JPH03239028A - Optical repeater system - Google Patents
Optical repeater systemInfo
- Publication number
- JPH03239028A JPH03239028A JP2035956A JP3595690A JPH03239028A JP H03239028 A JPH03239028 A JP H03239028A JP 2035956 A JP2035956 A JP 2035956A JP 3595690 A JP3595690 A JP 3595690A JP H03239028 A JPH03239028 A JP H03239028A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- signal
- repeater
- optical fiber
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 53
- 230000003321 amplification Effects 0.000 claims abstract description 24
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 24
- 239000013307 optical fiber Substances 0.000 claims abstract description 22
- 238000001069 Raman spectroscopy Methods 0.000 claims abstract description 13
- 238000012544 monitoring process Methods 0.000 claims description 19
- 239000006185 dispersion Substances 0.000 claims description 13
- 101100221835 Arabidopsis thaliana CPL2 gene Proteins 0.000 abstract description 5
- 101100221836 Arabidopsis thaliana CPL3 gene Proteins 0.000 abstract description 3
- 101100065702 Arabidopsis thaliana ETC3 gene Proteins 0.000 abstract description 3
- 238000009792 diffusion process Methods 0.000 abstract 3
- 101150016835 CPL1 gene Proteins 0.000 abstract 2
- 101100468774 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) RIM13 gene Proteins 0.000 abstract 2
- 238000006243 chemical reaction Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 10
- 239000000835 fiber Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000002457 bidirectional effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/0941—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
- Optical Communication System (AREA)
- Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
〔概 要〕
光信号を直接増幅して中継する方式に関し、光フアイバ
ラマン増幅方式を用いて光自体を中継処理の対象とする
方式を実現することを目的とし、
中継器の入出力両端に高分散光ファイバを接続し、該高
分散光ファイバの領域において主信号と監視系信号とが
波長多重化された光入力信号及び光出力信号に対し該中
継器からのポンプ光によりそれぞれ前方向及び後方向の
ラマン増幅を行うように構成する。[Detailed Description of the Invention] [Summary] Regarding a method of directly amplifying and relaying an optical signal, the purpose of this invention is to realize a method in which the light itself is subject to relay processing using an optical fiber Baraman amplification method. A high dispersion optical fiber is connected to both input and output ends of the repeater, and the optical input signal and the optical output signal, in which the main signal and the monitoring system signal are wavelength-multiplexed, are pumped from the repeater in the region of the high dispersion optical fiber. It is configured to perform Raman amplification in the forward direction and backward direction using light, respectively.
本発明は、光中継方式に関し、特に光信号を直接増幅し
て中継する方式に関するものである。The present invention relates to an optical relay system, and particularly to a system for directly amplifying and relaying optical signals.
現在、実用化されている光中継方式は、中継器において
光を一旦電気に変換して増幅・整形し、この電気信号を
半導体レーザー等により光に戻すという方式を採用して
いるが、この方式では、■処理する信号の速度が、電気
回路により定まるビットレートに制約されてしまい、ま
た、■使用できる光波長が限定されてしまう。The optical repeating system currently in practical use uses a repeater to convert light into electricity, amplify and shape it, and then convert this electrical signal back into light using a semiconductor laser, etc. Then, (1) the speed of the signal to be processed is limited by the bit rate determined by the electrical circuit, and (2) the optical wavelength that can be used is limited.
これに対して光信号を直接増幅・整形して中継を行う光
中継方式には、■ビットレートの変更が、10 Gb/
s程度まで随時行える、■双方向増幅や波長多重化信号
の一括増幅も可能になっているので、この光直接中継方
式の採用が求められている。On the other hand, in the optical relay method, which directly amplifies and shapes the optical signal and then relays it, the bit rate can be changed to 10 Gb/
Since bidirectional amplification and batch amplification of wavelength multiplexed signals can be carried out at any time up to the order of 20 seconds, adoption of this optical direct relay system is desired.
〔従来の技術とその課M]
現在研究が進められている光直接増幅方式にはEr(エ
ルビウム)ドープファイバや、半導体レーザーや、光フ
アイバラマン等を用いた増幅方式があるが、光フアイバ
ラマン増幅方式の方が他の方式に比べて、■増幅帯域幅
が広いため波長多重化が容易であり、また、■半導体レ
ーザーのような方向性を持たないため双方向増幅が可能
であるという利点を有している。[Conventional technology and its section M] Direct optical amplification methods currently being researched include amplification methods using Er (erbium) doped fibers, semiconductor lasers, optical fiber optics, etc. Compared to other methods, this amplification method has the advantage that it has a wide amplification bandwidth, making wavelength multiplexing easier, and bidirectional amplification is possible because it does not have directionality like a semiconductor laser. have.
しかしながら、未だ光フアイバラマン増幅方式を用いた
光中継方式は提案されていないのが現状である。However, the current situation is that no optical relay system using an optical fiber Brahman amplification system has been proposed yet.
従って、本発明は、光フアイバラマン増幅方式を用いて
光自体を中継処理の対象とする方式を実現することを目
的とする。Therefore, an object of the present invention is to realize a system in which light itself is subject to relay processing using an optical fiber Brahman amplification system.
上記の課題を解決するため、本発明に係る光中継方式で
は、第1図に概念的に示すように、中継器1の入出力両
端に高分散光ファイバ2,3を接続し、該高分散光ファ
イバ2.3の領域において主信号と監視系信号とが波長
多重化された光入力信号及び光出力信号に対し該中継器
1からのポンプ光によりそれぞれ前方向及び後方向のラ
マン増幅を行うように構成したものである。In order to solve the above problems, in the optical repeating system according to the present invention, as conceptually shown in FIG. In the region of the optical fiber 2.3, the main signal and the monitoring signal are wavelength-multiplexed, and the optical input signal and optical output signal are subjected to forward and backward Raman amplification using pump light from the repeater 1, respectively. It is configured as follows.
本発明においては、高分散光ファイバ2からの光入力信
号に対し、中継器1からポンプ光を与えることにより前
方向のラマン増幅を行って中継器1に人力する。In the present invention, forward Raman amplification is performed on the optical input signal from the high dispersion optical fiber 2 by applying pump light from the repeater 1, and the signal is manually input to the repeater 1.
この場合、高分散光ファイバを用いているので増幅帯域
幅を広くすることができ、そのため光入力信号には主信
号と監視系信号とが波長多重化させて一括増幅すること
ができる。In this case, since a high dispersion optical fiber is used, the amplification bandwidth can be widened, and therefore, the optical input signal can be wavelength-multiplexed with the main signal and the monitoring signal, and can be amplified all at once.
そして、中継器2から出力される光信号には後方向から
ポンプ光を与木ることによりゃはりラマン増幅を行って
2段階増幅による高い中継利得を得ることができる。By applying pump light from the rear direction to the optical signal output from the repeater 2, Raman amplification can be performed to obtain a high repeating gain due to two-stage amplification.
第2図は、本発明に係る光中継方式の一実施例を示した
もので、この実施例では中継器lを、高分散光ファイバ
2(斜線部)からの光入力信号を監視部Svによって一
定先出力に制御されるレーザーダイオードLDIからの
ポンプ光によりラマン増幅する前方向光カプラCPL
1と、この前方向光カプラCPLIからの光出力のパワ
ーを分岐し光−電気変換部○/Elを介して監視部Sv
へ電気信号の形で与えるビーム・スプリッタBSと、こ
のビーム・スプリッタBSの光−電気変換部O/El以
外への出力から監視系信号を分岐し光−電気変換部0/
E1を介して監視部Svへ電気信号の形で与えるフィル
タFLと、このフィルタFLから分岐された監視系以外
の信号と監視部SVによって制御されるレーザーダイオ
ードLD2からの転送監視系信号(対向回線の監視系信
号を含む)とを結合する光カプラCPL2と、この光カ
プラCPL2からの光出力を監視部Svによって一定光
出力に制御されるレーザーダイオードLD3からのポン
プ光によりラマン増幅して高分散光ファイバ3(斜線部
)に送出する後方向光カプラCPL3と、で構成してい
る。Fig. 2 shows an embodiment of the optical repeating system according to the present invention. A forward optical coupler CPL that performs Raman amplification using the pump light from the laser diode LDI, which is controlled to a constant output.
1, and the power of the optical output from this forward optical coupler CPLI is branched and sent to the monitoring unit Sv via the optical-electrical converter ○/El.
A beam splitter BS is provided in the form of an electrical signal to the beam splitter BS, and a monitoring system signal is branched from the output of this beam splitter BS to other than the optical-to-electrical converter O/El.
A filter FL is provided in the form of an electrical signal to the monitoring unit Sv via E1, a signal other than the monitoring system branched from this filter FL, and a transfer monitoring system signal (opposite line) from the laser diode LD2 controlled by the monitoring unit SV. (including the monitoring system signal), and the optical output from this optical coupler CPL2 is Raman amplified by the pump light from the laser diode LD3, which is controlled to a constant optical output by the monitoring section Sv, and is highly dispersioned. It consists of a rearward optical coupler CPL3 that sends out data to the optical fiber 3 (shaded area).
尚、高分散光ファイバ2.3を中継器1の外へ出したの
は、高分散光ファイバはErドープファイバに比べて増
幅に必要なファイバ長が長く、通常、数10kg+の長
さが必要であり、これを中継器内に収めることが難しい
ためである。The high dispersion optical fiber 2.3 was taken out of the repeater 1 because the fiber length required for amplification is longer for high dispersion optical fibers than for Er-doped fibers, and usually several tens of kg+ is required. This is because it is difficult to fit this into a repeater.
このように構成した光中継方式の動作においては、中継
器1への光入力信号をレーザーダイオードLDlからの
ポンプ光により光カプラCPLLでラマン増幅して入力
する。In the operation of the optical repeater system configured as described above, an optical input signal to the repeater 1 is Raman amplified by the optical coupler CPLL using pump light from the laser diode LDl, and then inputted.
そして、光カプラCPLIからの出力よりビーム・スプ
リッタBSで光入力のパワーを監視するため分岐し光−
電気変換部0/E1で電気信号に変換して監視部Svで
そのパワーレベルを監視する。The output from the optical coupler CPLI is then branched to monitor the optical input power at the beam splitter BS.
The electric converter 0/E1 converts it into an electric signal, and the monitor Sv monitors its power level.
ビーム・スプリッタBSからのパワー分岐信号以外の信
号はフィルタFLで更に監視系の信号が分岐されて同様
にして電気信号の形で監視部Svに送られ周知の如く種
々の監視動作に用いられる。Signals other than the power branch signal from the beam splitter BS are further branched into monitoring system signals by the filter FL, and similarly sent to the monitoring section Sv in the form of electrical signals, where they are used for various monitoring operations as is well known.
これ以外の信号は光カブラCPL2でレーザーダイオー
ドLD2からの監視系信号と結合されて光カプラCPL
3に送られる。Other signals are combined with the monitoring system signal from the laser diode LD2 by the optical coupler CPL2, and then sent to the optical coupler CPL2.
Sent to 3.
そして、光カプラCPL3ではやはり監視部SVで制御
されたレーザーダイオードLD3のポンプ光により光カ
プラCPL2からの光出力がラマン増幅されて高分散光
ファイバ3へ送出されることとなる。Then, in the optical coupler CPL3, the optical output from the optical coupler CPL2 is Raman-amplified by the pump light of the laser diode LD3, which is also controlled by the monitoring section SV, and is sent to the high-dispersion optical fiber 3.
このように、本発明の光中継方式によれば、中継器の入
出力両端に高分散光ファイバを接続し、該高分散光ファ
イバの領域において主信号と監視系信号とが波長多重化
された光入力信号及び光出力信号に対し該中継器からの
ポンプ光によりそれぞれ前方向及び後方向のラマン増幅
を行うように構成したので、ラマン増幅方式特有の利点
により、■増幅帯域が広く取れる結果、主信号と監視系
信号を一括して増幅でき、■方向性を持たないため前方
向と後方向の2段増幅が可能となり高い利得が得られる
、と共に光直接方式であるので■高いビットレートを得
ることができ、更には高分散光ファイバを中継器内に収
める必要が無いため■中継器を小型化できる、という効
果が奏される。As described above, according to the optical repeating system of the present invention, high dispersion optical fibers are connected to both input and output ends of the repeater, and the main signal and the monitoring system signal are wavelength-multiplexed in the area of the high dispersion optical fibers. Since the optical input signal and the optical output signal are configured to be Raman amplified in the forward and backward directions using the pump light from the repeater, the advantages unique to the Raman amplification method are as follows: The main signal and the monitoring signal can be amplified all at once. ■ Since it has no directionality, two-stage amplification in the forward and backward directions is possible, resulting in high gain. Also, since it is an optical direct method, ■ A high bit rate can be achieved. Furthermore, since there is no need to house the high dispersion optical fiber in the repeater, the following effects can be achieved: (1) The repeater can be made smaller.
第1図は、本発明に係る光中継方式の基本構成を示した
図、
第2図は、本発明に係る光中継方式の一実施例を示す回
路ブロック図、である。
第1図において、
1・・・中継器、
2.3・・・高分散光ファイバ。
図中、同一符号は同−又は相当部分を示す。FIG. 1 is a diagram showing the basic configuration of an optical relay system according to the present invention, and FIG. 2 is a circuit block diagram showing an embodiment of the optical relay system according to the present invention. In Fig. 1, 1... repeater, 2.3... high dispersion optical fiber. In the figures, the same reference numerals indicate the same or corresponding parts.
Claims (1)
3)を接続し、該高分散光ファイバ(2)(3)の領域
において主信号と監視系信号とが波長多重化された光入
力信号及び光出力信号に対し該中継器(1)からのポン
プ光によりそれぞれ前方向及び後方向のラマン増幅を行
うことを特徴とした光中継方式。A high dispersion optical fiber (2) is installed at both input and output ends of the repeater (1).
3) is connected to the optical input signal and the optical output signal, in which the main signal and the monitoring system signal are wavelength-multiplexed in the area of the high dispersion optical fibers (2) and (3), from the repeater (1). An optical relay system characterized by performing Raman amplification in the forward and backward directions using pump light.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2035956A JPH03239028A (en) | 1990-02-16 | 1990-02-16 | Optical repeater system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2035956A JPH03239028A (en) | 1990-02-16 | 1990-02-16 | Optical repeater system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03239028A true JPH03239028A (en) | 1991-10-24 |
Family
ID=12456427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2035956A Pending JPH03239028A (en) | 1990-02-16 | 1990-02-16 | Optical repeater system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03239028A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002261693A (en) * | 2001-03-06 | 2002-09-13 | Fujitsu Ltd | System for communication |
US6930823B2 (en) * | 2001-07-16 | 2005-08-16 | Fujitsu Limited | Optical transmission method and optical transmission system utilizing Raman amplification |
US6980745B2 (en) | 2001-08-14 | 2005-12-27 | Fujitsu Limited | Optical transmission system |
US7075709B2 (en) | 2001-12-20 | 2006-07-11 | Fujitsu Limited | Optical transmission system, optical repeater, and optical transmission method |
US7676160B2 (en) | 2001-10-12 | 2010-03-09 | Fujitsu Limited | Supervisory controlling method and supervisory controlling system of optical repeater |
JP2010224567A (en) * | 2010-05-21 | 2010-10-07 | Fujitsu Ltd | Raman amplifier and optical transmission system using the same |
-
1990
- 1990-02-16 JP JP2035956A patent/JPH03239028A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002261693A (en) * | 2001-03-06 | 2002-09-13 | Fujitsu Ltd | System for communication |
JP4647807B2 (en) * | 2001-03-06 | 2011-03-09 | 富士通株式会社 | Communications system |
US6930823B2 (en) * | 2001-07-16 | 2005-08-16 | Fujitsu Limited | Optical transmission method and optical transmission system utilizing Raman amplification |
US6980745B2 (en) | 2001-08-14 | 2005-12-27 | Fujitsu Limited | Optical transmission system |
US7676160B2 (en) | 2001-10-12 | 2010-03-09 | Fujitsu Limited | Supervisory controlling method and supervisory controlling system of optical repeater |
US8041231B2 (en) | 2001-10-12 | 2011-10-18 | Fujitsu Limited | Supervisory controlling method and supervisory controlling system of optical repeater |
US7075709B2 (en) | 2001-12-20 | 2006-07-11 | Fujitsu Limited | Optical transmission system, optical repeater, and optical transmission method |
US7372622B2 (en) | 2001-12-20 | 2008-05-13 | Fujitsu Limited | Optical transmission system, optical repeater, and optical transmission method |
JP2010224567A (en) * | 2010-05-21 | 2010-10-07 | Fujitsu Ltd | Raman amplifier and optical transmission system using the same |
JP4695713B2 (en) * | 2010-05-21 | 2011-06-08 | 富士通株式会社 | Raman amplifier and optical transmission system using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5914799A (en) | Optical network | |
CA2267775C (en) | A multi-wavelength optical pump | |
US5321707A (en) | Remote pumping for active optical devices | |
JP3110805B2 (en) | Optical repeater system | |
US20030011874A1 (en) | Optical transmission method and optical transmission system utilizing raman amplification | |
US5680247A (en) | Optical amplification monitoring apparatus | |
JPH10303823A (en) | Optical signal amplification and transmission system | |
KR100277352B1 (en) | 3-stage WDM-EDFA | |
JPH11331093A (en) | Wavelength multiple signal optical level flattening circuit | |
JPH1075001A (en) | Optical fiber amplifier | |
JPH03239028A (en) | Optical repeater system | |
JPH03270520A (en) | Optical repeater | |
KR100810859B1 (en) | A device of improve gain with optical amplifier for l band | |
JP2001044934A (en) | Wavelength multiplex optical transmitter | |
CN101621175A (en) | Optical fiber amplifier with chromatic dispersion compensating function and method | |
CN111404612B (en) | Optical signal amplifying device and transmission system | |
JP2616293B2 (en) | Optical fiber amplifier | |
JPWO2007036986A1 (en) | Excitation light supply apparatus, excitation light supply method, and optical amplifier | |
JP3129455B2 (en) | Optical amplifier | |
US7162119B2 (en) | Pump energy source, method of providing pump energy to an optical transmission system, and optical transmission system | |
JPH11135862A (en) | Optical amplifier | |
JP2694014B2 (en) | Bidirectional optical amplifier transmission circuit | |
CN108767635A (en) | Niobic acid lithium doping silica fibre Raman optical amplification device | |
JPH03252628A (en) | Optical branching device | |
JP3462555B2 (en) | Gain control device for optical fiber amplifier |