JPH03238754A - Manufacture of plate for alkaline storage battery - Google Patents

Manufacture of plate for alkaline storage battery

Info

Publication number
JPH03238754A
JPH03238754A JP2034193A JP3419390A JPH03238754A JP H03238754 A JPH03238754 A JP H03238754A JP 2034193 A JP2034193 A JP 2034193A JP 3419390 A JP3419390 A JP 3419390A JP H03238754 A JPH03238754 A JP H03238754A
Authority
JP
Japan
Prior art keywords
nitrate
chamber
washing
concentration
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2034193A
Other languages
Japanese (ja)
Inventor
Tadashi Yoneda
米田 忠司
Tsuneo Fujishiro
藤城 恒夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2034193A priority Critical patent/JPH03238754A/en
Publication of JPH03238754A publication Critical patent/JPH03238754A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • H01M4/28Precipitating active material on the carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To reduce the concentration of lead nitrate in waste liquid discharged outside a plant by reducing the aforesaid concentration in a neutralization chamber and at least one of two water washing chambers used at least first for a water washing process via a crystallization method or an electrolytic method. CONSTITUTION:The concentration of lead nitrate in a neutralization chamber A and at least one of two water washing chambers used at least first for a water washing process is lowered via a crystallization method or an electrolytic method. As a result, an amount of lead nitrate deposited on a substrate pulled up from the first water washing chamber can be reduced, and an amount of lead nitrate washed away from the substrate when immersed in the water washing chamber for the next water washing process is reduced. According to the aforesaid process, it is possible to reduce the concentration of lead nitrate such as natrium or potassium in waste liquid discharged outside a plant.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はアルカリ蓄電池用極板の製造方法に関し、特に
工場外に排出される廃液中のナトリウムまたはカリウム
等の硝酸塩の濃度を減少させることができる製造方法に
関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a method for manufacturing electrode plates for alkaline storage batteries, and in particular to a method for reducing the concentration of nitrates such as sodium or potassium in waste liquid discharged outside a factory. This relates to a manufacturing method that can be used.

[従来の技術] 従来のアルカリ蓄電池用極板の製造方法では第4図に示
す製造工程図で製造を行っている。焼結工程においては
、活物質保持体として用いられる多孔性ニッケル焼結基
板が作られる。次いで含浸工程においてニッケルまたは
カドミウム等の硝酸塩を焼結基板に含浸し、中和工程に
おいてこの基板を水酸化ナトリウムまたは水酸化カリウ
ム等の水酸化アルカリを含有するアルカリ水溶液を入れ
た中和槽に浸漬して、基板に含浸した硝酸塩を水酸化ニ
ッケルや水酸化カドミウム等の活物質に変化させる。次
の水洗工程においてこの基板を、水洗槽に浸漬して基板
に付着している硝酸塩や水酸化アルカリ等の物質を洗い
流す。その後乾燥工程により基板を乾燥させる。以上の
含浸工程から乾燥工程までの一連の活物質充填操作を数
回繰り返すことにより所定量の活物質を前記焼結基板内
に充填する。その後に化成工程、水洗工程、乾燥工程を
経て極板が完成される。
[Prior Art] In a conventional method for manufacturing electrode plates for alkaline storage batteries, manufacturing is carried out according to the manufacturing process diagram shown in FIG. 4. In the sintering process, a porous nickel sintered substrate is created which is used as an active material holder. Next, in the impregnation step, the sintered substrate is impregnated with nitrate such as nickel or cadmium, and in the neutralization step, this substrate is immersed in a neutralization tank containing an alkaline aqueous solution containing an alkali hydroxide such as sodium hydroxide or potassium hydroxide. The nitrate impregnated into the substrate is changed into an active material such as nickel hydroxide or cadmium hydroxide. In the next water washing step, this substrate is immersed in a water washing tank to wash away substances such as nitrates and alkali hydroxides adhering to the substrate. After that, the substrate is dried by a drying process. A predetermined amount of active material is filled into the sintered substrate by repeating the series of active material filling operations from the impregnation step to the drying step several times. After that, the electrode plate is completed through a chemical conversion process, a water washing process, and a drying process.

前述の中和工程では、焼結基板中に含浸されている硝酸
塩が水酸化アルカリと反応して水酸化ニッケルや水酸化
カドミウム等の活物質になる。しかし、このような反応
がおきる場合には、活物質の生成と同時に副生成物であ
る新たな硝酸塩も生成される。例えば含浸工程において
含浸される硝酸塩を硝酸ニッケルとし、中和槽内のアル
カリ水溶液を水酸化ナトリウム水溶液とした場合に活物
質及び副生成物を生成する反応式は以下の通りである。
In the above-mentioned neutralization step, the nitrate impregnated into the sintered substrate reacts with the alkali hydroxide to become an active material such as nickel hydroxide or cadmium hydroxide. However, when such a reaction occurs, new nitrate as a by-product is also produced at the same time as the active material is produced. For example, when the nitrate to be impregnated in the impregnation step is nickel nitrate and the alkaline aqueous solution in the neutralization tank is a sodium hydroxide aqueous solution, the reaction formula for producing the active material and by-products is as follows.

N1(NO3)  2 +2NaO)1−+N1(OH
) 2 +2NaN03上記式のように硝酸ニッケル[
N1(NO3)  2 ]が水酸化ナトリウム[NaO
H]と反応すると、活物質として水酸化ニッケル[Ni
 (OH) 2 ]が生成され、副生成物として硝酸塩
である硝酸ナトリウム[NaN03 ]が生成される。
N1(NO3) 2 +2NaO)1-+N1(OH
) 2 +2NaN03 As shown in the above formula, nickel nitrate [
N1(NO3) 2 ] is sodium hydroxide [NaO
When reacting with nickel hydroxide [Ni H], nickel hydroxide [Ni
(OH) 2 ] is produced, and sodium nitrate [NaN03], which is a nitrate, is produced as a by-product.

このようにして中和工程において生成された副生成物の
硝酸塩は、中和槽内のアルカリ水溶液内に溶解して蓄積
される。硝酸塩を含浸した焼結基板の中和槽への浸漬回
数が増えると、中和槽内の硝酸塩の濃度は増加し、逆に
水酸化アルカリの濃度は低下する。通常は中和槽内の水
酸化アルカリ溶液の濃度が10vt%以下になると廃液
として処分するが、硝酸塩を含んだ水酸化アルカリ廃液
に中和処理や希釈処理をして河川等に排出しても含窒素
化合物である硝酸塩が河川の富栄養化の原因となってし
まう。そこで従来は晶析法あるいは晶析法と電解法とを
組合せた方法で中和槽内のアルカリ水溶液中に溶解して
いる硝酸塩成分を除去して、中和槽内の硝酸塩濃度を低
下させ、極板の製造工程外へ排出される廃液中の硝酸塩
濃度を低下させていた。
The by-product nitrate thus generated in the neutralization step is dissolved and accumulated in the alkaline aqueous solution in the neutralization tank. As the number of times the sintered substrate impregnated with nitrate is immersed in the neutralization tank increases, the concentration of nitrate in the neutralization tank increases, and conversely, the concentration of alkali hydroxide decreases. Normally, when the concentration of the alkaline hydroxide solution in the neutralization tank becomes 10vt% or less, it is disposed of as waste liquid, but even if the alkaline hydroxide waste liquid containing nitrates is neutralized or diluted and discharged into rivers, etc. Nitrate, a nitrogen-containing compound, causes eutrophication of rivers. Therefore, in the past, the nitrate component dissolved in the alkaline aqueous solution in the neutralization tank was removed using a crystallization method or a method that combined a crystallization method and an electrolytic method to reduce the nitrate concentration in the neutralization tank. The nitrate concentration in waste liquid discharged outside the electrode plate manufacturing process was reduced.

[発明が解決しようとする課題] しかしながら中和槽内の硝酸塩濃度を低下させても中和
槽から引上げられた基板を水洗槽に浸漬すると基板に付
着した反応生成物としての硝酸塩が水洗槽に洗い落され
る。水洗槽からの排水はそのまま河川等に排出されるこ
とが多い。従って、従来のように中和槽において硝酸塩
濃度を低下させるだけでは排水中の硝酸塩濃度を低下さ
せることに限界があった。
[Problems to be Solved by the Invention] However, even if the nitrate concentration in the neutralization tank is reduced, when the substrate pulled up from the neutralization tank is immersed in the washing tank, nitrate as a reaction product adhering to the substrate will flow into the washing tank. washed away. Drainage from washing tanks is often discharged directly into rivers, etc. Therefore, there is a limit to reducing the nitrate concentration in wastewater by simply reducing the nitrate concentration in the neutralization tank as in the conventional method.

本発明の目的は、アルカリ蓄電池用極板の製造工程にお
いて、工場外に排出される廃液中のナトリウムまたはカ
リウム等の硝酸塩の濃度を従来より低下させることがで
きる製造方法を提供することにある。
An object of the present invention is to provide a manufacturing method that can lower the concentration of nitrates such as sodium or potassium in waste liquid discharged outside the factory in the manufacturing process of electrode plates for alkaline storage batteries.

[課題を解決するための手段] 本発明のアルカリ蓄電池用極板の製造方法は、硝酸塩を
含浸した基板を水酸化アルカリ水溶液が入った中和槽に
浸漬させて前記硝酸塩を活物質化した後、基板を少なく
とも2槽の水洗槽内に浸漬して水洗を行いアルカリ蓄電
池用極板を製造する方法を特徴とする 請求項1の発明では、中和槽内及び少なくとも2槽の水
洗槽のうち少なくとも最初に水洗が行われる水洗槽内の
硝酸塩濃度を晶析法あるいは電解法により低下させてア
ルカリ蓄電池用極板を特徴する 請求項2の発明では、請求項1の発明において硝酸塩濃
度を低下させる水洗槽を実質的に排水を行わない水洗槽
としてアルカリ蓄電池用極板を特徴する 請求項3の発明では、中和槽内のアルカリ水溶液の硝酸
塩濃度を晶析法により低下させ、前記少な(とも最初に
水洗が行われる水洗槽内の硝酸塩濃度を隔膜電解法によ
り低下させる。
[Means for Solving the Problems] The method of manufacturing an electrode plate for an alkaline storage battery of the present invention includes immersing a substrate impregnated with nitrate in a neutralization tank containing an aqueous alkali hydroxide solution to turn the nitrate into an active material. The invention of claim 1 is characterized in that the substrate is immersed in at least two washing tanks and then washed with water to produce an electrode plate for an alkaline storage battery. In the invention of claim 2, the electrode plate for an alkaline storage battery is characterized by reducing the nitrate concentration in the washing tank in which water washing is performed at least first by a crystallization method or an electrolytic method. In the invention of claim 3, wherein the alkaline storage battery electrode plate is characterized in that the washing tank is a washing tank that does not substantially drain water, the nitrate concentration of the alkaline aqueous solution in the neutralization tank is reduced by a crystallization method. First, the nitrate concentration in the washing tank where water washing is performed is reduced by diaphragm electrolysis.

請求項4の発明では、隔膜電解法を陽極室、原液室及び
陰極室を具備し、各室が陰イオン交換膜のみによって隔
てられている隔膜電解装置を用いて行う。
In the invention according to claim 4, the diaphragm electrolysis method is carried out using a diaphragm electrolysis device that includes an anode chamber, a stock solution chamber, and a cathode chamber, and each chamber is separated only by an anion exchange membrane.

更に請求項5の発明では、陽極室、原液室及び陰極室を
具備して、前記各室が陰イオン交換膜のみによって隔て
られている隔膜電解装置と、陽極室、原液室及び陰極室
を具備して、前記各室が陽イオン交換膜のみによって隔
てられている隔膜電解装置とを直列に組合せた複合装置
を用いて隔膜電解法を行う。
Furthermore, the invention of claim 5 includes a diaphragm electrolyzer comprising an anode chamber, a stock solution chamber, and a cathode chamber, each of which is separated only by an anion exchange membrane, and an anode chamber, a stock solution chamber, and a cathode chamber. Then, the diaphragm electrolysis method is performed using a composite device in which the above-mentioned diaphragm electrolysis devices are combined in series, each chamber being separated only by a cation exchange membrane.

[作用] 請求項1の発明のように、中和槽内及び少なくとも2槽
の水洗槽のうち少なくとも最初に水洗が行われる水洗槽
内の硝酸塩濃度を低下させると、まず中和槽に浸漬され
て引上げられる基板に付着する硝酸塩溶液の量を減少さ
せることができる。
[Function] As in the invention of claim 1, when the nitrate concentration in the neutralization tank and at least the first washing tank of the at least two washing tanks is reduced, the nitrate concentration in the neutralization tank and at least the first washing tank of the at least two washing tanks is reduced. The amount of nitrate solution that adheres to the substrate being pulled up can be reduced.

そのため中和槽から引上げた基板を最初に水洗が行われ
る水洗槽に浸漬した場合に、基板から水洗槽内に洗い落
される硝酸塩の量が減少する。その上、この水洗槽にお
いても晶析法あるいは電解法により水洗槽内の水洗液の
硝酸塩濃度を低下させているため、水洗槽から引上げた
基板に付着する硝酸塩の量を減少させることができ、次
の水洗が行われる水洗槽に基板を浸漬したときに基板か
らこの水洗槽内に洗い落される硝酸塩の量は大幅に減少
する。従って、これらの水洗槽から排出される廃液を工
場外に排出しても、廃液中のナトリウムまたはカリウム
等の硝酸塩の濃度は低下している。
Therefore, when the substrate pulled up from the neutralization tank is first immersed in the washing tank where water washing is performed, the amount of nitrate washed off from the substrate into the washing tank is reduced. Furthermore, since the nitrate concentration of the washing liquid in this washing tank is reduced by crystallization or electrolysis, it is possible to reduce the amount of nitrate that adheres to the substrate pulled out of the washing tank. The amount of nitrate that is washed off the substrate into the wash tank when the substrate is immersed in the wash tank where the next water wash is performed is significantly reduced. Therefore, even if the waste liquid discharged from these washing tanks is discharged outside the factory, the concentration of nitrates such as sodium or potassium in the waste liquid is reduced.

請求項2の発明のように、硝酸塩濃度を低下させる水洗
槽を実質的に排水を行わない水洗槽(以下水洗槽Aとい
う)とすると、工場外に排出される廃液は、水洗槽Aで
水洗工程を終えた基板を浸漬する別の水洗槽(以下水洗
槽Bという)からの排水のみとなる。水洗槽Aにおいて
硝酸塩の回収が行なわれているため、水洗槽Bに浸漬さ
れる基板に付着している硝酸塩の量は少なくなっている
As in the invention of claim 2, if the washing tank for reducing the nitrate concentration is a washing tank that does not substantially drain water (hereinafter referred to as washing tank A), the waste liquid discharged outside the factory is washed in the washing tank A. The only waste water is from another washing tank (hereinafter referred to as washing tank B) in which the substrates that have completed the process are immersed. Since the nitrate is recovered in the washing tank A, the amount of nitrate adhering to the substrate immersed in the washing tank B is reduced.

そのため水洗槽Bからの排水を行うことができる。Therefore, water can be drained from the washing tank B.

また晶析法は、溶解度の差を利用するため隔膜電解法に
比べて硝酸塩濃度を低下させる能力に限界があるが、小
さな設備でしかも少ない電力消費で多量の硝酸塩を晶析
させることができる。これに対して隔膜電解法は、晶析
法に比べて稀薄な濃度からでも硝酸塩をイオンに分離し
て除去できるものの、高濃度の硝酸塩を含む溶液から同
じ量の硝酸イオンを処理する場合に要する電力消費量は
多く、しかも透析膜の面積を大きなものとしなければな
らず、装置が大型化する。中和槽内の硝酸塩濃度は、最
初に水洗が行われる水洗槽内の硝酸塩濃度よりも高い。
Furthermore, since the crystallization method makes use of differences in solubility, it has a limited ability to reduce nitrate concentration compared to the diaphragm electrolysis method, but it can crystallize large amounts of nitrate using small equipment and with low power consumption. On the other hand, although the diaphragm electrolysis method can separate and remove nitrate into ions even from dilute concentrations compared to the crystallization method, it requires Power consumption is high, and the area of the dialysis membrane must be increased, resulting in an increase in the size of the device. The nitrate concentration in the neutralization tank is higher than the nitrate concentration in the washing tank where water washing is performed first.

従って、請求項3の発明のように、中和槽内のアルカリ
水溶液の硝酸塩濃度を晶析法により低下させ、少なくと
も最初に水洗が行われる水洗槽内の硝酸塩濃度を隔膜電
解法により低下させると、少ない電力消費と簡単な設備
とにより運転経費を少なくして、工場外に排出される廃
液の硝酸塩濃度を大幅に低下させることが可能となる。
Therefore, as in the invention of claim 3, if the nitrate concentration of the alkaline aqueous solution in the neutralization tank is reduced by the crystallization method, and at least the nitrate concentration in the washing tank where water washing is performed first is reduced by the diaphragm electrolysis method. , low power consumption and simple equipment make it possible to reduce operating costs and significantly reduce the nitrate concentration of the waste liquid discharged outside the factory.

請求項4の発明のように陽極室、原液室及び陰極室が陰
イオン交換膜のみによって隔てられている隔膜電解装置
を用いて水洗槽内の硝酸塩濃度を低下させると、硝酸イ
オンを含んだ水洗液は、原液室内のみを流れ、陰極室内
に配置された極板は直接水洗液に触れることがない。従
って、陰極板で硝酸イオンが還元されて反応中間物が生
成されることがなく、陰極板の腐食を防止できる。また
仮に陰極室で反応中間物が生成されることがあったとし
ても、イオン交換膜があるため、反応中間物が原液室の
水洗液中に混入することはない。
When the nitrate concentration in the washing tank is reduced by using a diaphragm electrolyzer in which the anode chamber, stock solution chamber, and cathode chamber are separated only by an anion exchange membrane as in the invention of claim 4, the water containing nitrate ions is reduced. The liquid flows only in the stock solution chamber, and the electrode plate placed in the cathode chamber does not come into direct contact with the washing liquid. Therefore, nitrate ions are not reduced on the cathode plate and reaction intermediates are not produced, and corrosion of the cathode plate can be prevented. Furthermore, even if a reaction intermediate were to be produced in the cathode chamber, the presence of the ion exchange membrane prevents the reaction intermediate from being mixed into the washing liquid in the stock solution chamber.

請求項5の発明のように陽極室、原液室及び陰極室を具
備して、前記各室が陰イオン交換膜のみによって隔てら
れている隔膜電解装置と、陽極室、原液室及び陰極室を
具備して、前記各室が陽イオン交換膜のみによって隔て
られている隔膜電解装置とを直列に組合せた複合装置を
用いると、陰イオン交換膜を備えた隔膜電解装置におい
て硝酸イオンを回収し、陽イオン交換膜を備えた隔膜電
解装置でアルカリイオンを回収して水洗液中の硝酸塩濃
度を確実に減少させて、しかも水洗液のPHを適宜に制
御できる利点がある。
According to the invention of claim 5, a diaphragm electrolyzer is provided with an anode chamber, an undiluted solution chamber, and a cathode chamber, and each of the chambers is separated only by an anion exchange membrane, and an anode chamber, an undiluted solution chamber, and a cathode chamber. Therefore, if a composite device is used in which a diaphragm electrolyzer in which each chamber is separated only by a cation exchange membrane is combined in series, nitrate ions are recovered in the diaphragm electrolyzer equipped with an anion exchange membrane, and nitrate ions are collected in the diaphragm electrolyzer equipped with an anion exchange membrane. There is an advantage that the nitrate concentration in the washing liquid can be reliably reduced by recovering alkali ions using a diaphragm electrolyzer equipped with an ion exchange membrane, and the pH of the washing liquid can be appropriately controlled.

[実施例] 本発明の一実施例を図面を参照して詳細に説明する。第
1図は本発明の一実施例におけるアルカリ蓄電池用極板
の製造工程図を示している。本実施例においては2回の
水洗工程を実施する。以下極板用基板を浸漬する順番に
1次水洗工程、2次水洗工程とし、それぞれの水洗工程
において基板を浸漬する水洗槽蛋1次水洗槽、2次水洗
槽として説明する。本実施例の工程は、水洗工程が1回
増えたこと及び1次水洗工程において硝酸塩濃度を低下
させる点を除いては第4図に示した従来例と同じである
ため、共通する工程については説明を省略する。以下に
中和工程及び1次水洗工程において硝酸塩濃度を低下さ
せる方法について概略を説明した後、その詳細を説明す
る。
[Example] An example of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a manufacturing process diagram of an electrode plate for an alkaline storage battery in one embodiment of the present invention. In this example, the water washing process is performed twice. Hereinafter, the order in which the electrode plate substrate is immersed will be referred to as a primary rinsing process and a secondary rinsing process, and the rinsing tank in which the substrate is immersed in each rinsing process will be described as a primary rinsing tank and a secondary rinsing tank. The steps in this example are the same as the conventional example shown in Figure 4, except that the number of washing steps is increased by one and the nitrate concentration is reduced in the first washing step, so the common steps are as follows. The explanation will be omitted. A method for reducing the nitrate concentration in the neutralization step and the primary water washing step will be outlined below, and then its details will be explained in detail.

まず従来と同様に、本実施例では中和槽内の水酸化アル
カリ溶液中の硝酸塩濃度を晶析法により低下させている
。中和槽において中和工程を終えた基板を1次水洗槽内
に浸漬して基板に付着した硝酸塩を充分に洗い流す。1
次水洗槽は実質的に排水を行わない水洗槽であり、本実
施例では1次水洗槽内の水洗液中の硝酸塩濃度を隔膜電
解法により低下させている。
First, as in the prior art, in this embodiment, the nitrate concentration in the alkaline hydroxide solution in the neutralization tank is lowered by crystallization. After completing the neutralization process in the neutralization tank, the substrate is immersed in a primary washing tank to thoroughly wash away nitrates adhering to the substrate. 1
The secondary rinsing tank is a rinsing tank in which water is not substantially drained, and in this embodiment, the nitrate concentration in the rinsing liquid in the primary rinsing tank is reduced by diaphragm electrolysis.

次に1次水洗工程を終えた基板を、10β/min、の
流量で新水の供給が行なわれている2次水洗槽に浸漬す
る。本実施例によれば2次水洗槽より排出される排水中
の硝酸塩濃度をかなり低く押えることが可能になる。
Next, the substrate that has undergone the primary water washing step is immersed in a secondary water washing tank to which fresh water is supplied at a flow rate of 10β/min. According to this embodiment, it is possible to suppress the nitrate concentration in the waste water discharged from the secondary washing tank to a considerably low level.

次に中和槽と1次水洗槽とで硝酸塩濃度を低下させる方
法をより具体的に説明する。まず中和槽では冷却手段に
より中和槽から引き出した溶液を冷却して硝酸塩を晶析
させて硝酸塩を回収する晶析装置を中和槽に取付け、中
和槽内の水酸化アルカリ溶液を該装置内に循環させて硝
酸塩濃度を低下させる。冷却により水酸化アルカリ溶液
中に含まれる硝酸塩は、温度に対する溶解度の差によっ
て沈澱して析出する。中和槽内の溶液を水酸化ナトリウ
ム溶液とした場合は、晶析装置の設定条件を冷却温度1
0±5℃とし、装置内を循環する溶液の循環容量を2m
3とし、循環流量を10(/min、とすると比較的良
い結果が得られることが実験的に判っている。温度80
±5℃、濃度25wt%の水酸化ナトリウム溶液を収容
する中和槽に、前記設定条件を満足する晶析装置を取付
け、中和槽内の硝酸化ナトリウム濃度を低下させたとこ
ろ硝酸ナトリウムの晶析量は40.5kg/hrであっ
た。また中和槽内の硝酸ナトリウム濃度は、200±2
0g/J2(80±5℃)に維持された。晶析装置を取
付けない場合の中和槽内の硝酸ナトリウム濃度は、40
0±50g/β(80±5°C)であり、晶析法を用い
ると硝酸ナトリウム濃度がかなり低い濃度に維持される
ことが判る。
Next, a method for reducing the nitrate concentration in the neutralization tank and the primary washing tank will be explained in more detail. First, in the neutralization tank, a crystallizer is attached to the neutralization tank, which cools the solution drawn from the neutralization tank using a cooling means, crystallizes the nitrate, and recovers the nitrate. Circulate through the device to reduce nitrate concentrations. Upon cooling, the nitrates contained in the alkaline hydroxide solution precipitate due to the difference in solubility with respect to temperature. When the solution in the neutralization tank is a sodium hydroxide solution, the setting conditions of the crystallizer are set to cooling temperature 1.
The temperature is 0±5℃, and the circulation volume of the solution circulating in the device is 2m.
It has been experimentally found that relatively good results can be obtained by setting the temperature to 3 and the circulation flow rate to 10 (/min).Temperature: 80
A crystallizer that satisfies the above setting conditions was attached to a neutralization tank containing a sodium hydroxide solution with a concentration of 25 wt% at ±5°C, and when the sodium nitrate concentration in the neutralization tank was lowered, sodium nitrate crystallized. The amount of analysis was 40.5 kg/hr. In addition, the sodium nitrate concentration in the neutralization tank is 200±2
It was maintained at 0g/J2 (80±5°C). The sodium nitrate concentration in the neutralization tank when a crystallizer is not installed is 40
0±50 g/β (80±5° C.), indicating that the sodium nitrate concentration is maintained at a fairly low concentration using the crystallization method.

次に1次水洗槽内の硝酸塩の濃度を低下させる方法につ
いて説明する。本実施例では1次水洗槽に濾過装置と隔
膜電解装置とを取付けてこれらの装置間で1次水洗槽内
の水洗液を循環させる。隔膜電解装置で使用するイオン
交換膜の目づまりを防止するために、まず濾過装置に水
洗液を流入して水洗液中に含まれる重金属化合物等の粒
子を取除く。濾過したアルカリ水溶液を隔膜電解装置内
に流入させて電解により硝酸イオンやナトリウムイオン
を分離させる。第2図は、本実施例で用いることができ
る新規な隔膜電解装置の1例である。
Next, a method for reducing the concentration of nitrates in the primary washing tank will be explained. In this embodiment, a filtration device and a diaphragm electrolyzer are attached to the primary washing tank, and the washing liquid in the primary washing tank is circulated between these devices. In order to prevent clogging of the ion exchange membrane used in the diaphragm electrolyzer, a washing liquid is first introduced into a filtration device to remove particles such as heavy metal compounds contained in the washing liquid. The filtered alkaline aqueous solution is caused to flow into the diaphragm electrolyzer, and nitrate ions and sodium ions are separated by electrolysis. FIG. 2 is an example of a novel diaphragm electrolysis device that can be used in this example.

第2図において1は電解槽で、この電解槽は陰イオン交
換膜のみからなるイオン交換膜2a〜2dによって陰極
室5,9、原液室6,8及び陽極室7にそれぞれ区分さ
れる。陰極室5,9にはステンレス製の陰極板10.1
2がそれぞれ配設され、室内には所定の濃度の水酸化ア
ルカリ溶液が満たされている。陽極室7には白金めっき
を施したチタン製の陽極板11が配置され、室内には所
定の濃度の硝酸溶液が満たされている。
In FIG. 2, reference numeral 1 denotes an electrolytic cell, and this electrolytic cell is divided into cathode chambers 5, 9, stock solution chambers 6, 8, and anode chamber 7 by ion exchange membranes 2a to 2d consisting only of anion exchange membranes. A stainless steel cathode plate 10.1 is provided in the cathode chambers 5 and 9.
2 are arranged respectively, and the chamber is filled with an alkaline hydroxide solution of a predetermined concentration. A platinum-plated titanium anode plate 11 is placed in the anode chamber 7, and the chamber is filled with a nitric acid solution of a predetermined concentration.

以下、硝酸塩を硝酸ナトリウムとした場合を例にとって
説明する。濾過後の水洗液は原液流入口3b、3dから
原液室6,8にそれぞれ流入する。
Hereinafter, an example will be explained in which the nitrate is sodium nitrate. The filtered washing liquid flows into the stock solution chambers 6 and 8 from the stock solution inlets 3b and 3d, respectively.

陰極板10.12及び陽極板11に所定量の電流が流れ
ると、原液室6,8内の水洗液中の硝酸ナトリウムはナ
トリウムイオンと硝酸イオンとに分解される。また陰極
室5.9内の水酸化ナトリウムはナトリウムイオンと水
酸イオンとに分解される。原液室6,8内の硝酸イオン
は陰イオン交換膜2b、2cを透過して陽極室7に入り
、陽極室7で硝酸となる。また陰極室5.9内の水酸イ
オンは陰イオン交換膜2a、2dを透過して原液室6.
8内に入り、原液室6,8内のナトリウムイオンと結合
して水酸化ナトリウムとなる。生成された水酸化ナトリ
ウムを含んだ水は原液排出口4b、4dから排出される
。排出された水は1次水洗槽に戻されて再利用が図られ
る。この装置で電解が行われる場合、原液室6,8内の
硝酸イオンは、電界の作用及び陰極室と原液室とが分れ
ていることによって陰極室への移動が抑制されている。
When a predetermined amount of current flows through the cathode plates 10, 12 and the anode plate 11, the sodium nitrate in the washing liquid in the stock solution chambers 6, 8 is decomposed into sodium ions and nitric acid ions. Further, the sodium hydroxide in the cathode chamber 5.9 is decomposed into sodium ions and hydroxide ions. Nitrate ions in the stock solution chambers 6 and 8 pass through the anion exchange membranes 2b and 2c, enter the anode chamber 7, and become nitric acid in the anode chamber 7. Further, the hydroxide ions in the cathode chamber 5.9 pass through the anion exchange membranes 2a and 2d and pass through the stock solution chamber 6.9.
8 and combines with sodium ions in the stock solution chambers 6 and 8 to become sodium hydroxide. The generated water containing sodium hydroxide is discharged from the raw solution discharge ports 4b and 4d. The discharged water is returned to the primary washing tank for reuse. When electrolysis is performed in this device, the movement of nitrate ions in the stock solution chambers 6 and 8 to the cathode chamber is suppressed by the action of the electric field and the separation of the cathode and stock solution chambers.

また原液室6,8内のナトリウムイオンは、陰イオン交
換膜2a及び2dによって陰極室への移動が抑制されて
いる。更に、陰極室5.9内においては、室内の水酸化
ナトリウムの濃度を一定にするために、陰極液流入口3
a、3eから水か注入され陰極液流出口4a、4eから
一定濃度の水酸化ナトリウム溶液が排出される。一方陽
極室7においても室内の硝酸塩濃度を一定にするために
、陽極液流入口3cから水が注入され陽極液流出口4c
から一定濃度の硝酸溶液が排出される。
Further, the movement of sodium ions in the stock solution chambers 6 and 8 to the cathode chamber is suppressed by the anion exchange membranes 2a and 2d. Furthermore, in the cathode chamber 5.9, in order to keep the concentration of sodium hydroxide in the chamber constant, a catholyte inlet 3 is provided.
Water is injected from ports a and 3e, and a sodium hydroxide solution of a certain concentration is discharged from catholyte outlets 4a and 4e. On the other hand, in the anode chamber 7, water is injected from the anolyte inlet 3c to keep the nitrate concentration in the room constant.
A constant concentration of nitric acid solution is discharged from the

第2図の陰イオン交換膜を備えた隔膜電解装置を用いた
場合には、水洗液中からアルカリイオンを回収すること
はできない。従って、ある程度の期間が経過すると、水
洗液中のPHが増加し、水洗液を交換することが必要に
なる。そこで第2図の装置の陰イオン交換膜を陽イオン
交換膜に代えた隔膜電解装置を、陰イオン交換膜を備え
た隔膜電解装置に対して直列に接続すれば、アルカリイ
オンを水洗液から回収して水洗液のPHを適宜に制御す
ることができる。以下陰イオン交換膜を備えた装置と、
陽イオン交換膜を備えた装置とを直列に組合せた複合装
置装置を用いる場合の実施例について説明する。陰イオ
ン交換膜を備えた装置については、上記の説明の通りで
あるため説明を省略し、ここでは陽イオン交換膜を備え
た装置を第2図の符号を用いて、硝酸塩を硝酸ナトリウ
ムとした場合を例にとって説明する。この複合装置では
、陰イオン交換膜を備えた装置の原液排出口と陽イオン
交換膜を備えた装置の原液流入口とを直結している。従
って、陽イオン交換膜を備えた装置の原液室6,8内に
は、陰イオン交換膜を備えた装置で分解除去できなかっ
たわずかな硝酸塩と、該装置で生成された水酸化ナトリ
ウムとを含む水洗液が流入されている。原液室6,8内
で分解されたナトリウムイオンは、陽イオン交換膜2a
、2dを透過して陰極室5.9内に入り、陰極室内で水
酸化ナトリウムとなって回収される。また陽極室7内の
硝酸は、水素イオンと硝酸イオンとに分解され、水素イ
オンは陽イオン交換膜2b。
When the diaphragm electrolyzer equipped with the anion exchange membrane shown in FIG. 2 is used, alkali ions cannot be recovered from the washing liquid. Therefore, after a certain period of time, the pH in the washing liquid increases and it becomes necessary to replace the washing liquid. Therefore, if a diaphragm electrolysis device in which the anion exchange membrane of the device shown in Figure 2 is replaced with a cation exchange membrane is connected in series to a diaphragm electrolysis device equipped with an anion exchange membrane, alkali ions can be recovered from the washing liquid. The pH of the washing liquid can be controlled appropriately. A device equipped with an anion exchange membrane,
An example will be described in which a composite device is used in which a device equipped with a cation exchange membrane is combined in series. The explanation of the device equipped with an anion exchange membrane is omitted as it is as explained above.Here, the device equipped with a cation exchange membrane is designated by the reference numerals in Figure 2, and the nitrate is replaced with sodium nitrate. This will be explained using a case as an example. In this composite device, the stock solution outlet of the device equipped with the anion exchange membrane is directly connected to the stock solution inlet of the device equipped with the cation exchange membrane. Therefore, the stock solution chambers 6 and 8 of the device equipped with a cation exchange membrane contain a small amount of nitrate that could not be decomposed and removed by the device equipped with an anion exchange membrane, as well as the sodium hydroxide produced in the device. A washing liquid containing water is flowing in. The sodium ions decomposed in the stock solution chambers 6 and 8 are transferred to the cation exchange membrane 2a.
, 2d and enters the cathode chamber 5.9, where it becomes sodium hydroxide and is recovered. Further, nitric acid in the anode chamber 7 is decomposed into hydrogen ions and nitrate ions, and the hydrogen ions are transferred to the cation exchange membrane 2b.

2Cを透過して原液室6.8内に入り、原液室内の水酸
イオンと結合して水になる。原液室で生成された水は、
水洗液と一緒に、原液排出口4b。
2C, enters the stock solution chamber 6.8, and combines with hydroxyl ions in the stock solution chamber to become water. The water produced in the stock solution chamber is
Together with the washing liquid, there is an undiluted solution outlet 4b.

4dから排出される。排出された水洗液は、−火水洗槽
に戻されて再利用が図られる。陽イオン交換膜を備えた
装置で電解が行われる場合は、原液室6.8内の硝酸イ
オンは電界の作用と陽イオン交換膜2a及び2dとによ
って陰極室への移動が抑制されているため陰極板上に反
応中間物が生成されることはない。また陰イオン交換膜
を備えた装置と同様に、陰極室5,9内の水酸化ナトリ
ウムの濃度を一定にするために陰極液流入口3a。
It is discharged from 4d. The discharged washing liquid is returned to the hot water washing tank for reuse. When electrolysis is performed in a device equipped with a cation exchange membrane, the movement of nitrate ions in the stock solution chamber 6.8 to the cathode chamber is suppressed by the action of the electric field and the cation exchange membranes 2a and 2d. No reaction intermediates are produced on the cathode plate. Further, similar to the device equipped with an anion exchange membrane, a catholyte inlet 3a is provided to keep the concentration of sodium hydroxide in the cathode chambers 5 and 9 constant.

3eから水が注入され、陰極液流出口4a、4eから一
定濃度の水酸化ナトリウム溶液が排出される。一方陽極
室7においても室内の硝酸濃度を一定にするために陽極
液流入口3Cから水が注入され陽極液流出口4Cから一
定濃度の硝酸溶液が排出される。
Water is injected from 3e, and a sodium hydroxide solution of a certain concentration is discharged from catholyte outflow ports 4a and 4e. On the other hand, in the anode chamber 7, water is injected from the anolyte inlet 3C to keep the nitric acid concentration in the room constant, and a nitric acid solution with a constant concentration is discharged from the anolyte outlet 4C.

このようにして構成された複合装置では、常時側隔膜電
解装置を運転してもよいが、水洗液中に水酸化ナトリウ
ムがあってもその量がある程度多くならない限り、水洗
にとくに支障は生じない。
In a composite device configured in this manner, the side diaphragm electrolyzer may be operated at all times, but even if there is sodium hydroxide in the washing liquid, there will be no particular problem with washing as long as the amount does not increase to a certain extent. .

そこで運転効率を上げるために、水洗液のPH濃度が所
定値以上になったら陽イオン交換膜を備えた隔膜電解装
置を運転し、PH濃度が中性になった時点で運転を停止
させるようにして、水洗液のPH濃度を適宜に制御する
ようにしてもよい。そこで水洗液のPHが13以上にな
ったときにのみ陽イオン交換膜を備えた隔膜電解装置を
稼働するように設計した複合装置を用いて、1次水洗槽
内の硝酸塩濃度を低下させた場合の実験データを以下に
示す。−例として水洗液循環量を2J2/min。
Therefore, in order to increase operational efficiency, the diaphragm electrolyzer equipped with a cation exchange membrane is operated when the pH concentration of the washing liquid exceeds a predetermined value, and the operation is stopped when the pH concentration becomes neutral. The pH concentration of the washing liquid may be appropriately controlled. Therefore, the nitrate concentration in the primary washing tank was reduced using a composite device designed to operate a diaphragm electrolyzer equipped with a cation exchange membrane only when the pH of the washing liquid reached 13 or higher. The experimental data is shown below. - For example, the washing liquid circulation rate is 2J2/min.

とし、電流密度をIOA/dm2とし、イオン交換膜の
膜面積を53dm2にそれぞれ設定した複合装置を用い
て、水酸化ナトリウム濃度が1.2wj%で硝酸塩濃度
がQ、  9wj%の1次水洗槽内の水洗液中の硝酸塩
濃度を低下させてみた。この設定条件で10日間運転し
たところ、2.5Kg/dayの硝酸イオンを分離除去
することができた。この結果から、約80%の高い透析
電流効率で装置が稼働していることがわかる。また複合
装置の2倍の能力を持つ装置を製造して同様の条件で運
転したところ1次水洗槽に溶解している硝酸イオンを約
4.5Kg/dayで分離除去することができた。この
結果は、1次水洗槽に溶解している硝酸イオンがほぼ1
00%除去できたことを示している。
A primary washing tank with a sodium hydroxide concentration of 1.2wj%, a nitrate concentration of Q, and a 9wj% concentration was prepared using a composite device in which the current density was set to IOA/dm2 and the membrane area of the ion exchange membrane was set to 53dm2. I tried lowering the nitrate concentration in the washing fluid. When operated for 10 days under these set conditions, 2.5 kg/day of nitrate ions could be separated and removed. This result shows that the device operates with a high dialysis current efficiency of about 80%. Furthermore, when a device with twice the capacity of the combined device was manufactured and operated under the same conditions, it was possible to separate and remove nitrate ions dissolved in the primary washing tank at a rate of about 4.5 kg/day. This result shows that the amount of nitrate ions dissolved in the primary washing tank is approximately 1.
This shows that 00% removal was possible.

本実施例の隔膜電解装置を用いて水洗槽内の硝酸塩濃度
を低下させると、交換膜によって陽極室、原液室及び陰
極室に分けているため、電解時において陰極板に反応中
間物が生成されることを防止して、電極の腐食及び反応
中間物の水洗液中への混入を防止することができる。
When the nitrate concentration in the washing tank is reduced using the diaphragm electrolyzer of this example, reaction intermediates are generated on the cathode plate during electrolysis because the exchange membrane separates the anode chamber, stock solution chamber, and cathode chamber. Corrosion of the electrodes and mixing of reaction intermediates into the washing liquid can be prevented.

また排水を行わない水洗槽中の水洗液を入替えることな
く水洗を行うことができる。
Further, washing can be performed without replacing the washing liquid in the washing tank which does not drain water.

第3図は本発明の実施例で用いることができる他の隔膜
電解装置を示している。なおこの装置の構造は公知であ
るため以下簡単に説明する。第3図において13は電解
槽であり、電解槽13は陰イオン交換膜14によって陰
極室15と陽極室16とに分けられている。陰極室15
には陰極板17が配設され、陽極室16には陽極板18
が配設されている。濾過後の水洗液は陰極液流入口19
から陰極室15内に流入され、流出口20から1次水洗
槽に戻される。陽極板18と陰極板17には所定量の電
流が流されているため、陰極室15内の水洗液中の硝酸
塩は電解によって分解される。
FIG. 3 shows another diaphragm electrolyzer that can be used in embodiments of the invention. Since the structure of this device is well known, it will be briefly explained below. In FIG. 3, 13 is an electrolytic cell, and the electrolytic cell 13 is divided into a cathode chamber 15 and an anode chamber 16 by an anion exchange membrane 14. Cathode chamber 15
A cathode plate 17 is disposed in the chamber, and an anode plate 18 is disposed in the anode chamber 16.
is installed. The washing liquid after filtration is sent to the catholyte inlet 19
It flows into the cathode chamber 15 from there and is returned to the primary washing tank from the outlet 20. Since a predetermined amount of current is passed through the anode plate 18 and the cathode plate 17, nitrates in the washing liquid in the cathode chamber 15 are decomposed by electrolysis.

硝酸塩が硝酸ナトリウムであるとすると、硝酸ナトリウ
ムはナトリウムイオンと硝酸イオンとに分解され、硝酸
イオンは陰イオン交換膜14を透過して陽極室16内に
入り、陽極室16内で硝酸となる。また陰極室15内の
ナトリウムイオンは水酸化ナトリウムとなり、硝酸ナト
リウムを含む水洗液は陰極液流出口20から排出される
。排出された水洗液は水洗槽に戻される。また陽極室1
6には硝酸濃度が上昇しないように陽極液流入口21か
ら水が注入され、陽極液流出口22からは一定の濃度の
硝酸が排出される。排出された硝酸は、ニッケル、カド
ミウム等の金属を溶解させて硝酸塩を作り、含浸工程で
再利用することができる。
If the nitrate is sodium nitrate, the sodium nitrate is decomposed into sodium ions and nitrate ions, and the nitrate ions pass through the anion exchange membrane 14 and enter the anode chamber 16, where they become nitric acid. Further, the sodium ions in the cathode chamber 15 turn into sodium hydroxide, and the washing liquid containing sodium nitrate is discharged from the catholyte outlet 20. The discharged washing liquid is returned to the washing tank. Also, anode chamber 1
6, water is injected from the anolyte inlet 21 to prevent the nitric acid concentration from increasing, and nitric acid with a constant concentration is discharged from the anolyte outlet 22. The discharged nitric acid dissolves metals such as nickel and cadmium to form nitrates, which can be reused in the impregnation process.

尚この隔膜電解装置では、陰極が硝酸イオンを含む水洗
液中に配置されることになるため、陰極で硝酸イオンが
還元されて反応中間物(NH20H)が生成される。そ
のため第2図の隔膜電解装置と比べて、陰極の腐食や反
応中間物の水洗液中への混入があることはいなめない。
In this diaphragm electrolyzer, since the cathode is disposed in the washing liquid containing nitrate ions, the nitrate ions are reduced at the cathode and a reaction intermediate (NH20H) is generated. Therefore, compared to the diaphragm electrolyzer shown in FIG. 2, corrosion of the cathode and mixing of reaction intermediates into the washing solution cannot be ignored.

上記実施例では水洗工程を2つ設けて、1次水洗工程の
水洗槽内の硝酸塩濃度を隔膜電解法によって低下させた
が、硝酸塩濃度を低下させる方法及び硝酸塩濃度を低下
させる水洗槽の数は任意である。
In the above example, two washing steps were provided, and the nitrate concentration in the washing tank in the first washing step was reduced by diaphragm electrolysis, but the method for reducing the nitrate concentration and the number of washing tanks for reducing the nitrate concentration are Optional.

[発明の効果] 請求項1の発明のように、中和槽内及び少なくとも2槽
の水洗槽のうち少なくとも最初に水洗が行われる水洗槽
内の硝酸塩濃度を低下させると、中和槽から引上げられ
る基板に付着した硝酸塩を減少させた上で、最初の水洗
槽内に洗い落される硝酸塩の量を減少させることができ
る。よって本発明によれば、廃液中の含窒素化合物の量
を従来に比較して少なくすることができ、排水をそのま
ま排出しても、河川の富栄養化を抑制できる。
[Effect of the invention] According to the invention of claim 1, when the concentration of nitrate is reduced in the neutralization tank and at least in the first washing tank of at least two washing tanks, the nitrate concentration is reduced from the neutralization tank. In addition to reducing the amount of nitrate adhering to the substrate being washed, the amount of nitrate washed away into the first washing tank can be reduced. Therefore, according to the present invention, the amount of nitrogen-containing compounds in the waste liquid can be reduced compared to the conventional method, and even if the waste water is discharged as it is, eutrophication of rivers can be suppressed.

また請求項2の発明のように、硝酸塩濃度を低下させる
水洗槽を実質的に排水を行わない水洗槽とすると、工場
外に排出される廃液は、最初の水洗槽で水洗を終えた基
板を浸漬する水洗槽からの排水のみとなるため河川等に
排出される廃液中の含窒素化合物の量は少なく、河川の
富栄養化を確実に防止できる。
Further, as in the invention of claim 2, if the washing tank for reducing the nitrate concentration is a washing tank that does not substantially drain water, the waste liquid discharged outside the factory will be used to clean the substrates that have been washed in the first washing tank. Since only the wastewater is discharged from the immersion washing tank, the amount of nitrogen-containing compounds in the wastewater discharged into rivers, etc. is small, and eutrophication of rivers can be reliably prevented.

更に請求項3の発明のように、中和槽内のアルカリ水溶
液の硝酸塩濃度を晶析法により低下させ、前記少なくと
も最初に水洗が行われる水洗槽内の硝酸塩濃度を隔膜電
解法により低下させると、運転経費を少なくして、最初
に水洗が行われる水洗槽内の硝酸塩濃度を大幅に低下さ
せることができる。
Furthermore, as in the invention of claim 3, the nitrate concentration of the alkaline aqueous solution in the neutralization tank is reduced by a crystallization method, and the nitrate concentration in the washing tank in which water washing is performed at least first is reduced by a diaphragm electrolysis method. , the nitrate concentration in the first flushing tank can be significantly reduced with lower operating costs.

また請求項4の発明のように陽極室、原液室及び陰極室
が陰イオン交換膜のみによって隔てられている隔膜電解
装置を用いて水洗槽内の硝酸塩濃度を低下させると、陰
極板で反応中間物が生成されることがなく、陰極板の腐
食を防止できる。
Furthermore, when the nitrate concentration in the washing tank is reduced using a diaphragm electrolyzer in which the anode chamber, stock solution chamber, and cathode chamber are separated only by an anion exchange membrane as in the invention of claim 4, the reaction is intermediated at the cathode plate. No substances are generated, and corrosion of the cathode plate can be prevented.

更に請求項5の発明のように陽極室、原液室及び陰極室
を具備して、前記各室が陰イオン交換膜のみによって隔
てられている隔膜電解装置と、陽極室、原液室及び陰極
室を具備して、前記各室が陽イオン交換膜のみによって
隔てられている隔膜電解装置とを直列に組合せた複合装
置を用いると、アルカリイオンを回収して水洗液中の硝
酸塩濃度を確実に減少させて、しかも水洗液のPHを適
宜に制御できる利点がある。従って、この水洗液を最初
に水洗が行われる水洗槽に還元しても、長期間に亘って
アルカリ蓄電池用極板を製造することができる。
Furthermore, as in the invention of claim 5, there is provided a diaphragm electrolyzer comprising an anode chamber, an undiluted solution chamber and a cathode chamber, each of which is separated only by an anion exchange membrane, and an anode chamber, an undiluted solution chamber and a cathode chamber. By using a composite device in which the above-mentioned chambers are combined in series with a diaphragm electrolyzer in which each chamber is separated only by a cation exchange membrane, alkali ions can be recovered to reliably reduce the nitrate concentration in the washing liquid. Moreover, there is an advantage that the pH of the washing liquid can be appropriately controlled. Therefore, even if this rinsing liquid is returned to the rinsing tank in which rinsing is first performed, electrode plates for alkaline storage batteries can be manufactured over a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すアルカリ蓄電池用極板
の製造方法による製造工程図、第2図は実施例で用いら
れる隔膜電解装置の一例の概略構成図、第3図は実施例
で用いられる他の隔膜電解装置の概略構成図、第4図は
従来のアルカリ蓄電池用極板の製造方法による製造工程
図である。 1・・・電解層、2a〜2d・・・イオン交換膜、3a
。 3e・・・陰極液流入口、3b、3d・・・原液流入口
、3c・・・陽極液流入口、4a、4e・・・陰極液流
出口、4b、4d・・・原液流出口、4c・・・陽極液
流出口、5.9・・・陰極室、6.8・・・原液室、7
・・・陽極室、10.12・・・陰極板、11・・・陽
極板、13・・・電解層、14・・・陰イオン交換膜、
15・・・陰極室、16°・・陽極室、17・・・陰極
板、18・・・陽極板、19・・・陰極液流入口、20
・・・陰極液流出口、21・・・陽極液流入口、22・
・・陽極液流出口。 第1図
Fig. 1 is a manufacturing process diagram of a method for producing electrode plates for alkaline storage batteries showing an embodiment of the present invention, Fig. 2 is a schematic configuration diagram of an example of a diaphragm electrolyzer used in the embodiment, and Fig. 3 is an embodiment. FIG. 4 is a schematic diagram of another diaphragm electrolyzer used in the present invention, and FIG. 4 is a manufacturing process diagram of a conventional method for manufacturing electrode plates for alkaline storage batteries. 1... Electrolytic layer, 2a to 2d... Ion exchange membrane, 3a
. 3e...Cathode solution inlet, 3b, 3d...Natural solution inlet, 3c...Anolyte inlet, 4a, 4e...Cathode solution outlet, 4b, 4d...Natural solution outlet, 4c ...Anolyte outflow port, 5.9...Cathode chamber, 6.8...Standard solution chamber, 7
... Anode chamber, 10.12... Cathode plate, 11... Anode plate, 13... Electrolyte layer, 14... Anion exchange membrane,
15...Cathode chamber, 16°...Anode chamber, 17...Cathode plate, 18...Anode plate, 19...Catholyte inlet, 20
...Catholyte outflow port, 21...Anolyte inflow port, 22.
...Anolyte outflow port. Figure 1

Claims (5)

【特許請求の範囲】[Claims] (1)硝酸塩を含浸した基板を水酸化アルカリ水溶液が
入った中和槽に浸漬させて前記硝酸塩を活物質化した後
、前記基板を少なくとも2槽の水洗槽内に浸漬して水洗
を行いアルカリ蓄電池用極板を製造する方法において、 前記中和槽内及び前記少なくとも2槽の水洗槽のうち少
なくとも最初に水洗が行なわれる水洗槽内の硝酸塩濃度
を晶析法または電解法を用いて低下させることを特徴と
するアルカリ蓄電池用極板の製造方法。
(1) The substrate impregnated with nitrate is immersed in a neutralization tank containing an aqueous alkali hydroxide solution to turn the nitrate into an active material, and then the substrate is immersed in at least two water washing tanks to be washed with water and alkali In the method of manufacturing electrode plates for storage batteries, the nitrate concentration in the neutralization tank and in at least the first washing tank of the at least two washing tanks is reduced by using a crystallization method or an electrolytic method. A method of manufacturing an electrode plate for an alkaline storage battery, characterized by:
(2)硝酸塩濃度を低下させる前記水洗槽は実質的に排
水を行なわない水洗槽である請求項1に記載のアルカリ
蓄電池用極板の製造方法。
(2) The method for producing an electrode plate for an alkaline storage battery according to claim 1, wherein the washing tank for reducing the nitrate concentration is a washing tank that does not substantially drain water.
(3)前記中和槽内の硝酸塩濃度を晶析法によつて低下
させ、前記少なくとも最初に水洗が行なわれる水洗槽内
の硝酸塩濃度を隔膜電解法を用いて低下させることを特
徴とする請求項1または2に記載のアルカリ蓄電池用極
板の製造方法。
(3) A claim characterized in that the nitrate concentration in the neutralization tank is reduced by a crystallization method, and the nitrate concentration in the washing tank in which water washing is performed at least first is reduced by using a diaphragm electrolysis method. Item 2. A method for producing an electrode plate for an alkaline storage battery according to item 1 or 2.
(4)前記隔膜電解法は、陽極室、原液室及び陰極室を
具備して、前記各室が陰イオン交換膜のみによって隔て
られている隔膜電解装置を用いて行われることを特徴と
する請求項3に記載のアルカリ蓄電池用極板の製造方法
(4) A claim characterized in that the diaphragm electrolysis method is carried out using a diaphragm electrolysis device that is equipped with an anode chamber, a stock solution chamber, and a cathode chamber, and each of the chambers is separated only by an anion exchange membrane. Item 3. A method for producing an electrode plate for an alkaline storage battery according to item 3.
(5)前記隔膜電解法は、陽極室、原液室及び陰極室を
具備して、前記各室が陰イオン交換膜のみによって隔て
られている隔膜電解装置と、陽極室、原液室及び陰極室
を具備して、前記各室が陽イオン交換膜のみによって隔
てられている隔膜電解装置とを直列に組合せた複合装置
を用いて行われることを特徴とする請求項3に記載のア
ルカリ蓄電池用極板の製造方法。
(5) The diaphragm electrolysis method includes a diaphragm electrolysis device that is equipped with an anode chamber, a stock solution chamber, and a cathode chamber, each of which is separated only by an anion exchange membrane; The electrode plate for an alkaline storage battery according to claim 3, characterized in that the electrode plate for an alkaline storage battery is carried out using a composite device in which a diaphragm electrolyzer and a diaphragm electrolyzer in which each chamber is separated only by a cation exchange membrane are combined in series. manufacturing method.
JP2034193A 1990-02-15 1990-02-15 Manufacture of plate for alkaline storage battery Pending JPH03238754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2034193A JPH03238754A (en) 1990-02-15 1990-02-15 Manufacture of plate for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2034193A JPH03238754A (en) 1990-02-15 1990-02-15 Manufacture of plate for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH03238754A true JPH03238754A (en) 1991-10-24

Family

ID=12407340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2034193A Pending JPH03238754A (en) 1990-02-15 1990-02-15 Manufacture of plate for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH03238754A (en)

Similar Documents

Publication Publication Date Title
US4028199A (en) Method of producing metal powder
US3470044A (en) Electrolytic regeneration of spent ammonium persulfate etchants
JP2004536222A (en) Electrolysis cell for recovering metal ion concentration in electroplating process
CN106929857A (en) Cupric acidity etching liquid recycling equipment for reclaiming and method
CN107630220B (en) Acidic etching liquid regeneration treatment system
JP2022537699A (en) Substance removal from water
CN103060834A (en) Technological process for electrolyzing sodium sulfate
CN102618873B (en) Ammonia washing water circulation system and method of PCB (Printed Circuit Board) etching line
US4636288A (en) Electrodialytic conversion of multivalent metal salts
CN110422948A (en) Copper sulphate Sewage treatment metallic copper treatment process is electroplated
CN101974756A (en) Device for regenerating waste microetching liquid and recovering copper
JPH081168A (en) Treatment method for drainage containing monovalent neutral salt
JPH09271781A (en) Method of removing nitrogen from waste water
JPH11226576A (en) Method and apparatus for treating wastewater
US3406108A (en) Regeneration of spent ammonium persulfate etching solutions
JP4515804B2 (en) Method for recovering metallic indium by electrowinning
CN201883149U (en) Waste micro-etching liquor regeneration and copper recovery device
JPH03238754A (en) Manufacture of plate for alkaline storage battery
CN108236888B (en) Dicumyl peroxide synthesis system
JPH01162789A (en) Method and device for recovering metal deposited on carrier
US4302319A (en) Continuous electrolytic treatment of circulating washings in the plating process and an apparatus therefor
JP2000512685A (en) Method for removing metal from strong acid bath and use of the method in electropolishing stainless steel surface
WO1991018837A1 (en) Electrolytic cell for waste water treatment
RU2075448C1 (en) Plant for regenerating chromium-containing liquors
CN203781958U (en) Chromic acid wastewater treatment system