JPH03237256A - Highly efficient exhaust heat recovery system for cogeneration system - Google Patents
Highly efficient exhaust heat recovery system for cogeneration systemInfo
- Publication number
- JPH03237256A JPH03237256A JP2032778A JP3277890A JPH03237256A JP H03237256 A JPH03237256 A JP H03237256A JP 2032778 A JP2032778 A JP 2032778A JP 3277890 A JP3277890 A JP 3277890A JP H03237256 A JPH03237256 A JP H03237256A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerator
- hot water
- cooling water
- steam
- cold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000011084 recovery Methods 0.000 title claims abstract description 37
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 93
- 239000000498 cooling water Substances 0.000 claims abstract description 44
- 239000007789 gas Substances 0.000 claims description 15
- 239000002918 waste heat Substances 0.000 claims description 8
- 238000001816 cooling Methods 0.000 description 11
- 230000007423 decrease Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 4
- 239000010687 lubricating oil Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000001932 seasonal effect Effects 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000002262 irrigation Effects 0.000 description 2
- 238000003973 irrigation Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 241000272201 Columbiformes Species 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
- Y02A30/274—Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/14—Combined heat and power generation [CHP]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Other Air-Conditioning Systems (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、原動機の排熱回収を冷熱(冷水)および温
熱(蒸気)の2種類にて行い、季節による冷熱および温
熱の需要の変動に応じて、冷温熱の配分調整をすること
で通年に渡る排熱回収効率の良化を実現することができ
るコージエネレーシジンシステムの排熱回収システムに
関するものである。[Detailed Description of the Invention] [Field of Industrial Application] This invention recovers waste heat from a prime mover using two types of heat, cold heat (cold water) and hot heat (steam), and is able to cope with seasonal fluctuations in demand for cold and hot heat. The present invention relates to an exhaust heat recovery system for a cozy energy resin system that can improve exhaust heat recovery efficiency throughout the year by adjusting the distribution of cold and hot heat accordingly.
発電機等を駆動する動力発生#(原動機)の排熱回収に
より冷熱需要および温熱需要に供給するコージェネレー
ションシステムがエネルギープラント等においてシステ
ム化されている。原動機rディーゼルエンジンまたはガ
スエンジンを示し、以下、「エンジン」という)の排熱
回収を行う場合には、冷熱回収はエンジンの冷却水を利
用した吸着または温水式冷凍機(温水式冷凍機)によっ
て熱交換された冷水を媒体とし、温熱回収はエンジンの
排気ガスから排熱回収ボイラにより得られる蒸気を媒体
として各々行われる。また、蒸気を媒体とした冷熱回収
が行われる例もある。BACKGROUND ART A cogeneration system that supplies cold and hot demand by recovering exhaust heat from a power generator (prime mover) that drives a generator or the like has been systemized in energy plants and the like. When recovering exhaust heat from a prime mover (representing a diesel engine or gas engine, hereinafter referred to as the "engine"), cold heat recovery can be performed by adsorption using engine cooling water or by a hot water refrigerator (hot water refrigerator). Heat exchanged cold water is used as a medium, and thermal heat recovery is performed using steam obtained from engine exhaust gas by an exhaust heat recovery boiler as a medium. There are also examples where cold heat recovery is performed using steam as a medium.
冷温熱の季節による需要は、冷熱需要は冷房を主とする
ことから夏期に多くなり、一方、温#IN要は夏期には
減少する傾向にある。従って、温熱需要の少ない夏期に
おいては蒸気は100%回収されずに廃棄処分にされて
いた場合もある。また、温水冷凍機においても冷熱需要
の減少で冷水供給過多による冷水の廃棄処分の例もある
等従来のシステムでは効率の良い熱回収か行われないと
いう問題があった。The seasonal demand for cold and hot water tends to increase in the summer because the demand for cold and hot water is mainly for air conditioning, while the demand for hot water tends to decrease in the summer. Therefore, in the summer when the demand for heat is low, 100% of the steam may not be recovered and may be disposed of. Furthermore, in hot water refrigerators, there have been cases where cold water has been disposed of due to excessive supply of cold water due to a decrease in demand for cold heat, and conventional systems have had the problem of not being able to efficiently recover heat.
従ってこの発明の目的は、エンジンの排熱回収を冷熱(
冷水)および温熱(蒸気)の2種類にて行い、冷熱およ
び温熱の季節による需要の変動に応じて、冷温熱の配分
調整をすることで通年に渡る排熱回収効率の良化を実現
することができるコジェネレーションシステムの排熱回
収システムを提供することにある。Therefore, the purpose of this invention is to recover engine exhaust heat from cold heat (
It uses two types of heat (chilled water) and heat (steam), and adjusts the distribution of cold and hot heat according to seasonal changes in demand for cold and hot water, improving waste heat recovery efficiency throughout the year. Our objective is to provide an exhaust heat recovery system for a cogeneration system that can.
この発明の要旨は以下の通りである。 The gist of this invention is as follows.
fl) 原動機の排処回収を排ガス回収ボイラから得
る蒸気を媒体として温熱需要に供するとともに、前記原
動機の冷却水を温水冷凍機に送り、前記温水冷凍機から
得る冷水を媒体として冷熱需要に供するコージェネレー
ションシステムにおいて、前記冷却水を前記原動機の空
気冷却器を経由させて昇温して前記温水冷凍機に送り、
前記空気冷却器によって昇温した前記冷却水によって前
記温水冷凍機の排熱回収効率を向上することを特徴とす
るコージェネレーションシステムの高効率排熱回収シス
テム。fl) A cord that collects exhaust gas from the prime mover by using steam obtained from an exhaust gas recovery boiler as a medium to meet the heat demand, sends the cooling water of the prime mover to a hot water refrigerator, and uses cold water obtained from the hot water refrigerator as a medium to meet the cold heat demand. In the generation system, the cooling water is heated through an air cooler of the prime mover and sent to the hot water refrigerator;
A high-efficiency exhaust heat recovery system for a cogeneration system, characterized in that the exhaust heat recovery efficiency of the hot water refrigerator is improved by the cooling water heated by the air cooler.
(2) 原動機に排熱回収ボイラを接続し、前記排熱
回収ボイラによって排ガスから得る蒸気を媒体として温
熱需要に供し、一方、前記原動機に前記原動機の冷却水
を利用した温水冷凍機を接続し、前記温水冷凍機によっ
て得る冷水を媒体として冷熱需要に供するとともに、前
記排熱回収ボイラに蒸気式冷凍機を接続し、前記蒸気式
冷凍機から得る冷水を媒体として補助的に冷熱需要に供
し、さらに、前記冷却水を前記原動機の空気冷却器を経
由させて昇温して前記温水冷凍機に送ることにより前記
温水冷凍機の熱交換効率を向上せしめることを特徴とす
るコージェネレーションシステムの高効率排熱回収シス
テム。(2) An exhaust heat recovery boiler is connected to the prime mover, and the steam obtained from the exhaust gas by the exhaust heat recovery boiler is used as a medium to meet heat demand, while a hot water refrigerator that uses the cooling water of the prime mover is connected to the prime mover. , supplying the cold water demand as a medium using the cold water obtained by the hot water refrigerator, and connecting a steam refrigerator to the exhaust heat recovery boiler, and supplementally supplying the cold water demand as a medium with the cold water obtained from the steam refrigerator; Furthermore, the high efficiency of the cogeneration system is characterized in that the heat exchange efficiency of the hot water refrigerator is improved by raising the temperature of the cooling water via an air cooler of the prime mover and sending the heated water to the hot water refrigerator. Exhaust heat recovery system.
本発明では、熱源水としてエンジンの冷却水を使用する
温水吸水(または吸着)冷凍機(以下、「温水冷凍機」
という)の熱交換効率を良化する(成績係数(以下、r
cOP」という)を向上する)ためにその熱源水の温水
の温度をより以上に高めることとし、その手段として冷
却水を温水冷凍機の熱交換器に直接送らず、エンジンの
空気冷却器を途中経由させて送る。これにより、冷却水
は空気冷却器での高温の空気との熱交換によってより以
上に高温となり、温水冷凍機の熱源水は冷却水を直接熱
交換器に供給するよりも高温となり、温水冷凍機のCO
Pは向上する。さらに、排熱回収ボイラに蒸気式吸収冷
凍機(以下、「蒸気式冷凍機」という)を接続し、エン
ジンの排ガスから得られる蒸気の一部をこの蒸気式冷凍
機に供給し、これにより冷水を得ることにより夏期の需
要が大きい時期における冷熱需要の不足分を補充する。In the present invention, a hot water absorption (or adsorption) refrigerator (hereinafter referred to as a "hot water refrigerator") uses engine cooling water as a heat source water.
Improve the heat exchange efficiency (coefficient of performance (hereinafter referred to as r))
In order to improve the hot water temperature (referred to as "cOP"), we decided to raise the temperature of the hot water of the heat source water even higher, and as a means of doing so, we did not send the cooling water directly to the heat exchanger of the hot water refrigerator, but instead sent the cooling water to the engine's air cooler midway. Send via. As a result, the cooling water becomes even hotter due to heat exchange with the high-temperature air in the air cooler, and the heat source water of the hot water refrigerator becomes hotter than when cooling water is directly supplied to the heat exchanger. CO of
P will improve. Furthermore, a steam-type absorption chiller (hereinafter referred to as "steam-type chiller") is connected to the exhaust heat recovery boiler, and a part of the steam obtained from the engine exhaust gas is supplied to this steam-type chiller. This will replenish the shortfall in heating and cooling demand during the summer when demand is high.
次にこの発明を図面を参照しながら説明する。Next, the present invention will be explained with reference to the drawings.
第1図、第2図はこの発明のシステムの1実施態様を示
す系統図である。第2図は第1図をより詳細に示したも
のであり、図中の番号は第1図と対応して示されている
。第2図において、39は戻りタンク、40は給水ポン
プ、41は導管である。本実施態様においては発電機l
の原動機(以下、「エンジン2」という)としてディー
ゼルエンジンが使用されている。エンジンとしてはガス
エンジンを使用することもできる。FIGS. 1 and 2 are system diagrams showing one embodiment of the system of the present invention. FIG. 2 shows FIG. 1 in more detail, and the numbers in the figure correspond to those in FIG. 1. In FIG. 2, 39 is a return tank, 40 is a water supply pump, and 41 is a conduit. In this embodiment, the generator l
A diesel engine is used as the prime mover (hereinafter referred to as "engine 2"). A gas engine can also be used as the engine.
図面において、4は排熱回収ボイラ、8は蒸気式冷凍機
であり、各々導管5.6.7によって連絡されている。In the drawing, 4 is an exhaust heat recovery boiler, and 8 is a steam refrigerator, which are connected to each other by conduits 5, 6, and 7.
9、IOは蒸気の流量制御弁である。38は排ガス管で
あり、煙突(図示せず)から排ガスが排出される。13
はジャケット冷却水クーラ、16は潤滑油クーラ、19
は空気冷却器であり、各々導管If 14.17によっ
てエンジン2と連絡されている。20は冷却システム、
21は冷却システム2゜によって冷却された水を空気冷
却器19、潤滑油クーラ16、ノヤケットクーラ13に
循環させるための導管、25はポンプ、26は温調弁、
37は熱量計である。ジャケットクーラ13、潤滑油ク
ーラ16および空気冷却器19は各々冷却システム20
によって冷却された水を導管21によって循環させる水
冷システムによって冷却される。27は温水冷凍機、2
8は温水冷凍機の熱交換器である。12は熱源水が循環
する導管、24は熱源温水循環ポンプである。9. IO is a steam flow rate control valve. 38 is an exhaust gas pipe, and exhaust gas is discharged from a chimney (not shown). 13
is a jacket cooling water cooler, 16 is a lubricating oil cooler, 19 is
are air coolers, each connected to the engine 2 by a conduit If 14.17. 20 is a cooling system;
21 is a conduit for circulating the water cooled by the cooling system 2° to the air cooler 19, lubricating oil cooler 16, and Noyakette cooler 13; 25 is a pump; 26 is a temperature control valve;
37 is a calorimeter. The jacket cooler 13, the lubricating oil cooler 16 and the air cooler 19 are each part of a cooling system 20.
It is cooled by a water cooling system that circulates water cooled by a conduit 21. 27 is a hot water refrigerator, 2
8 is a heat exchanger of the hot water refrigerator. 12 is a conduit through which heat source water circulates, and 24 is a heat source hot water circulation pump.
エンジン2の出口側の冷却水の導管11aはその途中に
おいて導管30に分岐している。分岐した導管30a(
途中の部分は※印でカットして図示)は空気冷却器19
に接続されている・。さらに、導管30bは空気冷却器
19を通った後、熱交換器28内を通るように接続され
ている。さらに、導管30c(途中の部分は※※印でカ
ットして図示)は熱交換器28から導管11bに接続さ
れている。15は導管11aと導管30bの分岐部に設
置されたエンジン出口温度の温調弁である。31.32
.33は蒸気式冷凍機8および温水冷凍機27で熱交換
された冷水を冷熱需要(主に冷房用)23に供給するた
めの導管である。34は各温調弁やポンプ等の制御を行
うコントローラ、35は信号線である。The cooling water conduit 11a on the outlet side of the engine 2 branches into a conduit 30 in the middle thereof. Branched conduit 30a (
The part in the middle is cut with * mark) is air cooler 19
It is connected to the·. Further, the conduit 30b is connected to pass through the air cooler 19 and then through the heat exchanger 28. Furthermore, a conduit 30c (the middle part is shown cut with a mark **) is connected from the heat exchanger 28 to the conduit 11b. Reference numeral 15 denotes a temperature control valve for controlling the engine outlet temperature, which is installed at the branching point of the conduit 11a and the conduit 30b. 31.32
.. Reference numeral 33 is a conduit for supplying cold water, which has undergone heat exchange with the steam refrigerator 8 and the hot water refrigerator 27, to the cooling demand (mainly for cooling) 23. 34 is a controller that controls each temperature control valve, pump, etc., and 35 is a signal line.
エンジンの冷却水は空気冷却器に供給され、空気冷却器
の高温の空気によって昇温された後、熱交換器に供給さ
れるので、温水冷凍機の熱交換効率が向上する。さらに
、エンジンの排気ガスは排熱回収ボイラに供給され、回
収された蒸気の一部が蒸気式冷凍機に供給され、熱交換
されるので、システム全体としての熱交換効率が向上す
る。Engine cooling water is supplied to the air cooler, heated by the high temperature air of the air cooler, and then supplied to the heat exchanger, improving the heat exchange efficiency of the hot water refrigerator. Furthermore, the engine exhaust gas is supplied to the exhaust heat recovery boiler, and a portion of the recovered steam is supplied to the steam refrigerator for heat exchange, thereby improving the heat exchange efficiency of the entire system.
次ぎにこの発明を実施例により説明する。 Next, the present invention will be explained with reference to examples.
本実施例は、発電機で発電を行いながらエンジンの排熱
温熱および冷熱として需要負荷へ供給するシステムで、
温水式冷凍機および蒸気式冷凍機の両者の排熱回収が行
われるときの冷熱需要(負荷)が高い、主に夏期周辺の
季節の運転例である第1面および第2図に示すように、
エンジン2の冷却水は導管11を通って循環している。This example is a system that generates electricity with a generator and supplies it to the demand load as engine exhaust heat and cold heat.
As shown in Figures 1 and 2, this is an example of operation during the summer season, when the demand for cold heat (load) is high when exhaust heat is recovered from both the hot water chiller and the steam chiller. ,
Cooling water for the engine 2 is circulated through a conduit 11.
エンジン出口の温度(TIで図示)は所定の温度に保持
される。さらに、エンジン2の冷却水は温水冷凍機27
の熱交換器28に空−急冷却器19を経由して導管30
を通り供給される。前記冷却水は導管11aの途中から
分岐した導管30aを通って空気冷却器19に供給され
て空気冷却器19の高温の空気によってT1より高い温
度(T2で図示)に昇温される。次いで、冷却水は空気
冷却器19から導管30bを通って熱交換器28に高温
(T2)で供給される。このように、冷却水が高温で供
給されることにより、温水冷凍機27の成績係数(CO
P)が向上する。The engine outlet temperature (indicated by TI) is maintained at a predetermined temperature. Furthermore, the cooling water for the engine 2 is supplied to the hot water refrigerator 27.
The conduit 30 is connected to the heat exchanger 28 via the air-quench cooler 19.
Supplied through. The cooling water is supplied to the air cooler 19 through a conduit 30a branched from the middle of the conduit 11a, and is heated to a temperature higher than T1 (indicated by T2) by the high temperature air of the air cooler 19. The cooling water is then supplied from the air cooler 19 through the conduit 30b to the heat exchanger 28 at a high temperature (T2). In this way, by supplying cooling water at high temperature, the coefficient of performance (CO
P) is improved.
熱交換が終了した冷却水は、導管30cを通って導管1
1bと合流しエンジン2に戻る。このときの温度調整は
各セクションに配した温度計からの信号を受けたコント
ローラ34により制御される。After the heat exchange has been completed, the cooling water passes through the conduit 30c to the conduit 1.
It merges with 1b and returns to engine 2. Temperature adjustment at this time is controlled by a controller 34 that receives signals from thermometers placed in each section.
一方、エンジン2の排気ガスは排ガス管38を介して排
熱回収ボイラ4に供給される。排熱回収ボイラ4によっ
て回収された蒸気は主として導管56を介して温熱需要
22に供給される。そして、一部は導管7を介して蒸気
式冷凍機8に供給され、熱交換されて冷水を得る。蒸気
式冷凍機8への蒸気の供給量は流量制御弁10でコント
ロールされる。On the other hand, exhaust gas from the engine 2 is supplied to the exhaust heat recovery boiler 4 via the exhaust gas pipe 38. The steam recovered by the waste heat recovery boiler 4 is mainly supplied to the thermal demand 22 via the conduit 56. A part of the water is then supplied to a steam refrigerator 8 via a conduit 7, where heat is exchanged to obtain cold water. The amount of steam supplied to the steam refrigerator 8 is controlled by a flow control valve 10.
蒸気式冷凍機8および温水冷凍機27で熱交換された冷
水は導管31,32および合流した導管33を通って冷
熱需要23に供給される。導管33において冷水流量(
冷熱需要量)が熱量計36により計測される。冷熱需要
(冷水)は先ず温水冷凍機27によって供給され、不足
の場合に蒸気式冷凍機8による温熱の需給状況を示すグ
ラフである。図面に示すように温水式冷凍機による冷鳩
需要への供給は四季を通じて一定とする。そして、夏期
周辺の冷熱需要が大きい時期においては、潅水式冷凍機
による冷熱需要への供給では不足な分を蒸気式冷凍機に
よる冷熱需要への供給でまかなうことができる。すなわ
ち、本システムは四季を通じて温水伶凍機による一定の
冷水供給を安定して行い、4熱需要の変動に対応し蒸気
式冷凍機による治水の供給をコントロールすることがで
きる。The cold water that has undergone heat exchange with the steam refrigerator 8 and the hot water refrigerator 27 is supplied to the cold heat demand 23 through the conduits 31 and 32 and the confluent conduit 33. In the conduit 33, the cold water flow rate (
The amount of cold heat required) is measured by the calorimeter 36. The demand for cold heat (chilled water) is first supplied by the hot water refrigerator 27, and this is a graph showing the supply and demand situation of warm heat by the steam refrigerator 8 in the case of a shortage. As shown in the drawing, the supply to the demand for cold pigeons by hot water refrigerators is assumed to be constant throughout the four seasons. During periods when the demand for cold energy is large, such as around summer, the insufficient supply of the demand for cold energy by the irrigation type refrigerator can be covered by the supply of the demand for cold energy by the steam type refrigerator. In other words, this system can stably supply a constant amount of cold water through the hot water chiller throughout the year, and can control the flood control supply using the steam chiller in response to fluctuations in demand for four types of heat.
次ぎに、冷熱需要(負荷)が減少したときの温水式冷凍
機の冷水熱量コントロールの制御を行う場合の運転例は
以下の通りである。Next, an example of operation in the case of controlling the amount of cold water heat of the hot water refrigerator when the cold demand (load) decreases is as follows.
L 冷熱の需要側負荷が減じると、先ず蒸気式冷凍機8
への蒸気の供給量を流量制御弁10でコントロール(減
少させる)する ■
2 前記需要側負荷がさらに減少した場合には、塩水冷
凍機27の排熱回収効率(COP)を悪化させないため
に、熱源温水温度(Tiで図示)を所望の温度から下げ
ないため、および、熱源水の入側と出側の温度差ΔT(
Ti−TO)を一定とするため、温水冷凍機27の回収
熱量をコントロールする。その方法は下記の如くである
。L When the demand side load of cold energy decreases, first the steam chiller 8
Control (reduce) the amount of steam supplied to the saltwater refrigerator 27 with the flow control valve 10. ■2 If the demand-side load further decreases, in order not to deteriorate the waste heat recovery efficiency (COP) of the salt water refrigerator 27, In order not to lower the heat source hot water temperature (indicated by Ti) from the desired temperature, and the temperature difference ΔT (
In order to keep Ti-TO constant, the amount of heat recovered by the hot water refrigerator 27 is controlled. The method is as follows.
■、冷熱需要量を熱量計36で計測または外部より設定
してコントロール34に信号入力する。 ■■、熱源温
水循環ポンプ24を流量コントロール■
■、ジャケット冷却水エンジン出口刷の温調弁の開度を
コントロールしTI を保ように冷却水の流量を調節−
2■
■、空気冷却器19の出口のノヤケノト伶却水暦度(T
2で図示)を所定温度に保つように、a調弁26の開度
をコントロールする 03、 この際、エンジノ2の
保護および安定した運転のために、下記の如く設定する
。(2) Measure the cold heat demand with the calorimeter 36 or set it externally, and input the signal to the control 34. ■■, Control the flow rate of the heat source hot water circulation pump 24. ■■, Control the opening degree of the temperature control valve of the jacket cooling water engine outlet plate and adjust the flow rate of the cooling water to maintain TI.
2■ ■, the temperature at the outlet of the air cooler 19 (T
03. At this time, in order to protect the engine 2 and ensure stable operation, the following settings are made.
■、空気冷却器19の空気温度を温度計37で計測し、
水冷システムの冷却水量を温調弁42でコントロールし
て所望の温度(T3で図示)前後とする■、ジャケット
冷却水エンジン出口温度を所望の温度(TI で図示)
に保つ。この方法は下記(a)、(b)で行う。■Measure the air temperature of the air cooler 19 with a thermometer 37,
The amount of cooling water in the water cooling system is controlled by the temperature control valve 42 to keep it around the desired temperature (indicated by T3), and the engine outlet temperature of the jacket cooling water is adjusted to the desired temperature (indicated by TI).
Keep it. This method is carried out in the following steps (a) and (b).
(a)、空気冷却器19の空気の温度に応じて空気冷却
器19の冷却水量をコントロールする。(a) The amount of cooling water in the air cooler 19 is controlled according to the temperature of the air in the air cooler 19.
1bl−、ジャケット冷却水エンジン出口温度(Tl)
を検出して、空気冷却器19とジャケット冷却水クーラ
13への冷却水量配分をコントロールする◎ に含まれ
る。1bl-, jacket cooling water engine outlet temperature (Tl)
Included in ◎, which detects and controls the distribution of cooling water to the air cooler 19 and jacket cooling water cooler 13.
そして、安定運転のため、エンジンの各負荷(例えば、
3/4.2/4)に対応できるように、排熱回収熱量と
冷熱需要量、および、そのときの各温調弁の開度を設定
しておく。For stable operation, each engine load (e.g.
3/4.2/4), the exhaust heat recovery heat amount, the cold heat demand, and the opening degree of each temperature control valve at that time are set.
本システムを運転する場合において電力需要に対する発
電機1の発電容量は、発電機lの容量に比べて充分大き
くとり、または、前記需要に比べて余裕を持たせた一定
出力に設定しておけば、これにより、冷熱需要変動への
対応は容易となる。When operating this system, the generation capacity of generator 1 to meet the power demand should be sufficiently larger than the capacity of generator l, or it should be set to a constant output with a margin compared to the demand. , This makes it easier to respond to fluctuations in demand for cooling and heating.
上記2に述べられたコントロール方法について制御優先
順位をつけると、系の時間的応答の早さから、
■−■ −■−■ −■−■
の順序となる。When assigning control priorities to the control method described in 2 above, the order is as follows, based on the quickness of the system's time response.
上述のように制御を行うことにより、冷熱需要が減少し
たときの冷水の供給過多による廃棄処分等の無駄が減少
し、システム全体の高効率化が実現できる。By performing the control as described above, waste such as disposal due to excessive supply of cold water when the demand for cold water decreases is reduced, and high efficiency of the entire system can be realized.
この発明は上述したように構成されているので、下記に
示す有用な効果を奏する。Since the present invention is configured as described above, it produces the following useful effects.
l 空気冷却器にジャケット冷却水を通すことにより温
水式冷凍機の高温の熱源水の温度が上昇し冷水を効率良
く得ることができ、温水冷凍機による排熱回収効率が良
化する。l By passing jacket cooling water through the air cooler, the temperature of the high-temperature heat source water of the hot water refrigerator increases, making it possible to efficiently obtain cold water and improving the efficiency of exhaust heat recovery by the hot water refrigerator.
2ii!水冷凍機よりも排熱回収効率の良好な蒸気式冷
凍機によって、冷熱需要を補充することにより、冷熱需
要全体の排熱回収効率が良化する。ちなみに、7にの蒸
気式冷凍機においては、「COP # 1.3 Jに対
して、温水85℃の潅水冷凍機においては、rcopξ
0.7」であり、夏期における冷熱需要に対して安定且
つ効率良く対応できる2ii! By supplementing cold demand with a steam chiller, which has better exhaust heat recovery efficiency than a water chiller, the exhaust heat recovery efficiency for the entire cold heat demand is improved. By the way, in the steam type refrigerator mentioned in 7, "COP # 1.3 J, whereas in the irrigation refrigerator with hot water of 85℃, rcopξ
0.7", and can respond stably and efficiently to the demand for heating and cooling in the summer.
運転した場合の冷温熱の需給状況を示すグラフである。
図面において、
111発電機、
2−エンジン、
5.6.7.11.12.14.17.21.30.3
1.32.33−導管、
4−1排熱回収ボイラ、
81.−蒸気式冷凍機、
9.10−、−蒸気流量制御弁、
13−ジャケット冷却水クーラ、
15.26.42−温調弁、
161.−潤滑油クーラ、
19−空気冷却器、
20−冷却システム、
22−温熱需要、
23−一、冷熱需要、
24−0.熱源温水循環ポンプ、
25− ポンプ・
27−温水冷凍機、
28−熱交換器、
34− コントローラ、
35−信号線、
36−5−熱量計、
371.−温度計、
38−排ガス管、
39−戻りタンク、
4〇−給水ポンプ、
41−導管。
手
続
補
正
書
(自
発)
事件の表示
特願平2
2778
号
発明の名称
コージェネレーションシステムの高効率排熱回収システ
ム補正をする者
事件との関係 特許出願人
住所 千代田区丸の内1丁目1番2号(名称) (
412) 日本鋼管株式会社代表者 山域彬成It is a graph showing the supply and demand status of cold and hot heat when the vehicle is operated. In the drawing: 111 Generator, 2 - Engine, 5.6.7.11.12.14.17.21.30.3
1.32.33-Conduit, 4-1 Exhaust heat recovery boiler, 81. -Steam type refrigerator, 9.10-, -Steam flow rate control valve, 13-Jacket cooling water cooler, 15.26.42-Temperature control valve, 161. - Lubricating oil cooler, 19- Air cooler, 20- Cooling system, 22- Heating demand, 23-1, Cold demand, 24-0. Heat source hot water circulation pump, 25- pump, 27- hot water refrigerator, 28- heat exchanger, 34- controller, 35- signal line, 36-5- calorimeter, 371. - Thermometer, 38 - Exhaust gas pipe, 39 - Return tank, 40 - Water supply pump, 41 - Conduit. Procedural amendment (spontaneous) Indication of the case Patent application No. 2778 Name of the invention Person making amendments to high-efficiency waste heat recovery system for cogeneration system Relationship to the case Patent applicant address 1-1-2 Marunouchi, Chiyoda-ku ( name) (
412) Representative of Nippon Kokan Co., Ltd. Akinari Yamaguchi
Claims (1)
を媒体として温熱需要に供するとともに、前記原動機の
冷却水を温水冷凍機に送り、前記温水冷凍機から得る冷
水を媒体として冷熱需要に供するコージェネレーション
システムにおいて、前記冷却水を前記原動機の空気冷却
器を経由させて昇温して前記温水冷凍機に送り、前記空
気冷却器によって昇温した前記冷却水によって前記温水
冷凍機の排熱回収効率を向上することを特徴とするコー
ジェネレーションシステムの高効率排熱回収システム。 2 原動機に排熱回収ボイラを接続し、前記排熱回収ボ
イラによって排ガスから得る蒸気を媒体として温熱需要
に供し、一方、前記原動機に前記原動機の冷却水を利用
した温水冷凍機を接続し、前記温水冷凍機によって得る
冷水を媒体として冷熱需要に供するとともに、前記排熱
回収ボイラに蒸気式冷凍機を接続し、前記蒸気式冷凍機
から得る冷水を媒体として補助的に冷熱需要に供し、さ
らに、前記冷却水を前記原動機の空気冷却器を経由させ
て昇温して前記温水冷凍機に送ることにより前記温水冷
凍機の熱交換効率を向上せしめることを特徴とするコー
ジェネレーションシステムの高効率排熱回収システム。[Scope of Claims] 1. Exhaust heat recovery from a prime mover is performed using steam obtained from an exhaust gas recovery boiler as a medium to meet thermal demand, and cooling water of the prime mover is sent to a hot water refrigerator, and cold water obtained from the hot water refrigerator is used as a medium. In a cogeneration system that serves cold demand, the cooling water is heated through an air cooler of the prime mover and sent to the hot water refrigerator, and the cooling water heated by the air cooler cools the hot water refrigerator. A high-efficiency waste heat recovery system for a cogeneration system, which is characterized by improving the waste heat recovery efficiency of a cogeneration system. 2. An exhaust heat recovery boiler is connected to the prime mover, and the steam obtained from the exhaust gas by the exhaust heat recovery boiler is used as a medium to meet the heat demand. On the other hand, a hot water refrigerator using the cooling water of the prime mover is connected to the prime mover, and the The cold water obtained by the hot water refrigerator is used as a medium to meet the cold demand, and a steam chiller is connected to the exhaust heat recovery boiler, and the cold water obtained from the steam chiller is used as a medium to supplementally serve the cold demand, and further, High efficiency waste heat of a cogeneration system, characterized in that the heat exchange efficiency of the hot water refrigerator is improved by raising the temperature of the cooling water through an air cooler of the prime mover and sending it to the hot water refrigerator. collection system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2032778A JPH03237256A (en) | 1990-02-14 | 1990-02-14 | Highly efficient exhaust heat recovery system for cogeneration system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2032778A JPH03237256A (en) | 1990-02-14 | 1990-02-14 | Highly efficient exhaust heat recovery system for cogeneration system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03237256A true JPH03237256A (en) | 1991-10-23 |
Family
ID=12368305
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2032778A Pending JPH03237256A (en) | 1990-02-14 | 1990-02-14 | Highly efficient exhaust heat recovery system for cogeneration system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03237256A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06146811A (en) * | 1992-11-13 | 1994-05-27 | Kubota Corp | Output change-over controller for cogeneration |
WO2009119185A1 (en) * | 2008-03-27 | 2009-10-01 | いすゞ自動車株式会社 | Waste heat recovering device |
CN102494349A (en) * | 2011-12-16 | 2012-06-13 | 亿恒节能科技江苏有限公司 | Blowing, dehumidifying and heating steam boiler system |
JP2015068333A (en) * | 2013-10-01 | 2015-04-13 | ヤンマー株式会社 | Cogeneration device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59176452A (en) * | 1983-03-24 | 1984-10-05 | Komatsu Ltd | Operation of absorption type refrigerating machine utilizing waste heat of internal-combustion engine |
-
1990
- 1990-02-14 JP JP2032778A patent/JPH03237256A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59176452A (en) * | 1983-03-24 | 1984-10-05 | Komatsu Ltd | Operation of absorption type refrigerating machine utilizing waste heat of internal-combustion engine |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06146811A (en) * | 1992-11-13 | 1994-05-27 | Kubota Corp | Output change-over controller for cogeneration |
WO2009119185A1 (en) * | 2008-03-27 | 2009-10-01 | いすゞ自動車株式会社 | Waste heat recovering device |
JP2009236014A (en) * | 2008-03-27 | 2009-10-15 | Isuzu Motors Ltd | Waste heat recovery system |
CN101978140A (en) * | 2008-03-27 | 2011-02-16 | 五十铃自动车株式会社 | Waste heat recovering device |
US8567193B2 (en) | 2008-03-27 | 2013-10-29 | Isuzu Motors Limited | Waste heat recovering device |
CN102494349A (en) * | 2011-12-16 | 2012-06-13 | 亿恒节能科技江苏有限公司 | Blowing, dehumidifying and heating steam boiler system |
JP2015068333A (en) * | 2013-10-01 | 2015-04-13 | ヤンマー株式会社 | Cogeneration device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100711788B1 (en) | High efficiency of Power Supply and Power Generation System | |
JP3839044B2 (en) | Method for use in a self-sufficient plant, preferably a wind / diesel plant, and the plant | |
CN110966588B (en) | Boiler-steam turbine load adjusting system and method based on heat storage | |
KR20200053996A (en) | Heat pump system | |
SU1309918A3 (en) | Installation for recovering low-potential heat from compressor station out of compression cycle | |
KR101736913B1 (en) | Thermal power upgrade facility | |
US10551096B2 (en) | Combined heat and power system with energy control module | |
JPH03237256A (en) | Highly efficient exhaust heat recovery system for cogeneration system | |
JP2001050045A (en) | Cogeneration system for molding machine | |
KR20130019123A (en) | Air conditioning system having cooling function using the solar heat | |
CN115405983A (en) | Heat pump system, heat pump control system and control method and heat supply network system | |
JP3784616B2 (en) | Thermoelectric ratio control method for small capacity gas turbine cogeneration system | |
JP2004257601A (en) | Waste heat collecting system | |
JP3784617B2 (en) | Thermoelectric ratio control method for small capacity gas turbine cogeneration system | |
JPH026424B2 (en) | ||
CN115324853B (en) | Device and method for adjusting flow of heat conducting medium of groove type photo-thermal power station | |
CN220366454U (en) | Thermoelectric decoupling device | |
KR100911777B1 (en) | Air condition system using waste heat in steam supply and power generation | |
KR20100010769A (en) | Microturbine chp heating and cooling system including microturbine inlet air cooling equipment | |
JP3788354B2 (en) | Engine exhaust heat recovery device | |
JP3936123B2 (en) | Operation control method for small capacity gas turbine cogeneration system | |
JPS6018734Y2 (en) | Solar heating and cooling equipment | |
KR100446991B1 (en) | The Back-Pressure Control Equipment of Steam Turbine in the Combined Heat Power Plant of District heating | |
RU2170885C1 (en) | Heat and power supply system | |
JPH0474531B2 (en) |