末の流
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a schematic sectional view showing the main parts of an example of a plating apparatus of the present invention;
FIG. 2 is a sectional view taken along line nn' in FIG. 1. FIG. 3 is a cross-sectional photograph showing the metal structure of the copper-coated iron powder obtained in Example 1. 1. Cylindrical container 1 2. Cathode 3. Positive irradiation. 4. Power supply device, 5. Rotating shaft, 6. Motor. 7. Range of motion.・Base. baffle board. lO・・Powder flow

Claims (3)

【特許請求の範囲】[Claims] (1)底面に陰極板を配し且つ内周壁に邪魔板を配した
筒状容器内に、ピロリン酸銅を溶解した銅めっき液と粒
径が10μmから1mmの範囲のニッケル被膜付き鉄粉
を装填し、この筒状容器をその中心軸を傾斜させて軸回
りに回転させ、この回転によって該陰極板の実質上全面
積に対して該めっき浴中の鉄粉が繰返し衝突する流動状
態を浴下方に形成させると共に鉄粉の流動が実質上到達
しない非流動域を浴上方に形成させながら、この非流動
域に陽極を配して該陰極板との間で通電することを特徴
とする銅被覆鉄粉の製造法。
(1) In a cylindrical container with a cathode plate on the bottom and a baffle plate on the inner peripheral wall, add a copper plating solution in which copper pyrophosphate is dissolved and nickel-coated iron powder with a particle size in the range of 10 μm to 1 mm. The cylindrical container is rotated around the axis with its central axis tilted, and this rotation creates a fluid state in which the iron powder in the plating bath repeatedly collides with substantially the entire area of the cathode plate. A copper bath characterized in that a non-flowing region is formed at the bottom and above the bath where the flow of iron powder does not substantially reach, and an anode is disposed in this non-flowing region and current is passed between it and the cathode plate. Method for producing coated iron powder.
(2)ニッケル被膜付き鉄粉は、その表面に無電解ニッ
ケルめっき処理によってニッケル薄膜が形成されたもの
である請求項1に記載の銅被覆鉄粉の製造法。
(2) The method for producing copper-coated iron powder according to claim 1, wherein the nickel-coated iron powder has a thin nickel film formed on its surface by electroless nickel plating.
(3)筒状容器の回転は、周速が2〜30m/minと
なるように制御される請求項1または2に記載の銅被覆
鉄粉の製造法。
(3) The method for producing copper-coated iron powder according to claim 1 or 2, wherein the rotation of the cylindrical container is controlled so that the circumferential speed is 2 to 30 m/min.
JP13162789A 1989-05-26 1989-05-26 Manufacturing method of copper-coated iron powder Expired - Lifetime JP2673829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13162789A JP2673829B2 (en) 1989-05-26 1989-05-26 Manufacturing method of copper-coated iron powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13162789A JP2673829B2 (en) 1989-05-26 1989-05-26 Manufacturing method of copper-coated iron powder

Publications (2)

Publication Number Publication Date
JPH032393A true JPH032393A (en) 1991-01-08
JP2673829B2 JP2673829B2 (en) 1997-11-05

Family

ID=15062472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13162789A Expired - Lifetime JP2673829B2 (en) 1989-05-26 1989-05-26 Manufacturing method of copper-coated iron powder

Country Status (1)

Country Link
JP (1) JP2673829B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1483430A4 (en) * 2002-03-12 2007-12-19 Macdermid Inc Non-cyanide copper plating process for zinc and zinc alloys
US9734609B2 (en) 2004-01-14 2017-08-15 Hexagon Metrology, Inc. Transprojection of geometry data

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1483430A4 (en) * 2002-03-12 2007-12-19 Macdermid Inc Non-cyanide copper plating process for zinc and zinc alloys
US9734609B2 (en) 2004-01-14 2017-08-15 Hexagon Metrology, Inc. Transprojection of geometry data

Also Published As

Publication number Publication date
JP2673829B2 (en) 1997-11-05

Similar Documents

Publication Publication Date Title
JP3874911B2 (en) Plating method for micro plastic balls
JPH01272792A (en) Method for electroplating metal on fine powder
JP3342697B2 (en) Electroplating method for metal coating on particles at high coating speed using high current density
JPH0681186A (en) Electrolytic method and device for producing metal foil
CN109183102B (en) Dispersion pulse electroplating method for heavy powder
US4943355A (en) Improved process for producing uniformly plated microspheres
JPS62287091A (en) Long electroforming metal foil having good ductility and fine grain structure and its production
US3853094A (en) Electroless plating apparatus
US3779873A (en) Process for metal coating diamonds
JP2002069689A (en) Method for electroplating on powder
JPH032393A (en) Production of copper-coated iron powder
US4645580A (en) Process for galvanic deposition of a dispersion coating, application of said process and device for performing said process
US4498967A (en) Device for producing dispersion coatings
JPS6318096A (en) Method for coating metal to hyperfine powder
US3940512A (en) Method and apparatus for concomitant particulate deposition in electroless plating, and the product thereof
CN101787552B (en) Cu-W-Ni copper matrix composite used for liner, electroforming method and electroforming solution thereof
JPH032392A (en) Method and device for coating powder
JPH0544083A (en) Elctroplating method for powder
CN1184358C (en) Medicine type cover electroforming manufacturing process and equipment
CN114293232A (en) Method for preparing tungsten dispersion strengthened copper composite material by electroforming
JP2013216567A (en) Glass bubble, master batch including the same, and resin particle having metal film formed on surface
JPS5941489A (en) Method for electroplating particulate material
US4916098A (en) Process and apparatus for manufacturing an electrocatalytic electrode
JPS6213440B2 (en)
JP2002030488A (en) Dispersive plating method by electromagnetic agitation