JPH03238377A - Magnetic sensor - Google Patents

Magnetic sensor

Info

Publication number
JPH03238377A
JPH03238377A JP3365090A JP3365090A JPH03238377A JP H03238377 A JPH03238377 A JP H03238377A JP 3365090 A JP3365090 A JP 3365090A JP 3365090 A JP3365090 A JP 3365090A JP H03238377 A JPH03238377 A JP H03238377A
Authority
JP
Japan
Prior art keywords
analyzer
polarizer
magnetic sensor
glass
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3365090A
Other languages
Japanese (ja)
Inventor
Toshiaki Watanabe
聡明 渡辺
Toshihiko Riyuuou
俊彦 流王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP3365090A priority Critical patent/JPH03238377A/en
Publication of JPH03238377A publication Critical patent/JPH03238377A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To achieve a smaller size of a sensor with a shorter optical length of a sensor element by using a thin glass polaroid plate as polarizer and analyzer while magnetic garnet with a large Verdet's constant is employed for a Faraday element. CONSTITUTION:This sensor has a polarizer 3, a Faraday element 4 and an analyzer 5 arranged in the order. At least one of the polarizer 3 and the analyzer 5 comprises a glass polaroid plate and the element 4 is composed of garnet as given by a formula of A3B5O12(wherein A is composed of, for example, one or a plurality of elements selected from a rare earth element, Bi and Pb. B is, for example, Fe alone or additional one or more elements selected from A, Ga, In, Co, Ge and Sc). Light emitted from a collimation lens 2 is turned to a linearly polarized light and as passing through the element 4 to which a magnetic field H is applied, a polarizing plane thereof rotates by an angle theta. Then, the light passes through the glass polaroid plate with an optical axis 5a inclined to the optical axis 3a of the glass polaroid plate. The transmission light is introduced to a photo detector to be converted into an electrical signal for computation thereby calculating the intensity of the magnetic field H.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は磁界や電流を測定するための、ファラデー効果
を利用した磁気センサに関するものである。
The present invention relates to a magnetic sensor that uses the Faraday effect to measure magnetic fields and currents.

【従来の技術】[Conventional technology]

磁気センサの一つに、磁場がかけられた物質を磁力線の
方向に光が通過するとき、直線偏光の光線の偏光面が回
転するファラデー効果を利用したものがある。 第2図に磁気センサの一例を示す。この磁気センサは偏
光子13、ファラデー素子14gよび検光子15をこの
順に並べたものである。偏光子13はコリメートレンズ
2および光ファイバlを介して光源(不図示)に接続さ
れ、検光子15はコリメートレンズ6および光ファイバ
7を通じて光検知器(不図示)に接続されている。偏光
子13は矢印13a方向、検光子15は矢印15a方向
に偏光方向をもっている。 光フアイバケーブルlを通してコリメートレンズ2より
出射された光が偏光子13を通過すると、その先軸13
aと平行な成分のみをもつ直線偏光になる。この直線偏
光が磁場Hを印加されたファラデー素子14を通過する
と偏波面がθだけ回転した直線偏光になって検光子15
を通過する。検光子15の光軸は偏光子13の光軸13
aに対して傾いているため、検光子15の通過光量は、
偏光の回転角θによって決定される。回転角θは、式θ
=V−H−J2 (Vはベルデ定数、氾はファラデー素
子の素子長)で表わされるように磁場の強さHに比例す
るため、検光子15の通過光量をコリメートレンズ6お
よび光ファイバ7で光検知器(不図示)に導き、電気信
号に変換して演算すれば磁場の強さHが算出できる。
One type of magnetic sensor utilizes the Faraday effect, in which the plane of polarization of linearly polarized light rotates when light passes through a substance to which a magnetic field is applied in the direction of magnetic lines of force. FIG. 2 shows an example of a magnetic sensor. This magnetic sensor has a polarizer 13, a Faraday element 14g, and an analyzer 15 arranged in this order. The polarizer 13 is connected to a light source (not shown) through a collimating lens 2 and an optical fiber 1, and the analyzer 15 is connected to a photodetector (not shown) through a collimating lens 6 and an optical fiber 7. The polarizer 13 has a polarization direction in the direction of arrow 13a, and the analyzer 15 has a polarization direction in the direction of arrow 15a. When the light emitted from the collimating lens 2 through the optical fiber cable l passes through the polarizer 13, the tip axis 13
It becomes linearly polarized light with only a component parallel to a. When this linearly polarized light passes through the Faraday element 14 to which a magnetic field H is applied, it becomes linearly polarized light whose plane of polarization has been rotated by θ, and the analyzer 15
pass through. The optical axis of the analyzer 15 is the optical axis 13 of the polarizer 13
Since it is tilted with respect to a, the amount of light passing through the analyzer 15 is
It is determined by the rotation angle θ of polarized light. The rotation angle θ is the formula θ
= V-H-J2 (V is the Verdet constant, and F is the element length of the Faraday element), which is proportional to the magnetic field strength H. The strength H of the magnetic field can be calculated by guiding it to a photodetector (not shown), converting it into an electrical signal, and performing calculations.

【発明が解決しようとする課題】[Problem to be solved by the invention]

このような磁気センサにはなるべく小さいことが求めら
れる。しかし、第2図に示した磁気センサは偏光子13
や検光子15に偏光プリズムを使用しているために光路
長が長くなり、センサの大きさに比べて有効ビーム径が
小さい。 本発明は前記の課題を解決するためなされたもので、素
子の光路長が短く、小型の磁気センサを提供することを
目的とする。
Such magnetic sensors are required to be as small as possible. However, the magnetic sensor shown in FIG.
Since a polarizing prism is used in the analyzer 15, the optical path length becomes long, and the effective beam diameter is small compared to the size of the sensor. The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a compact magnetic sensor whose element has a short optical path length.

【課題を解決するための手段】[Means to solve the problem]

前記の目的を達成するためになされた本発明の磁気セン
サを実施例に対応する第1図を用いて説明する。 同図に示すように本発明の磁気センサは、偏光子3、フ
ァラデー素子4および検光子5がこの順に配置されてい
る。偏光子3および検光子5の少なくとも一方がガラス
偏光板からなり、ファラデー素子4が式As5so+□
で示されるガーネットからなる。式A3B60□のAは
例えば希土類元素、Bi、 Pbから選ばれる一または
複数の元素で構成される。Bは例えばFe単独、または
Al、 Ga、 In、Co、 Ge、 Scから選ば
れる−または複数の元素とFeとで構成される。 ガラス偏光板としてガラス板の表面に銀結晶を配向させ
た偏光板を使用する。 偏光子3、ファラデー素子4および検光子5は円板状で
あることが望ましい。
A magnetic sensor of the present invention, which has been made to achieve the above object, will be explained using FIG. 1 corresponding to an embodiment. As shown in the figure, in the magnetic sensor of the present invention, a polarizer 3, a Faraday element 4, and an analyzer 5 are arranged in this order. At least one of the polarizer 3 and the analyzer 5 is made of a glass polarizing plate, and the Faraday element 4 has the formula As5so+□
Consisting of garnet indicated by . A in the formula A3B60□ is composed of one or more elements selected from, for example, rare earth elements, Bi, and Pb. B is composed of, for example, Fe alone, or a plurality of elements selected from Al, Ga, In, Co, Ge, and Sc and Fe. A polarizing plate in which silver crystals are oriented on the surface of a glass plate is used as the glass polarizing plate. It is desirable that the polarizer 3, the Faraday element 4, and the analyzer 5 have a disk shape.

【作用】[Effect]

本発明の磁気センサは、偏光子3や検光子5として薄い
ガラス偏光板を用い、ファラデー素子4にベルデ一定数
の大きな磁性ガーネットを使用しているために、光路が
短縮されるとともにレンズによる光のコリメートが容易
である。また偏光子3、ファラデー素子4、検光子5が
光路を中心とする円板状に形成されているため、磁気セ
ンサの外径に対する有効ビーム径の比が大きい。
The magnetic sensor of the present invention uses a thin glass polarizing plate as the polarizer 3 and the analyzer 5, and uses a large magnetic garnet with a Verdet constant as the Faraday element 4, so that the optical path is shortened and the lens generates light. collimation is easy. Furthermore, since the polarizer 3, Faraday element 4, and analyzer 5 are formed in a disk shape centered on the optical path, the ratio of the effective beam diameter to the outer diameter of the magnetic sensor is large.

【実施例】【Example】

以下、本発明の詳細な説明する。 第1図に本発明の磁気センサを示す。このセンサは、偏
光子3、ファラデー素子4および検光子5をこの順に連
結したものである。偏光子3はロッド状のコリメートレ
ンズ2および光ファイバlを介して光源(不図示)に接
続され、検光子5は、コリメートレンズ6および光ファ
イバ7を介して光検知器(不図示)に接続されている。 偏光子3および検光子5は、ガラスの表面に銀結晶を配
向させた厚さ0.2m+aのガラス偏光板(コーニング
社製、ポーラコア78612)である。 これを1.8mmφの円板状に加工して使用する。 ファラデー素子4は、式 (GdBil s (FeG
al sO+ tで示される厚さ(1,04+amのガ
ーネット単結晶を1.8++a◆の円板状に加工したも
のである。 コリメートレンズ2より出射された光は、ガラス偏光板
3を通過すると、その先軸3aと平行な成分のみをもつ
直線偏光になり、磁場Hを印加されたファラデー素子4
を通過すると偏波面が角度θだけ回転する。偏波面が回
転した直線偏光は、ガラス偏光板3の光軸3aに対して
光軸5aが傾いたガラス偏光板5を通過する。その通過
光をコノメートレンズ6および光ファイバ7によって光
検知器(不図示)に導き、電気信号に変換して演算すれ
ば磁場の強さHが算出される。 この実施例の磁気センサにおいて光の透過できる有効ビ
ーム径は1.6+++aφである。それに対し、ガラス
偏光板3・5およびファラデー素子4の直径は1.8m
mφであるため、磁気センサの外径に対する有効ビーム
径の比率は0.89となり、磁気センサを構成するガラ
ス偏光板3・5およびファラデー素子4の断面が有効に
利用されていることがわかる。また、透過光の光路長は
0.5mmであった。 これに対し第2図に示した従来の磁気センサは、偏光子
13および検光子15として20×2mmの偏光ビーム
スプリッタを用い、ファラデー素子14として、式fG
dBi) x fFeGal sO+ tで示される2
0X O,(14ma+のガーネット単結晶を使用して
いる。この構造において、光の透過できる有効ビーム径
1.61φに対し、偏光ビームスプリ・ンタ13・15
およびファラデー素子14に内接し、光路に直交する円
の直径は2.83r++a$であるため、磁気センサの
内接円に対する有効ビーム径の比率は0.57である。 偏光ビームスプリッタ13・15およびファラデー素子
14を透過する光路長は4.1mmであった。 このように1本発明の実施例の磁気センサは、第2図を
用いて説明した従来の磁気センサと比較して光路長が約
178、外径が約171.6.体積がl/26に小型化
されている。 【発明の効果] 以上詳細に説明したように本発明の磁気センサは、偏光
素子の光路長が短かく、各偏光素子の断面が光路として
面積効率良く使用されているため、従来の磁気センサに
比べて大幅に小型化されている。また加工が容易である
The present invention will be explained in detail below. FIG. 1 shows a magnetic sensor of the present invention. This sensor has a polarizer 3, a Faraday element 4, and an analyzer 5 connected in this order. The polarizer 3 is connected to a light source (not shown) via a rod-shaped collimating lens 2 and an optical fiber l, and the analyzer 5 is connected to a photodetector (not shown) via a collimating lens 6 and an optical fiber 7. has been done. The polarizer 3 and the analyzer 5 are glass polarizing plates (manufactured by Corning, Polar Core 78612) having a thickness of 0.2 m+a and having silver crystals oriented on the glass surface. This is processed into a disk shape of 1.8 mmφ and used. The Faraday element 4 has the formula (GdBil s (FeG
A garnet single crystal with a thickness indicated by al sO + t (1,04+ am is processed into a disk shape of 1.8++a◆). When the light emitted from the collimating lens 2 passes through the glass polarizing plate 3, The Faraday element 4 becomes linearly polarized light with only a component parallel to its tip axis 3a, and a magnetic field H is applied to it.
When passing through, the plane of polarization rotates by an angle θ. The linearly polarized light whose plane of polarization has been rotated passes through the glass polarizing plate 5 whose optical axis 5a is inclined with respect to the optical axis 3a of the glass polarizing plate 3. The transmitted light is guided to a photodetector (not shown) through a conomete lens 6 and an optical fiber 7, and is converted into an electrical signal and subjected to calculation to calculate the strength H of the magnetic field. In the magnetic sensor of this embodiment, the effective beam diameter through which light can pass is 1.6+++aφ. On the other hand, the diameter of the glass polarizing plates 3 and 5 and the Faraday element 4 is 1.8 m.
mφ, the ratio of the effective beam diameter to the outer diameter of the magnetic sensor is 0.89, and it can be seen that the cross sections of the glass polarizing plates 3 and 5 and the Faraday element 4 constituting the magnetic sensor are effectively utilized. Further, the optical path length of the transmitted light was 0.5 mm. On the other hand, the conventional magnetic sensor shown in FIG.
dBi) x fFeGal sO+ 2 denoted by t
0X O, (14ma+ garnet single crystal is used. In this structure, the effective beam diameter that can transmit light is 1.61φ, and the polarization beam splitter is 13 and 15.
Since the diameter of the circle inscribed in the Faraday element 14 and perpendicular to the optical path is 2.83r++a$, the ratio of the effective beam diameter to the inscribed circle of the magnetic sensor is 0.57. The optical path length passing through the polarizing beam splitters 13 and 15 and the Faraday element 14 was 4.1 mm. As described above, the magnetic sensor according to the embodiment of the present invention has an optical path length of about 178 mm and an outer diameter of about 171.6 mm, compared to the conventional magnetic sensor described using FIG. The volume has been reduced to 1/26. [Effects of the Invention] As explained in detail above, the magnetic sensor of the present invention has a short optical path length of the polarizing element, and the cross section of each polarizing element is used as an optical path with high area efficiency, so that it is different from conventional magnetic sensors. It is significantly smaller than the previous model. It is also easy to process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の磁気センサの一実施例を示す斜視図、
第2図は従来の磁気センサを示す斜視図である。 l・7−・・光ファイバ 2・6・・・コリメータレンズ 3・5−・・ガラス偏光板 4・14・・・ファラデー素子
FIG. 1 is a perspective view showing an embodiment of the magnetic sensor of the present invention;
FIG. 2 is a perspective view showing a conventional magnetic sensor. l・7−・・Optical fiber 2・6・・・Collimator lens 3・5−・・Glass polarizing plate 4・14・・Faraday element

Claims (1)

【特許請求の範囲】 1、偏光子、ファラデー素子および検光子がこの順に配
置された磁気センサにおいて、偏光子および検光子の少
なくとも一方がガラス偏光板からなり、ファラデー素子
が式A_2B_5O_1_2(Aは希土類元素、Bi、
Pbから選ばれる一または複数の元素、BはFe単独ま
たはAl、Ga、In、Co、Ge、Scから選ばれる
一または複数の元素とFe)で示されるガーネット単結
晶からなることを特徴とする磁気センサ。 2、前記ガラス偏光板がガラス板の表面に銀結晶を配向
させた偏光板であることを特徴とする特許請求の範囲第
1項記載の磁気センサ。 3、前記偏光子、ファラデー素子、検光子のうち少なく
とも一つが円板状に形成されていることを特徴とする特
許請求の範囲第1項記載の磁気センサ。
[Claims] 1. In a magnetic sensor in which a polarizer, a Faraday element, and an analyzer are arranged in this order, at least one of the polarizer and the analyzer is made of a glass polarizing plate, and the Faraday element has the formula A_2B_5O_1_2 (A is a rare earth element). Element, Bi,
One or more elements selected from Pb, B is Fe alone or one or more elements selected from Al, Ga, In, Co, Ge, Sc and Fe), and is characterized by consisting of a garnet single crystal. magnetic sensor. 2. The magnetic sensor according to claim 1, wherein the glass polarizing plate is a polarizing plate in which silver crystals are oriented on the surface of a glass plate. 3. The magnetic sensor according to claim 1, wherein at least one of the polarizer, Faraday element, and analyzer is formed into a disk shape.
JP3365090A 1990-02-16 1990-02-16 Magnetic sensor Pending JPH03238377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3365090A JPH03238377A (en) 1990-02-16 1990-02-16 Magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3365090A JPH03238377A (en) 1990-02-16 1990-02-16 Magnetic sensor

Publications (1)

Publication Number Publication Date
JPH03238377A true JPH03238377A (en) 1991-10-24

Family

ID=12392325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3365090A Pending JPH03238377A (en) 1990-02-16 1990-02-16 Magnetic sensor

Country Status (1)

Country Link
JP (1) JPH03238377A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285299A (en) * 2009-06-09 2010-12-24 Shin-Etsu Chemical Co Ltd Oxide and magnetooptical device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285299A (en) * 2009-06-09 2010-12-24 Shin-Etsu Chemical Co Ltd Oxide and magnetooptical device

Similar Documents

Publication Publication Date Title
CA1208290A (en) Magneto-optical converter
JPS58190786A (en) Optical fiber type magnetic field sensor
US5151955A (en) Optical isolator
JPH03238377A (en) Magnetic sensor
JPH07191280A (en) Optical isolator
JPH04128715A (en) Optical modulator
JPS59107273A (en) Photocurrent and magnetic field sensor
JP3044084B2 (en) Magneto-optical element for magnetic field sensor
JPS61279806A (en) Thin film type optical isolator
JPS6255766B2 (en)
JP2509845B2 (en) Polarization-independent optical isolator
JPH0228574A (en) Optical magnetic field sensor
JPS61212773A (en) Photosensor
JP2840707B2 (en) Optical isolator
JP2000206218A (en) Multilayer film magnetic field sensitive element and optical type magnetic field detector using the same
JPS635318A (en) Cascade connection type isolator
JPH0989937A (en) Optical fiber type sensor and polarizer unit
JPS6162882A (en) Magnetic field detector
JPS6110777A (en) Measuring device for current
JPH01131517A (en) Optical isolator
JPH05119075A (en) Optical voltage sensor
JPS63151868A (en) Optical fiber type voltage/electric field measuring apparatus
JPS635320A (en) Faraday rotator and optical isolator
JPH09274056A (en) Current measuring device for optical fiber
JPH0248868B2 (en)