JPH03237329A - Strain detector - Google Patents

Strain detector

Info

Publication number
JPH03237329A
JPH03237329A JP29277090A JP29277090A JPH03237329A JP H03237329 A JPH03237329 A JP H03237329A JP 29277090 A JP29277090 A JP 29277090A JP 29277090 A JP29277090 A JP 29277090A JP H03237329 A JPH03237329 A JP H03237329A
Authority
JP
Japan
Prior art keywords
magnetic
weight
linear expansion
passive shaft
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29277090A
Other languages
Japanese (ja)
Inventor
Hideo Ikeda
英男 池田
Chiyo Hamamura
濱村 千代
Hiroshi Sato
博 佐藤
Yoshihiko Utsui
良彦 宇津井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPH03237329A publication Critical patent/JPH03237329A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To remove the influence of a difference in coefficient of linear expansion and to improve the accuracy by nearly equalizing the coefficient of linear expansion of magnetic layers stuck on the circumference of a receiving shaft to that of the driven shaft. CONSTITUTION:The receiving shaft 1 is made of a nonmagnetic material consisting of 20-50wt.% Mn and 1-20wt.% Cr and Fe and the receiving shaft 1 and magnetic layers 5 and 6 are nearly equalized in the coefficient of linear expansion. When torque is applied to the receiving shaft 1 from outside, the tensile force is generated in one of the magnetic layers 5 and 6 and the compressive force is generated in the other to generate strain. The transmissivities of the magnetic layer 5 and 6 are varied with the strain and their transmissivities are varied in reverse directions in the cases of the tensile force and the compressive force. Detection coils 8 and 9 detect the variation in transmissivity as the variation in impedance and their outputs are amplified differentially be a detecting circuit 14 to output a detection voltage corresponding to the strain quantity of the receiving shaft 1.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、回転軸などの受動軸に外力が印加された際
の歪を検出する歪検出器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a strain detector that detects strain when an external force is applied to a passive shaft such as a rotating shaft.

[従来の技v#1 第2図は特開昭57−211030号公報に示された従
在に支持する軸受で、非磁性材により形成される。23
.24は軸受21,22を支持する支持体で、非磁性材
により形成される。25は受動軸20の周囲C中心軸2
6に対して一45°の角度で固着された磁性層で、高透
磁率軟磁性材により形成される。27は0 受動軸1の周囲に間隔をあけて配設されたボビンで、支
持体23.24により支持されると共に、非磁性絶縁体
により形成される。28はボビン27に巻回された検出
コイルで、コイル28a、28bからなる。
[Conventional Technique v#1] Figure 2 shows a conventionally supported bearing shown in Japanese Patent Laid-Open No. 57-211030, which is made of a non-magnetic material. 23
.. A support body 24 supports the bearings 21 and 22 and is made of a non-magnetic material. 25 is the circumference C center axis 2 of the passive shaft 20
The magnetic layer is fixed at an angle of -45° to 6 and is made of a high permeability soft magnetic material. 27 is a bobbin disposed around the passive shaft 1 at intervals, supported by supports 23 and 24, and made of a non-magnetic insulator. A detection coil 28 is wound around the bobbin 27 and is composed of coils 28a and 28b.

上記構成において、受動軸20に外部からトルクが印加
されると、磁性層25に歪を生じてその透磁率が変化す
る。検出コイル28はこの透磁率変化を磁気的インピー
ダンスの変化として検出し、歪検出出力を発生する。
In the above configuration, when torque is externally applied to the passive shaft 20, strain is generated in the magnetic layer 25, and its magnetic permeability changes. The detection coil 28 detects this change in magnetic permeability as a change in magnetic impedance and generates a strain detection output.

[発明が解決しようとする課題] ところで、上記した従来の歪検出器の材質についてより
具体的に述べると、受動軸20はステンレス鋼、アルミ
ニウム、プラスチックなどの非磁性材により形成され、
磁性層25は非晶質金属により形成されている。各非磁
性材の線膨張率は、ステンレス鋼(18(:r、8Ni
)では16.4X 10−’、アルミニウムでは23X
 10−6、ブルスチックとしてのポリエチレンでは1
00〜200 X 10−’である。叉、非晶質金属の
線膨張率は5.9〜+2.7X 10−’である。
[Problems to be Solved by the Invention] By the way, to describe the material of the above-described conventional strain detector in more detail, the passive shaft 20 is made of a non-magnetic material such as stainless steel, aluminum, or plastic.
The magnetic layer 25 is made of amorphous metal. The coefficient of linear expansion of each non-magnetic material is stainless steel (18(:r, 8Ni)
) is 16.4X 10-', and aluminum is 23X
10-6, 1 for polyethylene as bullstick
00 to 200 x 10-'. Moreover, the coefficient of linear expansion of the amorphous metal is 5.9 to +2.7X 10-'.

このように従来の歪検出器では、受動軸20と磁性層2
5の線膨張率が異なるため、周囲温度の変化や動作によ
る発熱などによって歪検出器の使用温度が変化すると、
磁性層25に熱応力が発生する。
In this way, in the conventional strain detector, the passive shaft 20 and the magnetic layer 2
5 have different coefficients of linear expansion, so if the operating temperature of the strain detector changes due to changes in ambient temperature or heat generation due to operation,
Thermal stress occurs in the magnetic layer 25.

この歪検出器は外部からのトルクによる応力で磁性層2
5に歪が生じて透磁率が変化し、この透磁率変化を検出
するものであるから、受動軸20と磁性層25の線膨張
率の差による熱応力は歪検出の誤差の原因となる。
This strain detector uses stress caused by external torque to cause the magnetic layer 2 to
5 is strained and its magnetic permeability changes, and this change in magnetic permeability is detected. Therefore, thermal stress due to the difference in linear expansion coefficient between the passive shaft 20 and the magnetic layer 25 causes errors in strain detection.

この発明は上記のような課題を解決するために成された
ものであり、線膨張率の差による影響を除去して粒度の
良い歪検出器を得ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and its purpose is to eliminate the influence of differences in linear expansion coefficients and obtain a strain detector with good grain size.

[課題を解決するための手段] この発明に係る歪検出器は、外力を受ける非磁性材の受
動軸が、20亀量%以上50重量%以下のMnと、1重
量%以上20ii%以下のCrと、Fcとからなる非磁
性材で構成され、受動軸の周囲に固着された磁性層と、
上記受動軸の線膨張率がほぼ同となるようにしたもので
ある。
[Means for Solving the Problems] The strain detector according to the present invention has a passive shaft made of a non-magnetic material that receives an external force, and contains Mn of 20% to 50% by weight and 1% to 20% by weight. a magnetic layer made of a non-magnetic material consisting of Cr and Fc and fixed around the passive shaft;
The coefficients of linear expansion of the passive shafts are made to be approximately the same.

さらに、上記受動軸を構成する非磁性材に、0.5重量
%以上5重量%以下のSiと、0.5重蓋%以上5瓜量
%以下のMOのうちの一種類あるいは−H1類の元素を
添加してもよい。
Furthermore, in the non-magnetic material constituting the passive shaft, 0.5% to 5% by weight of Si and 0.5% to 5% by weight of MO or -H1 type Elements may be added.

[作用] この発明における受動軸は20重量%以上50重量%以
下のMnと、1重量%以上20重量%以下のC「と、F
eとからなる非磁性材で構成されており、受動軸と磁性
層の線膨張率がほぼ同一となるようにしているので、歪
検出器の動作温度が変化しても受動軸と磁性層の線膨張
率の差による熱応力が発生せず、熱応力による歪検出誤
差が生じない。
[Function] The passive shaft of the present invention contains Mn of 20% to 50% by weight, C of 1% to 20% by weight, and F.
It is made of a non-magnetic material consisting of No thermal stress is generated due to a difference in coefficient of linear expansion, and no strain detection error occurs due to thermal stress.

さらに受動軸を構成する非磁性材に、0.5重量%以上
5重量%以FのSiと、0.5重量%以上5乗量%以下
のMoのうちの一種類あるいは二種類の元素を添加する
ことにより、磁性層を受動軸に加熱固着する際の温度に
おいても、磁性層と受動軸との線膨張率がほぼ同一にな
るので、使用温度での温度特性がさらに改善される。
Furthermore, the non-magnetic material constituting the passive shaft contains one or two elements of Si in an amount of 0.5% by weight or more and 5% by weight or less of F, and Mo in an amount of 0.5% or more and 5% by weight or less. By adding it, the linear expansion coefficients of the magnetic layer and the passive shaft become almost the same even at the temperature at which the magnetic layer is heated and fixed to the passive shaft, so that the temperature characteristics at the operating temperature are further improved.

[実施例] 以下、この発明の実施例を図面とともに説明する。第1
図において、1は回転輪からなる受動軸であり、鉄−マ
ンガン非磁性鋼(重量%でMn24%、Cr6%、C0
06%などを含むFeで、線膨張率は12X 10−’
である。)により形成されている。2は受動軸lの中心
軸、3.4は受動軸1を回転自在に支持する軸受台で、
pcパーマロイや純鉄などの高透磁率軟磁性材により形
成されている。
[Example] Hereinafter, an example of the present invention will be described with reference to the drawings. 1st
In the figure, 1 is a passive shaft consisting of a rotating wheel, made of iron-manganese nonmagnetic steel (Mn 24%, Cr 6%, CO
Fe containing 0.06% etc., linear expansion coefficient is 12X 10-'
It is. ) is formed by. 2 is the central axis of the passive shaft 1, 3.4 is a bearing stand that rotatably supports the passive shaft 1,
It is made of a high permeability soft magnetic material such as PC permalloy or pure iron.

受動軸1の外周面上には高透磁率軟磁性材からなる磁性
層5.6が固着され、磁性層5.6は非晶質磁性材(電
量%でFe40%、Ni:18%、Mo4%、818%
の組成で、線膨張率は+1.7x 10−’である。)
により形成され、磁性層5は中心軸2に対して+45゛
方向に形成され、磁性層6は中心軸2に対して−45°
方向に形成される。磁性層5,6の外周には円筒状のコ
イルボビン7が軸受台3.4に支持されて配設され、コ
イルボビン7(は磁性層5.6と対応して検出コイル8
.9が巻回され、検出コイル8.9は検出回路14に接
続される。1(1,IIは高透磁率軟磁性材からなり、
検出コイル8.9の周囲に設けられた磁気収束層、12
はPCパーマロイあるいは純鉄などの高透磁率軟磁性材
からなるシールドで、シールド12は磁気収束層10.
11の外周に配設されるとともに両端部が軸受台3.4
と連結される。
A magnetic layer 5.6 made of a high magnetic permeability soft magnetic material is fixed on the outer peripheral surface of the passive shaft 1, and the magnetic layer 5.6 is made of an amorphous magnetic material (Fe40%, Ni: 18%, Mo4 %, 818%
With a composition of , the coefficient of linear expansion is +1.7x 10-'. )
The magnetic layer 5 is formed at +45° with respect to the central axis 2, and the magnetic layer 6 is formed at -45° with respect to the central axis 2.
formed in the direction. A cylindrical coil bobbin 7 is disposed on the outer periphery of the magnetic layers 5 and 6 and is supported by a bearing stand 3.4.
.. 9 is wound, and the detection coil 8.9 is connected to the detection circuit 14. 1 (1, II is made of high permeability soft magnetic material,
A magnetic convergence layer provided around the detection coil 8.9, 12
is a shield made of a high magnetic permeability soft magnetic material such as PC permalloy or pure iron, and the shield 12 is a magnetic convergence layer 10.
11, and both ends are bearing stands 3.4.
is connected with.

次に、動作について説明する。受動軸1に外部からトル
クが印加されると、磁性層5.6の一方に引張力が発生
し、他方には圧縮力が発生して歪が生じる。この歪が生
じると磁性層5.6の透磁率が変化し、引張力の場合と
圧縮力の場合では透磁率が逆方向に変化する。検出コイ
ル8.9はこの透磁率の変化を磁気的インピーダンスの
変化として検出し、検出回路14は各検出コイル8.9
の出力を差動増幅し、受動軸1の歪量に応じた検出電圧
Vを出力する。又、磁気収束Mto、+1は高透磁率を
有するため、検出コイル8.9が発生する磁束の磁気抵
抗を減少させ、感度を上昇させることができる。さらに
、シールド12も同様の働きをする。
Next, the operation will be explained. When torque is externally applied to the passive shaft 1, a tensile force is generated in one of the magnetic layers 5.6, and a compressive force is generated in the other, causing distortion. When this strain occurs, the magnetic permeability of the magnetic layer 5.6 changes, and the magnetic permeability changes in opposite directions when a tensile force is applied and when a compressive force is applied. The detection coil 8.9 detects this change in magnetic permeability as a change in magnetic impedance, and the detection circuit 14 detects this change in magnetic permeability as a change in magnetic impedance.
The output of the passive shaft 1 is differentially amplified, and a detection voltage V corresponding to the amount of distortion of the passive shaft 1 is output. Further, since the magnetic convergence Mto, +1 has high magnetic permeability, it is possible to reduce the magnetic resistance of the magnetic flux generated by the detection coil 8.9 and increase the sensitivity. Furthermore, the shield 12 also functions in a similar manner.

ここで、気温等の変動による周囲温度の変化や検出コイ
ル8.9に流れる電流による発熱などのため歪検出器の
使用温度が変化しても、受動軸lの線膨張率は+2X 
10””であり、磁性層5.6の線膨張率は11.7X
 10−6であって、両者の線膨張率がほぼ同一である
ために、線膨張率の差に基づく熱応力が発生せず、精度
の高い歪検出が可能となる。
Here, even if the operating temperature of the strain detector changes due to changes in ambient temperature due to fluctuations in air temperature, etc., or heat generation due to current flowing through the detection coil 8.9, the coefficient of linear expansion of the passive shaft l will be +2X.
10"", and the coefficient of linear expansion of the magnetic layer 5.6 is 11.7X
10-6, and since the linear expansion coefficients of both are almost the same, no thermal stress is generated due to the difference in linear expansion coefficients, and highly accurate strain detection is possible.

又、鉄−マンガン非磁性鋼はステンレス鋼より機械強度
も高いので、受動軸1の機械強度が高くなり、大きな外
力を印加されても損傷せず、大きな歪を検出することが
できる。さらに、外部磁界が中心軸2と平行に軸受台3
の方向から作用した場合、軸受台3.4及びシールド1
2が高透磁率であり、受動軸lが非磁性材であるから、
外部磁界による磁束は軸受台3からシールド12及び軸
受台4を通り、磁性層5,6には流れない。又、外部磁
界が中心軸2と直角な方向から作用した場合には、その
磁束はシールド12から軸受台3.4に分流し、再びシ
ールド12を通って外部へ抜け、磁性層5.6を通らな
い。従って、外部磁界によって磁性層5.6の磁気的動
作点が移動することがなく、歪検出出力に誤差を生じな
い。
Further, since iron-manganese nonmagnetic steel has higher mechanical strength than stainless steel, the mechanical strength of the passive shaft 1 is increased, and even when a large external force is applied, it will not be damaged and large strains can be detected. Furthermore, the external magnetic field is applied parallel to the central axis 2 to the bearing stand 3.
bearing stand 3.4 and shield 1.
2 has high magnetic permeability and the passive shaft l is made of non-magnetic material, so
The magnetic flux due to the external magnetic field passes from the bearing pedestal 3 to the shield 12 and the bearing pedestal 4, and does not flow to the magnetic layers 5 and 6. Furthermore, when an external magnetic field acts from a direction perpendicular to the central axis 2, the magnetic flux is shunted from the shield 12 to the bearing stand 3.4, passes through the shield 12 again to the outside, and passes through the magnetic layer 5.6. It doesn't pass. Therefore, the magnetic operating point of the magnetic layer 5.6 does not shift due to an external magnetic field, and no error occurs in the strain detection output.

なお、−ヒ記実施例においては、受動軸lを鉄−マンガ
ン非磁性鋼により形成したが、鉄−マンガン非磁性鋼の
成分と線膨張率αとの関係はα(io−6) = 13
.5+ 5.45(!kc) + 5.15(零N)−
0,15(!kMn) −0,26(%;(:r)の式
により表わされ、その成分を変えることにより任意の線
膨張率を選ぶことができる。従って、磁性層5.6も他
の組成の非晶質金属や高透磁率軟磁性材を用いてもよく
、線膨張率がほぼ同一であればよい。
In addition, in the embodiment described in -H, the passive shaft l was formed of iron-manganese nonmagnetic steel, but the relationship between the components of iron-manganese nonmagnetic steel and the coefficient of linear expansion α is α(io-6) = 13
.. 5+ 5.45(!kc) + 5.15(zero N)-
It is expressed by the formula 0,15(!kMn) -0,26(%;(:r)), and by changing its components, an arbitrary coefficient of linear expansion can be selected.Therefore, the magnetic layer 5.6 can also be Amorphous metals or high permeability soft magnetic materials with other compositions may be used as long as they have approximately the same coefficient of linear expansion.

なお、上述の式においてMnは20重量%以上、50重
量%以下、Crは1重量%以上、20重量%以下とする
とよい。Mnを20重量%以上としたのは、20瓜量%
以下では線膨張率αが磁性層とほぼ同一とならないから
であり、50重量%以下としたのは50喰量%以上では
酸化しやすく実用にならないからである。また、C「を
1電量%以上としたのは、1重量%以下では線膨張率α
が磁性層とほぼ同一とならないからであり、20重量%
以下としたのは20重量%以−Eではコスト高となり実
用にならないからである。
In addition, in the above formula, Mn is preferably 20% by weight or more and 50% by weight or less, and Cr is preferably 1% by weight or more and 20% by weight or less. The reason why Mn is 20% by weight or more is 20% by weight.
This is because the coefficient of linear expansion α will not be approximately the same as that of the magnetic layer below, and the reason why it is set to 50% by weight or less is because if it is more than 50% by weight, it will be easily oxidized and will not be practical. In addition, the reason why C" is set to be 1% by weight or more is because the linear expansion coefficient α is less than 1% by weight.
This is because it is not almost the same as the magnetic layer, and 20% by weight
The reason why the amount is less than 20% by weight is because if it exceeds 20% by weight, the cost becomes high and it is not practical.

次に、受動軸を構成する非磁性材の別の実施例を示す。Next, another example of the non-magnetic material constituting the passive shaft will be shown.

第2の実施例では、受動軸1は重量%でMn:10%、
Cr5%、Si1.5%、Mo1%からなる鉄−マンガ
ン非磁性鋼により形成している。他の構成は従来と同じ
である。第2の実施例においてはifの実施例と同様の
効果と、更に非磁性材に0.5重量%以上5重量%以下
のSiと、0.5重量%以上5重量%以ドのMOのうち
の−・種類あるいは二種類の元素を添加することにより
磁性層を受動軸に加熱固着する際に高温(〜300℃)
状態に暴露されても磁性層と線膨張率がほぼ同一となり
、使用温度での温度特性がさらに改善される効果がある
In the second embodiment, the passive shaft 1 has Mn: 10% by weight,
It is made of iron-manganese nonmagnetic steel consisting of 5% Cr, 1.5% Si, and 1% Mo. Other configurations are the same as before. In the second embodiment, the same effect as in the if embodiment is obtained, and in addition, the non-magnetic material contains 0.5% to 5% by weight of Si and 0.5% to 5% by weight of MO. By adding one or two types of elements, high temperatures (~300℃) are applied when heating and fixing the magnetic layer to the passive shaft.
The coefficient of linear expansion is almost the same as that of the magnetic layer even when exposed to various conditions, and the temperature characteristics at the operating temperature are further improved.

[発明の効果] 以上のようにこの発明によれば、受動軸を20重量%以
−1150重量%以下のMnと、1重量%以上20重量
%以下のCrと、Feとからなる非磁性材で構威し、非
磁性材の受動軸と高透磁率軟磁性材の磁性層との線膨張
率をほぼ同一としたので、線膨張率の差に基づく熱応力
が発生ず、熱応力による歪検出誤差が生じなくなり、検
出精度を向上することができる。
[Effects of the Invention] As described above, according to the present invention, the passive shaft is made of a non-magnetic material consisting of Mn of 20% to 1150% by weight, Cr of 1% to 20% by weight, and Fe. Since the linear expansion coefficients of the passive shaft made of non-magnetic material and the magnetic layer made of high magnetic permeability soft magnetic material are almost the same, thermal stress due to the difference in linear expansion coefficient does not occur, and distortion due to thermal stress is minimized. Detection errors no longer occur, and detection accuracy can be improved.

さらに、受動軸を構成する非磁性材に、0.5重量%以
上5重量%以下のSiと、0.5重量%以上5重量%以
下のMOのうちの一種類あるいは二種類の元素を添加す
ることにより、磁性層を受動軸に加熱固着する際の温度
においても、磁性層と受動軸との線膨張率がほぼ同一に
なるので、使用温度での温度特性がさらに改善される効
果がある。
Furthermore, one or two elements of 0.5% to 5% by weight of Si and 0.5% to 5% by weight of MO are added to the non-magnetic material constituting the passive shaft. By doing so, even at the temperature when heating and fixing the magnetic layer to the passive shaft, the linear expansion coefficients of the magnetic layer and the passive shaft are almost the same, which has the effect of further improving the temperature characteristics at the operating temperature. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による歪検出器の構成図、7g2図は
従来の歪検出器の構成図である。 1・・・受動軸、5.5・・・Mi性層、8.9−・・
検出コイル。
FIG. 1 is a block diagram of a distortion detector according to the present invention, and FIG. 7g2 is a block diagram of a conventional distortion detector. 1...Passive axis, 5.5...Mi layer, 8.9-...
detection coil.

Claims (2)

【特許請求の範囲】[Claims] (1)20重量%以上50重量%以下のMnと、1重量
%以上20重量%以下のCrと、Feとからなる非磁性
材で構成され、外力を受ける受動軸、線膨張率が上記受
動軸とほぼ同一の高透磁率軟磁性材からなり、上記受動
軸の周囲に固着された磁性層、及びこの磁性層の周囲に
配置され、上記磁性層の上記外力に応じた歪による透磁
率変化を検出する検出コイルを備えた歪検出器。
(1) A passive shaft that is made of a non-magnetic material consisting of Mn of 20% to 50% by weight, Cr of 1% to 20% by weight, and Fe, and that receives external force. A magnetic layer made of a soft magnetic material with high magnetic permeability that is almost the same as the shaft and fixed around the passive shaft, and a magnetic layer arranged around this magnetic layer that changes magnetic permeability due to strain in the magnetic layer in response to the external force. A strain detector equipped with a detection coil that detects.
(2)受動軸を構成する非磁性材に、0.5重量%以上
5重量%以下のSiと、0.5重量%以上5重量%以下
のMoのうちの一種類あるいは二種類の元素を添加した
請求項1記載の歪検出器。
(2) Add one or two elements of 0.5% to 5% by weight of Si and 0.5% to 5% by weight of Mo to the non-magnetic material constituting the passive shaft. The strain detector according to claim 1, further comprising:
JP29277090A 1989-11-01 1990-10-29 Strain detector Pending JPH03237329A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP28619489 1989-11-01
JP1-286194 1989-11-01

Publications (1)

Publication Number Publication Date
JPH03237329A true JPH03237329A (en) 1991-10-23

Family

ID=17701177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29277090A Pending JPH03237329A (en) 1989-11-01 1990-10-29 Strain detector

Country Status (1)

Country Link
JP (1) JPH03237329A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013170996A (en) * 2012-02-22 2013-09-02 Nissan Motor Co Ltd Magnetostrictive ring type torque sensor, and method of manufacturing magnetostrictive ring type torque sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013170996A (en) * 2012-02-22 2013-09-02 Nissan Motor Co Ltd Magnetostrictive ring type torque sensor, and method of manufacturing magnetostrictive ring type torque sensor

Similar Documents

Publication Publication Date Title
JP5684442B2 (en) Magnetic sensor device
US6220105B1 (en) Magnetoelastic disc-shaped load cell having spiral spokes
JP2545365B2 (en) Torque measuring device
US20070227268A1 (en) Magnetostrictive torque sensor
JPS6088335A (en) Torque detector
JPH0326339B2 (en)
JP3616237B2 (en) Torque detection device
US4780671A (en) Magnetically operated non-contact magnetic torque sensor for shafts
US5323659A (en) Multifunctional torque sensor
JPH03237329A (en) Strain detector
WO2003098178A2 (en) Eddy current sensor assembly for shaft torque measurement
JPS61137036A (en) Steering force detector
JPH02154130A (en) Strain detector
JPS61294322A (en) Torque detector
JPS60257334A (en) Torque detecting instrument
JPH1194658A (en) Torque sensor
JPS59228140A (en) Magnetic elastic torque converter
JPS60192233A (en) Torque sensor
JPH05149804A (en) Manufacture of magnetostriction type torque sensor
JPH02287131A (en) Strain detector
JPH01225181A (en) Torque sensor
JPH07113698A (en) Torque sensor
JPS63122924A (en) Steering torque detector
JPH0469417A (en) Magnetic grain type electromagnetic connecting device
JPH0454322A (en) Magnetic particle type electormagnetic connection device