JPH03237618A - Magnetic recording medium and its production - Google Patents

Magnetic recording medium and its production

Info

Publication number
JPH03237618A
JPH03237618A JP3206590A JP3206590A JPH03237618A JP H03237618 A JPH03237618 A JP H03237618A JP 3206590 A JP3206590 A JP 3206590A JP 3206590 A JP3206590 A JP 3206590A JP H03237618 A JPH03237618 A JP H03237618A
Authority
JP
Japan
Prior art keywords
recording medium
magnetic recording
medium according
polymer film
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3206590A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kawawake
康博 川分
Ryuji Sugita
龍二 杉田
Yoshiki Goto
良樹 後藤
Kiyokazu Toma
清和 東間
Kazuyoshi Honda
和義 本田
Tatsuro Ishida
達朗 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3206590A priority Critical patent/JPH03237618A/en
Publication of JPH03237618A publication Critical patent/JPH03237618A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To uniformly apply fine particles in a good dispersion state on a polymer substrate and to form a uniformly rugged surface of a metal alloy thin film magnetic layer by subjecting the polymer film to surface treatment to obtain <=70 deg. contact angle of the surface, dispersing the fine particles thereon, and then forming the alloy thin film magnetic layer thereon. CONSTITUTION:The polymer film 1 is subjected to surface treatment so that the contact angle of the film 1 becomes <=70 deg., on which fine particles 2 are dispersed, and further an alloy thin film magnetic layer 3 is formed on the film 1. Then an oxide layer or carbon protective film is formed on the alloy thin film magnetic layer 3, and a fluorinated lubricant is applied thereon to form a protective layer 4. Thereby, wettability of a solvent for fine particles is improved to give good dispersion state of the particles, and shapes of the fine particles remain on the surface of the magnetic layer to give a uniform rough pattern to the surface.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は耐久性・走行性に優れ、かつ、高い再生出力を
有する合金薄膜型等の磁気記録媒体及びその製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a magnetic recording medium such as an alloy thin film type having excellent durability and running properties and high reproduction output, and a method for manufacturing the same.

従来の技術 磁気記録再生装置は年々高密度化しており、短波長記録
再生特性の優れた磁気記録媒体が要望されている。現在
では非磁性基板上に磁性粉を塗布した塗布型磁気記録媒
体が主として使用されており、上記要望を満たすべく特
性改善がなされているが、記録密度においてほぼ限界に
近づきつつある。
BACKGROUND ART Magnetic recording and reproducing devices are becoming denser every year, and there is a demand for magnetic recording media with excellent short wavelength recording and reproducing characteristics. Currently, coated magnetic recording media in which magnetic powder is coated on a non-magnetic substrate are mainly used, and although characteristics have been improved to meet the above requirements, the recording density is almost reaching its limit.

この限界を越えるものとして合金薄膜型磁気記録媒体が
現在開発されつつある。合金薄膜型磁気記録媒体は真空
蒸着法、スパッタリング法、メツキ法などにより作成さ
れ、優れた短波長記録再生特性を有する。合金薄膜型磁
気記録媒体における磁性層としては、Co、Co−Ni
、Co−N1−P、Fe−○等の面内記録用薄膜及び、
Co−Cr、Co−0,Co−Ni−Cr、Co−Cr
Mo、Co−Cr−W、Co−Cr−Nb、C。
Alloy thin film magnetic recording media are currently being developed to overcome this limit. Alloy thin film magnetic recording media are produced by vacuum evaporation, sputtering, plating, etc., and have excellent short wavelength recording and reproducing characteristics. The magnetic layer in the alloy thin film magnetic recording medium includes Co, Co-Ni
, Co-N1-P, Fe-○, etc. thin film for in-plane recording;
Co-Cr, Co-0, Co-Ni-Cr, Co-Cr
Mo, Co-Cr-W, Co-Cr-Nb, C.

Cr−Ta、Co−V、Co−Cr−A1等のCo基合
金からなる垂直記録用薄膜が有望である。
Perpendicular recording thin films made of Co-based alloys such as Cr-Ta, Co-V, and Co-Cr-A1 are promising.

発明が解決しようとする課題 このような合金薄膜型磁気記録媒体は優れた短波長記録
再生特性を有しているが、磁気ヘッドを媒体に接触させ
て記録再生する際に傷が入りやすく、耐久性および走行
性が悪いという課題があった。
Problems to be Solved by the Invention Although such alloy thin film magnetic recording media have excellent short-wavelength recording and reproducing characteristics, they are easily scratched when recording and reproducing by bringing the magnetic head into contact with the medium, resulting in poor durability. However, there were problems with poor performance and running performance.

この課題を解決するため、薄膜磁性層の表面に適度の表
面粗さを設けることが考えられている。
In order to solve this problem, it has been considered to provide the surface of the thin film magnetic layer with an appropriate surface roughness.

その方法の一つとして、非磁性基板に磁性層を蒸着する
前に、予めSiO2、Al2O.などの微粒子を分散塗
布した後、その上に磁性層を形成して、薄Ill磁性層
表面に凹凸を形成する方法がある。この方法では、磁性
層の磁気特性を保持したまま、磁性層表面に凹凸を形成
することができるが、有機溶剤に分散させた微粒子を、
高分子フィルムに均一に塗布するのは容易ではなく、特
に、微粒子の粒径が約50nm以下の場合には、微粒子
が高分子フィルム上で凝集しやすいこともあって、かえ
って媒体の耐久性を劣化させたり、記録再生する場合の
ヘッドと磁性層間のスペーシングロスを増加して、記録
再生出力を低下させることがあった。
One of the methods is to deposit SiO2, Al2O. There is a method of dispersing and coating fine particles such as, for example, forming a magnetic layer thereon, and forming irregularities on the surface of the thin Ill magnetic layer. With this method, it is possible to form irregularities on the surface of the magnetic layer while maintaining the magnetic properties of the magnetic layer.
It is not easy to coat the polymer film uniformly, and especially when the particle size of the particles is about 50 nm or less, the particles tend to aggregate on the polymer film, which may actually reduce the durability of the medium. This may cause deterioration or increase the spacing loss between the head and the magnetic layer during recording and reproduction, resulting in a decrease in recording and reproduction output.

課題を解決するための手段 本発明は上述の課題に鑑み発明したものであって、表面
の接触角が70°以下に戒るように表面処理した高分子
フィルム上に、微粒子を分散させ、その上に合金薄膜磁
性層を形成させた構成より威ることを特徴とする磁気記
録媒体及びその製造方法である。
Means for Solving the Problems The present invention was invented in view of the above-mentioned problems, and involves dispersing fine particles on a polymer film whose surface has been treated so that the contact angle of the surface is 70 degrees or less. A magnetic recording medium and a method for manufacturing the same are characterized in that they are more powerful than a structure in which an alloy thin film magnetic layer is formed thereon.

作用 本発明によれば、高分子フィルムの表面が改質されるこ
とによって接触角が低下し、溶媒の塗れ性が改良される
ことによって、粒子の分散状態が良くなる。更にこの微
粒子が均質に分散したフィルム上に合金薄膜磁性層を形
成すると、磁性層表面に、微粒子の形状が保存されて、
表面に−様な凹凸が形成される。この媒体に磁気ヘッド
を接触させて記録再生する際に、媒体とヘッドとの実接
触面積が低下して摩擦係数が低下する。その結果、媒体
に傷が生じにくくなり、微粒子をフィルムに塗布せずに
薄膜磁性層を形成したものと比べて走行性が改良され耐
久性が大幅に向上する。接触角が70’以上の高分子フ
ィルム上に微粒子を塗布したものと比べると、微粒子の
凝集が減少することによって、スペーシングが低下し、
高い再生出力が得られると同時に、微粒子の凝集体が契
機となって媒体に傷が生じることも減少し、媒体の耐久
性も向上する。
According to the present invention, the surface of the polymer film is modified to lower the contact angle and improve the solvent applicability, thereby improving the dispersion state of the particles. Furthermore, when an alloy thin film magnetic layer is formed on a film in which these fine particles are uniformly dispersed, the shape of the fine particles is preserved on the surface of the magnetic layer.
--like unevenness is formed on the surface. When a magnetic head is brought into contact with this medium for recording and reproduction, the actual contact area between the medium and the head is reduced, and the coefficient of friction is reduced. As a result, the medium is less likely to be scratched, and compared to a thin magnetic layer formed without applying fine particles to the film, running properties are improved and durability is greatly improved. Compared to coating microparticles on a polymer film with a contact angle of 70' or more, spacing is reduced due to reduced agglomeration of microparticles.
While high reproduction output is obtained, the occurrence of scratches on the medium caused by aggregates of fine particles is reduced, and the durability of the medium is also improved.

実施例 以下、本発明を具体的な一実施例に基づいて説明する。Example The present invention will be described below based on a specific example.

実施例1 第1図(a)に本発明の一実施例による磁気記録媒体の
構成を模式的に示す。第1図(a)において1はフィル
ム表面の接触角が70’以下になるように表面処理され
た高分子フィルム、2は高分子フィルム上に塗布された
微粒子、3は更にその上に形成された合金vit磁性層
である。通常合金薄膜磁性層の表面に酸化層を形成する
かまたはカーボン保護膜を形成した上に更に弗素系の潤
滑材を塗布して保護層4を形成する。
Example 1 FIG. 1(a) schematically shows the structure of a magnetic recording medium according to an example of the present invention. In Fig. 1(a), 1 is a polymer film whose surface has been treated so that the contact angle on the film surface is 70' or less, 2 is a fine particle coated on the polymer film, and 3 is a polymer film further formed on the polymer film. This is an alloy VIT magnetic layer. Usually, a protective layer 4 is formed by forming an oxide layer or a carbon protective film on the surface of the alloy thin film magnetic layer, and then applying a fluorine-based lubricant.

次に酸処理を用いて基板の表面処理をした場合について
説明する。高分子基板として厚さ10μm、幅150m
のポリイミドフィルムを濃度10pp−のクロム酸溶液
に浸して連続的に処理した。ポリイミド基板の接触角の
大きさを処理前後で測定すると、処理前は90°以上あ
ったものが、クロム酸処理によって最低で30°まで下
がった。表面処理をする酸としては、クロム酸の代わり
に塩酸、硫酸、硝酸、ポリリン酸を用いてもクロム酸と
ほぼ同等の効果があった。
Next, a case where the surface of the substrate is treated using acid treatment will be explained. As a polymer substrate, the thickness is 10 μm and the width is 150 m.
A polyimide film was continuously treated by immersing it in a chromic acid solution having a concentration of 10 pp-. When the contact angle of the polyimide substrate was measured before and after treatment, it was over 90 degrees before treatment, but it decreased to a minimum of 30 degrees after treatment with chromic acid. Hydrochloric acid, sulfuric acid, nitric acid, and polyphosphoric acid were used in place of chromic acid as surface-treating acids, and the effects were almost the same as those of chromic acid.

次に以上のようにして酸処理をした高分子フィルムを2
0m/+inの走行速度で走行させながら、IPA(イ
ソプロピルアルコール)を主溶媒とした溶媒に分散させ
た粒径約15nmのSin、粒子を高分子基板上に塗布
した。このとき微粒子の大きさは5nIll〜50nm
が適当である。5nm以下では、媒体の耐久性向上にほ
とんど効果がなく、逆に微粒子の大きさが50nmを越
えると、記録再生する際にヘッドと媒体間のスペーシン
グ損失が大きくなり出力が大きく低下してしまう。
Next, the polymer film treated with acid as described above was
While traveling at a running speed of 0 m/+in, Sin particles with a particle size of about 15 nm dispersed in a solvent containing IPA (isopropyl alcohol) as the main solvent were applied onto a polymer substrate. At this time, the size of the fine particles is 5nIll to 50nm.
is appropriate. If the particle size is less than 5 nm, it will have little effect on improving the durability of the medium.On the other hand, if the particle size exceeds 50 nm, the spacing loss between the head and the medium will increase during recording and playback, resulting in a significant drop in output. .

次に5iOzを塗布したポリイミド基板上に、膜厚25
0na+のCo−Cr垂直磁気異方性膜を真空蒸着法で
形成した。その後更にCo−Cr垂直磁気異方性膜を大
気中で300°Cの円筒上キャンの周面に沿わせて走行
させ表面に酸化層を形成した。
Next, on the polyimide substrate coated with 5iOz, a film thickness of 25
A 0na+ Co--Cr perpendicular magnetic anisotropic film was formed by vacuum evaporation. Thereafter, the Co--Cr perpendicular magnetic anisotropy film was run along the circumferential surface of the cylindrical can at 300° C. in the atmosphere to form an oxide layer on the surface.

以上のようにして作製した媒体を、8W幅にスリットし
、市販の811IliVTRデツキにかけて評価した。
The medium produced as described above was slit into a width of 8W and was evaluated by placing it on a commercially available 811Ili VTR deck.

その結果の接触角依存性を、第2図および第3図に示す
。第2図はスチル耐久時間の接触角依存性を示す。スチ
ル耐久時間は、再生出力が測定開始時の半分になるまで
時間で評価する。ただしこの測定では最高60分で測定
を終了している。
The resulting contact angle dependence is shown in FIGS. 2 and 3. FIG. 2 shows the contact angle dependence of still durability time. The still durability time is evaluated by the time it takes for the playback output to become half of the time at the start of measurement. However, this measurement was completed in a maximum of 60 minutes.

高分子フィルムの接触角が90”以上の媒体では5分程
度のスチル寿命が、接触角が70°以下では、60分以
上のスチル寿命を示し、耐久性が改良されることがわか
った。また第3図は、再生出力の接触角依存性を示す。
It was found that media with a polymer film contact angle of 90" or more had a still life of about 5 minutes, while media with a contact angle of 70° or less had a still life of more than 60 minutes, indicating improved durability. FIG. 3 shows the contact angle dependence of the reproduction output.

これによると、接触角が70゜以下では再生出力にほと
んど差はないが、70’以上では接触角の増大にともな
い出力が低下することがわかった。
According to this, it was found that when the contact angle is 70° or less, there is almost no difference in reproduction output, but when the contact angle is 70° or more, the output decreases as the contact angle increases.

以上のことより、フィルム表面処理により接触角が70
°以下に低下した高分子フィルムlを用いると、微粒子
2の分散性が著しく向上して、磁気記録媒体の表面の凹
凸が均一になりヘッドと媒体の間のスペーシングロスが
大きく減少すると共に、耐久性が著しく向上していると
考えられる。
From the above, the contact angle can be increased to 70 by film surface treatment.
When using a polymer film l whose temperature is below 100°C, the dispersibility of the fine particles 2 is significantly improved, the unevenness of the surface of the magnetic recording medium becomes uniform, and the spacing loss between the head and the medium is greatly reduced. It is thought that the durability has been significantly improved.

上記では、微粒子としてSin、を用いたが、AIzO
i等の微粒子に対しても本発明は有効である。また微粒
子を分散せる溶媒としてIPAを用いたが、エタノール
、アセトン、MEK (メチルエチルケトン)、MIB
K(メチルイソブチルケトン)、また高分子基板として
は、ポリイミドフィルムのみならずポリアミドフィルム
、ポリエーテルイミドフィルム、ポリエチレンナフタレ
ートフィルム、ポリエチレンテレフタレートフィルムに
対しても本発明は有効である。
In the above, Sin was used as the fine particles, but AIzO
The present invention is also effective for fine particles such as i. In addition, IPA was used as a solvent for dispersing the fine particles, but ethanol, acetone, MEK (methyl ethyl ketone), MIB
K (methyl isobutyl ketone), and as a polymer substrate, the present invention is effective not only for polyimide films but also for polyamide films, polyetherimide films, polyethylene naphthalate films, and polyethylene terephthalate films.

また酸処理により高分子フィルムの接触角を低下させる
場合について上記では説明したが、大気中で紫外線ラン
プより発生する紫外線を用いて行う紫外線処理、酸素、
オゾン雰囲気中での紫外線処理、大気中でのコロナ処理
、真空中で、rf。
In addition, although the case where the contact angle of a polymer film is lowered by acid treatment has been explained above, ultraviolet treatment using ultraviolet rays generated from an ultraviolet lamp in the atmosphere, oxygen,
UV treatment in ozone atmosphere, corona treatment in air, RF in vacuum.

DCグローを用いるグロー放電処理などの方法を用いて
高分子フィルムの接触角を低下させても効果は同様に得
られる。
A similar effect can be obtained by lowering the contact angle of the polymer film using a method such as glow discharge treatment using DC glow.

実施例2 第4図はイオン銃を用いた基板処理装置の一例を示す図
である。高分子基板11は、供給ロール13より巻き出
されて、円筒状キャン12の周面に沿って矢印Aの方向
へ移動し、巻取りロール14に巻き取られる。このあい
だ高分子基板11は、円筒状キャン12の周面上で、表
面をイオン銃15よりでたイオンビーム16により処理
される。イオン銃15は、通常イオンビームスパッタリ
ングやイオンミリング等で使用されるものと同等のもの
である。この装置において、円筒状キャンの表面におい
て基板イオン処理を行う理由は、イオンビームにより基
板上に発生した熱を円筒状キャンに逃がし基板が熱的な
ダメージを受けるのを防止するためである。
Embodiment 2 FIG. 4 is a diagram showing an example of a substrate processing apparatus using an ion gun. The polymer substrate 11 is unwound from the supply roll 13, moves in the direction of arrow A along the circumferential surface of the cylindrical can 12, and is taken up by the take-up roll 14. During this time, the surface of the polymer substrate 11 is treated on the circumferential surface of the cylindrical can 12 by the ion beam 16 emitted from the ion gun 15 . The ion gun 15 is the same as one normally used in ion beam sputtering, ion milling, and the like. In this apparatus, the reason why the substrate ion treatment is performed on the surface of the cylindrical can is to prevent the substrate from being thermally damaged by dissipating the heat generated on the substrate by the ion beam to the cylindrical can.

高分子フィルムとして厚さ10μmのポリイミドフィル
ムを用い、速度10m/Iinで基板をイオン処理した
。イオン銃はカウフマン型を用い、イオン銃の加速電圧
は300 V、イオン電流密度は0.2m A/ail
、イオン銃への導入ガスはAr、導入量は20cc/s
inとした。このときイオン銃の加速電圧は、100v
以下では基板改質の十分な効果はないが、1500 V
以上では基板が熱的なダメージを受けて劣化してしまう
。またイオン銃の電流密度に関しても同様の理由で、0
.1m A/cm2 〜1.5m A/cfflが適当
である。
A polyimide film with a thickness of 10 μm was used as the polymer film, and the substrate was subjected to ion treatment at a speed of 10 m/Iin. The ion gun used was a Kaufmann type, the acceleration voltage of the ion gun was 300 V, and the ion current density was 0.2 m A/ail.
, the gas introduced into the ion gun is Ar, and the amount introduced is 20cc/s.
It was set as in. At this time, the accelerating voltage of the ion gun is 100v
Although there is no sufficient effect of substrate modification below, 1500 V
In this case, the substrate is thermally damaged and deteriorates. Also, for the same reason, the current density of the ion gun is 0.
.. 1 mA/cm2 to 1.5 mA/cffl is suitable.

このようにして処理した高分子フィルムの接触角は60
°であった。このフィルムを、実施例1と同様の方法で
、微粒子を分散させ、Co−Cr垂直磁気異方性膜を蒸
着し、大気中で表面酸化処理したところ、第2図および
第3図に示したのと同様に、イオン処理をしていないも
のに比べて、スチル耐久時間が10倍以上増加すると共
に、再生出力が5dB増加した。
The contact angle of the polymer film treated in this way was 60
It was °. This film was subjected to a surface oxidation treatment in the air after dispersing fine particles and depositing a Co-Cr perpendicular magnetic anisotropic film in the same manner as in Example 1, resulting in the results shown in Figures 2 and 3. Similarly, the still durability time increased by more than 10 times and the reproduction output increased by 5 dB compared to the one without ion treatment.

実施例3 厚さ10μm1幅150m+のポリイミドフィルムを第
1表に示す溶液を用いて連続的に処理した。
Example 3 A polyimide film having a thickness of 10 μm and a width of 150 m+ was continuously treated using the solutions shown in Table 1.

このポリイミドフィルムの接触角を測定すると、いずれ
のサンプルに於いても接触角が65°前後であった。
When the contact angle of this polyimide film was measured, the contact angle was around 65° for all samples.

この高分子フィルムを用いて作製した磁気記録媒体のm
s、を第1図(ロ)に示す。第1図(ト)に於いて5は
高分子フィルム、6は高分子フィルムの接触角を低下さ
せる作用の化合物を含有する処理層、2.3.4は第1
図(a)と同様であり各々微粒子、合金薄膜磁性層、保
護層である。
m of the magnetic recording medium produced using this polymer film
s is shown in FIG. 1 (b). In FIG. 1 (g), 5 is a polymer film, 6 is a treated layer containing a compound that reduces the contact angle of the polymer film, and 2.3.4 is a first
They are the same as in Figure (a) and consist of fine particles, an alloy thin film magnetic layer, and a protective layer, respectively.

上記化合物層を塗布した高分子フィルムを用いて実施例
1と全く同様にして、Co−Cr垂直磁気記録媒体を形
成すると、実施例1と全く同様に接触角の低い化合物層
を塗布した媒体は優れた耐久性及び高い再生出力を示し
た。
When a Co-Cr perpendicular magnetic recording medium is formed in exactly the same manner as in Example 1 using a polymer film coated with the above compound layer, the medium coated with a compound layer with a low contact angle in exactly the same manner as in Example 1 is It showed excellent durability and high playback output.

発明の効果 本発明の磁気記録媒体の製造方法によれば、高分子基板
に微粒子を分散よく均一に塗布することができる。その
結果合金薄膜磁性層表面に−様な凹凸を形成することが
可能となる。この媒体は高い再生出力を維持すると同時
に優れた耐久性・走行性を示す。
Effects of the Invention According to the method for manufacturing a magnetic recording medium of the present invention, fine particles can be uniformly coated on a polymer substrate with good dispersion. As a result, it becomes possible to form -like unevenness on the surface of the alloy thin film magnetic layer. This medium maintains high reproduction output and at the same time exhibits excellent durability and runnability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明の製造方法により作製される磁気
記録媒体の断面図、第1図(ロ)は本発明の処理層を有
する断面図、第2図、第3図は本発明の詳細な説明する
グラフ、第4図は本発明を実施するための製造装置の一
例を示す説明図である。 1・・・・・・表面処理された高分子フィルム、2・・
・・・・微粒子、3・・・・・・合金薄膜磁性層、4・
・・・・・保護層、5・・・・・・高分子フィルム、6
・・・・・・処理層、11・・・・・・高分子フィルム
、12・・・・・・円筒状キャン、13・・・・・・供
給0−ル、14・・・・・・巻取りロール、15・・・
・・・イオン銃、16・・・・・・イオンビーム。
FIG. 1(a) is a cross-sectional view of a magnetic recording medium manufactured by the manufacturing method of the present invention, FIG. 1(b) is a cross-sectional view having a treated layer of the present invention, and FIGS. FIG. 4 is an explanatory diagram showing an example of a manufacturing apparatus for carrying out the present invention. 1...Surface treated polymer film, 2...
...Fine particles, 3...Alloy thin film magnetic layer, 4.
...Protective layer, 5...Polymer film, 6
...Processing layer, 11 ... Polymer film, 12 ... Cylindrical can, 13 ... Supply 0-ru, 14 ... Winding roll, 15...
...Ion gun, 16...Ion beam.

Claims (1)

【特許請求の範囲】 (1)高分子フィルムの表面処理により前記高分子フィ
ルム表面の接触角を70°以下に低下させる第1の工程
と、前記高分子フィルム上に微粒子を塗布する第2の工
程と、前記高分子フィルム上に合金薄膜磁性層を形成す
る第3の工程からなることを特徴とする磁気記録媒体の
製造方法。 (2)表面処理が酸処理によってなされることを特徴と
する請求項(1)記載の磁気記録媒体の製造方法。 (3)表面処理が紫外線処理によってなされることを特
徴とする請求項(1)記載の磁気記録媒体の製造方法。 (4)表面処理が酸素またはオゾンまたはその両方の存
在する雰囲気中で、紫外線によってなされることを特徴
とする請求項(1)記載の磁気記録媒体の製造方法。 (5)表面処理がコロナ処理によってなされることを特
徴とする請求項(1)記載の磁気記録媒体の製造方法。 (6)表面処理がグロー処理によってなされることを特
徴とする請求項(1)記載の磁気記録媒体の製造方法。 (7)表面処理がイオン銃から出るイオンによりなされ
ることを特徴とする請求項(1)記載の磁気記録媒体の
製造方法。 (8)イオン銃のイオンの加速電圧を100〜1500
Vとし、電流密度を0.1〜1.5mA/cm^2で表
面処理することを特徴とする請求項(7)記載の磁気記
録媒体の製造方法。 (9)表面処理がイオン銃より出るイオンによりおこな
われる工程において、円筒上キャンの周面に高分子フィ
ルムを沿わせて、前記高分子フィルムの表面を連続的に
処理することを特徴とする、請求項(1)、(7)、ま
たは(8)のいずれかに記載の磁気記録媒体の製造方法
。 (10)高分子フィルム上に、端部に親水基を有しかつ
末端がシラン基である化合物を配し、更にその上に微粒
子を分散させた後、合金薄膜磁性層を形成させて構成す
ることを特徴とする磁気記録媒体。 (11)高分子フィルムの端部の親水基がビニル基、ハ
ロゲン基、ヒドロキシル基、カルボキシル基、チオール
基であることを特徴とする請求項(10)に記載の磁気
記録媒体。(12)化合物が単分子層であることを特徴
とする請求項(10)、または(11)のいずれかに記
載の磁気記録媒体。 (13)微粒子の粒径が5〜50nmであることを特徴
とする請求項(10)に記載の磁気記録媒体。 (14)微粒子が、SiO_2またはAl_2O_3で
あることを特徴とする請求項(10)、または(13)
のいずれかに記載の磁気記録媒体。
Scope of Claims: (1) A first step of reducing the contact angle of the polymer film surface to 70° or less by surface treatment of the polymer film, and a second step of applying fine particles on the polymer film. and a third step of forming an alloy thin film magnetic layer on the polymer film. (2) The method for manufacturing a magnetic recording medium according to claim (1), wherein the surface treatment is performed by acid treatment. (3) The method for manufacturing a magnetic recording medium according to claim (1), wherein the surface treatment is performed by ultraviolet treatment. (4) The method for manufacturing a magnetic recording medium according to claim (1), wherein the surface treatment is performed using ultraviolet rays in an atmosphere containing oxygen, ozone, or both. (5) The method for manufacturing a magnetic recording medium according to claim (1), wherein the surface treatment is performed by corona treatment. (6) The method for manufacturing a magnetic recording medium according to claim (1), wherein the surface treatment is performed by glow treatment. (7) The method for manufacturing a magnetic recording medium according to claim (1), wherein the surface treatment is performed using ions emitted from an ion gun. (8) Set the ion gun acceleration voltage to 100 to 1500.
8. The method for manufacturing a magnetic recording medium according to claim 7, wherein the surface treatment is performed at a current density of 0.1 to 1.5 mA/cm^2. (9) In the step in which the surface treatment is performed using ions emitted from an ion gun, the polymer film is placed along the circumferential surface of the cylindrical can, and the surface of the polymer film is continuously treated. The method for manufacturing a magnetic recording medium according to any one of claims (1), (7), and (8). (10) A compound having a hydrophilic group at the end and a silane group at the end is placed on a polymer film, fine particles are further dispersed thereon, and then an alloy thin film magnetic layer is formed. A magnetic recording medium characterized by: (11) The magnetic recording medium according to claim (10), wherein the hydrophilic group at the end of the polymer film is a vinyl group, a halogen group, a hydroxyl group, a carboxyl group, or a thiol group. (12) The magnetic recording medium according to any one of claims (10) and (11), wherein the compound is a monomolecular layer. (13) The magnetic recording medium according to claim (10), wherein the particle size of the fine particles is 5 to 50 nm. (14) Claim (10) or (13) characterized in that the fine particles are SiO_2 or Al_2O_3.
The magnetic recording medium according to any one of.
JP3206590A 1990-02-13 1990-02-13 Magnetic recording medium and its production Pending JPH03237618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3206590A JPH03237618A (en) 1990-02-13 1990-02-13 Magnetic recording medium and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3206590A JPH03237618A (en) 1990-02-13 1990-02-13 Magnetic recording medium and its production

Publications (1)

Publication Number Publication Date
JPH03237618A true JPH03237618A (en) 1991-10-23

Family

ID=12348481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3206590A Pending JPH03237618A (en) 1990-02-13 1990-02-13 Magnetic recording medium and its production

Country Status (1)

Country Link
JP (1) JPH03237618A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012043531A (en) * 2006-10-16 2012-03-01 Konica Minolta Opto Inc Substrate for magnetic recording medium for discrete track media or patterned media, and magnetic recording medium for discrete track media or patterned media

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012043531A (en) * 2006-10-16 2012-03-01 Konica Minolta Opto Inc Substrate for magnetic recording medium for discrete track media or patterned media, and magnetic recording medium for discrete track media or patterned media

Similar Documents

Publication Publication Date Title
JPH03237618A (en) Magnetic recording medium and its production
JP2003346321A (en) Magnetic recording medium and its manufacturing method
JP3700978B2 (en) Method for manufacturing magnetic recording medium
JP3867544B2 (en) Magnetic recording medium and method for manufacturing the same
KR100212379B1 (en) Magnetic recording medium
JPS61284829A (en) Magnetic recording medium
JPS62241123A (en) Magnetic recording medium
JPH01166322A (en) Magnetic recording medium
JPH04121818A (en) Production of magnetic recording medium
JP2729544B2 (en) Magnetic recording medium and method of manufacturing the same
JPH04119525A (en) Production of magnetic recording medium
JPH11144246A (en) Production of magnetic recording medium
JPS6194220A (en) Magnetic recording medium and its manufacture
JPH10340442A (en) Magnetic tape and its production
JP2002216340A (en) Magnetic recording medium
JPH01320619A (en) Magnetic recording medium
JPH0337827A (en) Production of magnetic recording medium
JPS63282918A (en) Production of magnetic recording medium
JP2004273032A (en) Method and apparatus for manufacturing magnetic recording medium
JPH0950625A (en) Production of magnetic recording medium
JPS6267728A (en) Production of magnetic recording medium
JPH02235215A (en) Magnetic recording medium
JPH1116144A (en) Magnetic recording medium
JPH03127320A (en) Perpendicular magnetic recording medium and its production
JPS60214424A (en) Manufacture of magnetic recording medium