JPH03237256A - Highly efficient exhaust heat recovery system for cogeneration system - Google Patents

Highly efficient exhaust heat recovery system for cogeneration system

Info

Publication number
JPH03237256A
JPH03237256A JP2032778A JP3277890A JPH03237256A JP H03237256 A JPH03237256 A JP H03237256A JP 2032778 A JP2032778 A JP 2032778A JP 3277890 A JP3277890 A JP 3277890A JP H03237256 A JPH03237256 A JP H03237256A
Authority
JP
Japan
Prior art keywords
refrigerator
hot water
cooling water
steam
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2032778A
Other languages
Japanese (ja)
Inventor
Sadaji Inui
乾 貞史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2032778A priority Critical patent/JPH03237256A/en
Publication of JPH03237256A publication Critical patent/JPH03237256A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To improve exhaust heat recovery efficiency in a device for feeding cooling water for a driving-motor to a hot water refrigerator so as to apply for a cold demand with cold water obtained from a hot water refrigerator as a medium by feeding the cooling water to the hot water refrigerator after raising its temperature by the air cooler of the driving-motor. CONSTITUTION:At the time of feeding cooling water for a driving-motor (engine) 2 to the heat exchanger 28 of a hot water refrigerator 27 through an air cooler 19 and a conduit, cooling water is fed to the air cooler 19 through a conduit 30a branched from the intermediate part of a conduit 11 for circulating cooling water between the motor 2 and a cooling water cooler 13. Hereupon, the temperature of cooling water is raised with the high temperature air of the air cooler 19. The cooling water from the air cooler 19 is thus fed in the high temperature state to the heat exchanger 28 through a conduit 30b, and this results in improving the coefficient-of-performance of the hot water refrigerator 27. On the other hand, exhaust gas from the engine 2 is fed to a exhaust heat recovery boiler 4 as in the existing way to generate steam, and this steam is supplied to a heat demand 22, as well as part of the steam is fed through a conduit 7 to a steam refrigerator 8, where the steam is heat-exchanged to obtain cooling water.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、原動機の排熱回収を冷熱(冷水)および温
熱(蒸気)の2種類にて行い、季節による冷熱および温
熱の需要の変動に応じて、冷温熱の配分調整をすること
で通年に渡る排熱回収効率の良化を実現することができ
るコージエネレーシジンシステムの排熱回収システムに
関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention recovers waste heat from a prime mover using two types of heat, cold heat (cold water) and hot heat (steam), and is able to cope with seasonal fluctuations in demand for cold and hot heat. The present invention relates to an exhaust heat recovery system for a cozy energy resin system that can improve exhaust heat recovery efficiency throughout the year by adjusting the distribution of cold and hot heat accordingly.

〔従来の技術〕[Conventional technology]

発電機等を駆動する動力発生#(原動機)の排熱回収に
より冷熱需要および温熱需要に供給するコージェネレー
ションシステムがエネルギープラント等においてシステ
ム化されている。原動機rディーゼルエンジンまたはガ
スエンジンを示し、以下、「エンジン」という)の排熱
回収を行う場合には、冷熱回収はエンジンの冷却水を利
用した吸着または温水式冷凍機(温水式冷凍機)によっ
て熱交換された冷水を媒体とし、温熱回収はエンジンの
排気ガスから排熱回収ボイラにより得られる蒸気を媒体
として各々行われる。また、蒸気を媒体とした冷熱回収
が行われる例もある。
BACKGROUND ART A cogeneration system that supplies cold and hot demand by recovering exhaust heat from a power generator (prime mover) that drives a generator or the like has been systemized in energy plants and the like. When recovering exhaust heat from a prime mover (representing a diesel engine or gas engine, hereinafter referred to as the "engine"), cold heat recovery can be performed by adsorption using engine cooling water or by a hot water refrigerator (hot water refrigerator). Heat exchanged cold water is used as a medium, and thermal heat recovery is performed using steam obtained from engine exhaust gas by an exhaust heat recovery boiler as a medium. There are also examples where cold heat recovery is performed using steam as a medium.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

冷温熱の季節による需要は、冷熱需要は冷房を主とする
ことから夏期に多くなり、一方、温#IN要は夏期には
減少する傾向にある。従って、温熱需要の少ない夏期に
おいては蒸気は100%回収されずに廃棄処分にされて
いた場合もある。また、温水冷凍機においても冷熱需要
の減少で冷水供給過多による冷水の廃棄処分の例もある
等従来のシステムでは効率の良い熱回収か行われないと
いう問題があった。
The seasonal demand for cold and hot water tends to increase in the summer because the demand for cold and hot water is mainly for air conditioning, while the demand for hot water tends to decrease in the summer. Therefore, in the summer when the demand for heat is low, 100% of the steam may not be recovered and may be disposed of. Furthermore, in hot water refrigerators, there have been cases where cold water has been disposed of due to excessive supply of cold water due to a decrease in demand for cold heat, and conventional systems have had the problem of not being able to efficiently recover heat.

従ってこの発明の目的は、エンジンの排熱回収を冷熱(
冷水)および温熱(蒸気)の2種類にて行い、冷熱およ
び温熱の季節による需要の変動に応じて、冷温熱の配分
調整をすることで通年に渡る排熱回収効率の良化を実現
することができるコジェネレーションシステムの排熱回
収システムを提供することにある。
Therefore, the purpose of this invention is to recover engine exhaust heat from cold heat (
It uses two types of heat (chilled water) and heat (steam), and adjusts the distribution of cold and hot heat according to seasonal changes in demand for cold and hot water, improving waste heat recovery efficiency throughout the year. Our objective is to provide an exhaust heat recovery system for a cogeneration system that can.

〔課題を解決するための手段〕[Means to solve the problem]

この発明の要旨は以下の通りである。 The gist of this invention is as follows.

fl)  原動機の排処回収を排ガス回収ボイラから得
る蒸気を媒体として温熱需要に供するとともに、前記原
動機の冷却水を温水冷凍機に送り、前記温水冷凍機から
得る冷水を媒体として冷熱需要に供するコージェネレー
ションシステムにおいて、前記冷却水を前記原動機の空
気冷却器を経由させて昇温して前記温水冷凍機に送り、
前記空気冷却器によって昇温した前記冷却水によって前
記温水冷凍機の排熱回収効率を向上することを特徴とす
るコージェネレーションシステムの高効率排熱回収シス
テム。
fl) A cord that collects exhaust gas from the prime mover by using steam obtained from an exhaust gas recovery boiler as a medium to meet the heat demand, sends the cooling water of the prime mover to a hot water refrigerator, and uses cold water obtained from the hot water refrigerator as a medium to meet the cold heat demand. In the generation system, the cooling water is heated through an air cooler of the prime mover and sent to the hot water refrigerator;
A high-efficiency exhaust heat recovery system for a cogeneration system, characterized in that the exhaust heat recovery efficiency of the hot water refrigerator is improved by the cooling water heated by the air cooler.

(2)  原動機に排熱回収ボイラを接続し、前記排熱
回収ボイラによって排ガスから得る蒸気を媒体として温
熱需要に供し、一方、前記原動機に前記原動機の冷却水
を利用した温水冷凍機を接続し、前記温水冷凍機によっ
て得る冷水を媒体として冷熱需要に供するとともに、前
記排熱回収ボイラに蒸気式冷凍機を接続し、前記蒸気式
冷凍機から得る冷水を媒体として補助的に冷熱需要に供
し、さらに、前記冷却水を前記原動機の空気冷却器を経
由させて昇温して前記温水冷凍機に送ることにより前記
温水冷凍機の熱交換効率を向上せしめることを特徴とす
るコージェネレーションシステムの高効率排熱回収シス
テム。
(2) An exhaust heat recovery boiler is connected to the prime mover, and the steam obtained from the exhaust gas by the exhaust heat recovery boiler is used as a medium to meet heat demand, while a hot water refrigerator that uses the cooling water of the prime mover is connected to the prime mover. , supplying the cold water demand as a medium using the cold water obtained by the hot water refrigerator, and connecting a steam refrigerator to the exhaust heat recovery boiler, and supplementally supplying the cold water demand as a medium with the cold water obtained from the steam refrigerator; Furthermore, the high efficiency of the cogeneration system is characterized in that the heat exchange efficiency of the hot water refrigerator is improved by raising the temperature of the cooling water via an air cooler of the prime mover and sending the heated water to the hot water refrigerator. Exhaust heat recovery system.

本発明では、熱源水としてエンジンの冷却水を使用する
温水吸水(または吸着)冷凍機(以下、「温水冷凍機」
という)の熱交換効率を良化する(成績係数(以下、r
cOP」という)を向上する)ためにその熱源水の温水
の温度をより以上に高めることとし、その手段として冷
却水を温水冷凍機の熱交換器に直接送らず、エンジンの
空気冷却器を途中経由させて送る。これにより、冷却水
は空気冷却器での高温の空気との熱交換によってより以
上に高温となり、温水冷凍機の熱源水は冷却水を直接熱
交換器に供給するよりも高温となり、温水冷凍機のCO
Pは向上する。さらに、排熱回収ボイラに蒸気式吸収冷
凍機(以下、「蒸気式冷凍機」という)を接続し、エン
ジンの排ガスから得られる蒸気の一部をこの蒸気式冷凍
機に供給し、これにより冷水を得ることにより夏期の需
要が大きい時期における冷熱需要の不足分を補充する。
In the present invention, a hot water absorption (or adsorption) refrigerator (hereinafter referred to as a "hot water refrigerator") uses engine cooling water as a heat source water.
Improve the heat exchange efficiency (coefficient of performance (hereinafter referred to as r))
In order to improve the hot water temperature (referred to as "cOP"), we decided to raise the temperature of the hot water of the heat source water even higher, and as a means of doing so, we did not send the cooling water directly to the heat exchanger of the hot water refrigerator, but instead sent the cooling water to the engine's air cooler midway. Send via. As a result, the cooling water becomes even hotter due to heat exchange with the high-temperature air in the air cooler, and the heat source water of the hot water refrigerator becomes hotter than when cooling water is directly supplied to the heat exchanger. CO of
P will improve. Furthermore, a steam-type absorption chiller (hereinafter referred to as "steam-type chiller") is connected to the exhaust heat recovery boiler, and a part of the steam obtained from the engine exhaust gas is supplied to this steam-type chiller. This will replenish the shortfall in heating and cooling demand during the summer when demand is high.

次にこの発明を図面を参照しながら説明する。Next, the present invention will be explained with reference to the drawings.

第1図、第2図はこの発明のシステムの1実施態様を示
す系統図である。第2図は第1図をより詳細に示したも
のであり、図中の番号は第1図と対応して示されている
。第2図において、39は戻りタンク、40は給水ポン
プ、41は導管である。本実施態様においては発電機l
の原動機(以下、「エンジン2」という)としてディー
ゼルエンジンが使用されている。エンジンとしてはガス
エンジンを使用することもできる。
FIGS. 1 and 2 are system diagrams showing one embodiment of the system of the present invention. FIG. 2 shows FIG. 1 in more detail, and the numbers in the figure correspond to those in FIG. 1. In FIG. 2, 39 is a return tank, 40 is a water supply pump, and 41 is a conduit. In this embodiment, the generator l
A diesel engine is used as the prime mover (hereinafter referred to as "engine 2"). A gas engine can also be used as the engine.

図面において、4は排熱回収ボイラ、8は蒸気式冷凍機
であり、各々導管5.6.7によって連絡されている。
In the drawing, 4 is an exhaust heat recovery boiler, and 8 is a steam refrigerator, which are connected to each other by conduits 5, 6, and 7.

9、IOは蒸気の流量制御弁である。38は排ガス管で
あり、煙突(図示せず)から排ガスが排出される。13
はジャケット冷却水クーラ、16は潤滑油クーラ、19
は空気冷却器であり、各々導管If 14.17によっ
てエンジン2と連絡されている。20は冷却システム、
21は冷却システム2゜によって冷却された水を空気冷
却器19、潤滑油クーラ16、ノヤケットクーラ13に
循環させるための導管、25はポンプ、26は温調弁、
37は熱量計である。ジャケットクーラ13、潤滑油ク
ーラ16および空気冷却器19は各々冷却システム20
によって冷却された水を導管21によって循環させる水
冷システムによって冷却される。27は温水冷凍機、2
8は温水冷凍機の熱交換器である。12は熱源水が循環
する導管、24は熱源温水循環ポンプである。
9. IO is a steam flow rate control valve. 38 is an exhaust gas pipe, and exhaust gas is discharged from a chimney (not shown). 13
is a jacket cooling water cooler, 16 is a lubricating oil cooler, 19 is
are air coolers, each connected to the engine 2 by a conduit If 14.17. 20 is a cooling system;
21 is a conduit for circulating the water cooled by the cooling system 2° to the air cooler 19, lubricating oil cooler 16, and Noyakette cooler 13; 25 is a pump; 26 is a temperature control valve;
37 is a calorimeter. The jacket cooler 13, the lubricating oil cooler 16 and the air cooler 19 are each part of a cooling system 20.
It is cooled by a water cooling system that circulates water cooled by a conduit 21. 27 is a hot water refrigerator, 2
8 is a heat exchanger of the hot water refrigerator. 12 is a conduit through which heat source water circulates, and 24 is a heat source hot water circulation pump.

エンジン2の出口側の冷却水の導管11aはその途中に
おいて導管30に分岐している。分岐した導管30a(
途中の部分は※印でカットして図示)は空気冷却器19
に接続されている・。さらに、導管30bは空気冷却器
19を通った後、熱交換器28内を通るように接続され
ている。さらに、導管30c(途中の部分は※※印でカ
ットして図示)は熱交換器28から導管11bに接続さ
れている。15は導管11aと導管30bの分岐部に設
置されたエンジン出口温度の温調弁である。31.32
.33は蒸気式冷凍機8および温水冷凍機27で熱交換
された冷水を冷熱需要(主に冷房用)23に供給するた
めの導管である。34は各温調弁やポンプ等の制御を行
うコントローラ、35は信号線である。
The cooling water conduit 11a on the outlet side of the engine 2 branches into a conduit 30 in the middle thereof. Branched conduit 30a (
The part in the middle is cut with * mark) is air cooler 19
It is connected to the·. Further, the conduit 30b is connected to pass through the air cooler 19 and then through the heat exchanger 28. Furthermore, a conduit 30c (the middle part is shown cut with a mark **) is connected from the heat exchanger 28 to the conduit 11b. Reference numeral 15 denotes a temperature control valve for controlling the engine outlet temperature, which is installed at the branching point of the conduit 11a and the conduit 30b. 31.32
.. Reference numeral 33 is a conduit for supplying cold water, which has undergone heat exchange with the steam refrigerator 8 and the hot water refrigerator 27, to the cooling demand (mainly for cooling) 23. 34 is a controller that controls each temperature control valve, pump, etc., and 35 is a signal line.

〔作用〕[Effect]

エンジンの冷却水は空気冷却器に供給され、空気冷却器
の高温の空気によって昇温された後、熱交換器に供給さ
れるので、温水冷凍機の熱交換効率が向上する。さらに
、エンジンの排気ガスは排熱回収ボイラに供給され、回
収された蒸気の一部が蒸気式冷凍機に供給され、熱交換
されるので、システム全体としての熱交換効率が向上す
る。
Engine cooling water is supplied to the air cooler, heated by the high temperature air of the air cooler, and then supplied to the heat exchanger, improving the heat exchange efficiency of the hot water refrigerator. Furthermore, the engine exhaust gas is supplied to the exhaust heat recovery boiler, and a portion of the recovered steam is supplied to the steam refrigerator for heat exchange, thereby improving the heat exchange efficiency of the entire system.

〔実施例〕〔Example〕

次ぎにこの発明を実施例により説明する。 Next, the present invention will be explained with reference to examples.

本実施例は、発電機で発電を行いながらエンジンの排熱
温熱および冷熱として需要負荷へ供給するシステムで、
温水式冷凍機および蒸気式冷凍機の両者の排熱回収が行
われるときの冷熱需要(負荷)が高い、主に夏期周辺の
季節の運転例である第1面および第2図に示すように、
エンジン2の冷却水は導管11を通って循環している。
This example is a system that generates electricity with a generator and supplies it to the demand load as engine exhaust heat and cold heat.
As shown in Figures 1 and 2, this is an example of operation during the summer season, when the demand for cold heat (load) is high when exhaust heat is recovered from both the hot water chiller and the steam chiller. ,
Cooling water for the engine 2 is circulated through a conduit 11.

エンジン出口の温度(TIで図示)は所定の温度に保持
される。さらに、エンジン2の冷却水は温水冷凍機27
の熱交換器28に空−急冷却器19を経由して導管30
を通り供給される。前記冷却水は導管11aの途中から
分岐した導管30aを通って空気冷却器19に供給され
て空気冷却器19の高温の空気によってT1より高い温
度(T2で図示)に昇温される。次いで、冷却水は空気
冷却器19から導管30bを通って熱交換器28に高温
(T2)で供給される。このように、冷却水が高温で供
給されることにより、温水冷凍機27の成績係数(CO
P)が向上する。
The engine outlet temperature (indicated by TI) is maintained at a predetermined temperature. Furthermore, the cooling water for the engine 2 is supplied to the hot water refrigerator 27.
The conduit 30 is connected to the heat exchanger 28 via the air-quench cooler 19.
Supplied through. The cooling water is supplied to the air cooler 19 through a conduit 30a branched from the middle of the conduit 11a, and is heated to a temperature higher than T1 (indicated by T2) by the high temperature air of the air cooler 19. The cooling water is then supplied from the air cooler 19 through the conduit 30b to the heat exchanger 28 at a high temperature (T2). In this way, by supplying cooling water at high temperature, the coefficient of performance (CO
P) is improved.

熱交換が終了した冷却水は、導管30cを通って導管1
1bと合流しエンジン2に戻る。このときの温度調整は
各セクションに配した温度計からの信号を受けたコント
ローラ34により制御される。
After the heat exchange has been completed, the cooling water passes through the conduit 30c to the conduit 1.
It merges with 1b and returns to engine 2. Temperature adjustment at this time is controlled by a controller 34 that receives signals from thermometers placed in each section.

一方、エンジン2の排気ガスは排ガス管38を介して排
熱回収ボイラ4に供給される。排熱回収ボイラ4によっ
て回収された蒸気は主として導管56を介して温熱需要
22に供給される。そして、一部は導管7を介して蒸気
式冷凍機8に供給され、熱交換されて冷水を得る。蒸気
式冷凍機8への蒸気の供給量は流量制御弁10でコント
ロールされる。
On the other hand, exhaust gas from the engine 2 is supplied to the exhaust heat recovery boiler 4 via the exhaust gas pipe 38. The steam recovered by the waste heat recovery boiler 4 is mainly supplied to the thermal demand 22 via the conduit 56. A part of the water is then supplied to a steam refrigerator 8 via a conduit 7, where heat is exchanged to obtain cold water. The amount of steam supplied to the steam refrigerator 8 is controlled by a flow control valve 10.

蒸気式冷凍機8および温水冷凍機27で熱交換された冷
水は導管31,32および合流した導管33を通って冷
熱需要23に供給される。導管33において冷水流量(
冷熱需要量)が熱量計36により計測される。冷熱需要
(冷水)は先ず温水冷凍機27によって供給され、不足
の場合に蒸気式冷凍機8による温熱の需給状況を示すグ
ラフである。図面に示すように温水式冷凍機による冷鳩
需要への供給は四季を通じて一定とする。そして、夏期
周辺の冷熱需要が大きい時期においては、潅水式冷凍機
による冷熱需要への供給では不足な分を蒸気式冷凍機に
よる冷熱需要への供給でまかなうことができる。すなわ
ち、本システムは四季を通じて温水伶凍機による一定の
冷水供給を安定して行い、4熱需要の変動に対応し蒸気
式冷凍機による治水の供給をコントロールすることがで
きる。
The cold water that has undergone heat exchange with the steam refrigerator 8 and the hot water refrigerator 27 is supplied to the cold heat demand 23 through the conduits 31 and 32 and the confluent conduit 33. In the conduit 33, the cold water flow rate (
The amount of cold heat required) is measured by the calorimeter 36. The demand for cold heat (chilled water) is first supplied by the hot water refrigerator 27, and this is a graph showing the supply and demand situation of warm heat by the steam refrigerator 8 in the case of a shortage. As shown in the drawing, the supply to the demand for cold pigeons by hot water refrigerators is assumed to be constant throughout the four seasons. During periods when the demand for cold energy is large, such as around summer, the insufficient supply of the demand for cold energy by the irrigation type refrigerator can be covered by the supply of the demand for cold energy by the steam type refrigerator. In other words, this system can stably supply a constant amount of cold water through the hot water chiller throughout the year, and can control the flood control supply using the steam chiller in response to fluctuations in demand for four types of heat.

次ぎに、冷熱需要(負荷)が減少したときの温水式冷凍
機の冷水熱量コントロールの制御を行う場合の運転例は
以下の通りである。
Next, an example of operation in the case of controlling the amount of cold water heat of the hot water refrigerator when the cold demand (load) decreases is as follows.

L 冷熱の需要側負荷が減じると、先ず蒸気式冷凍機8
への蒸気の供給量を流量制御弁10でコントロール(減
少させる)する    ■ 2 前記需要側負荷がさらに減少した場合には、塩水冷
凍機27の排熱回収効率(COP)を悪化させないため
に、熱源温水温度(Tiで図示)を所望の温度から下げ
ないため、および、熱源水の入側と出側の温度差ΔT(
Ti−TO)を一定とするため、温水冷凍機27の回収
熱量をコントロールする。その方法は下記の如くである
L When the demand side load of cold energy decreases, first the steam chiller 8
Control (reduce) the amount of steam supplied to the saltwater refrigerator 27 with the flow control valve 10. ■2 If the demand-side load further decreases, in order not to deteriorate the waste heat recovery efficiency (COP) of the salt water refrigerator 27, In order not to lower the heat source hot water temperature (indicated by Ti) from the desired temperature, and the temperature difference ΔT (
In order to keep Ti-TO constant, the amount of heat recovered by the hot water refrigerator 27 is controlled. The method is as follows.

■、冷熱需要量を熱量計36で計測または外部より設定
してコントロール34に信号入力する。 ■■、熱源温
水循環ポンプ24を流量コントロール■ ■、ジャケット冷却水エンジン出口刷の温調弁の開度を
コントロールしTI を保ように冷却水の流量を調節−
2■ ■、空気冷却器19の出口のノヤケノト伶却水暦度(T
2で図示)を所定温度に保つように、a調弁26の開度
をコントロールする  03、 この際、エンジノ2の
保護および安定した運転のために、下記の如く設定する
(2) Measure the cold heat demand with the calorimeter 36 or set it externally, and input the signal to the control 34. ■■, Control the flow rate of the heat source hot water circulation pump 24. ■■, Control the opening degree of the temperature control valve of the jacket cooling water engine outlet plate and adjust the flow rate of the cooling water to maintain TI.
2■ ■, the temperature at the outlet of the air cooler 19 (T
03. At this time, in order to protect the engine 2 and ensure stable operation, the following settings are made.

■、空気冷却器19の空気温度を温度計37で計測し、
水冷システムの冷却水量を温調弁42でコントロールし
て所望の温度(T3で図示)前後とする■、ジャケット
冷却水エンジン出口温度を所望の温度(TI で図示)
に保つ。この方法は下記(a)、(b)で行う。
■Measure the air temperature of the air cooler 19 with a thermometer 37,
The amount of cooling water in the water cooling system is controlled by the temperature control valve 42 to keep it around the desired temperature (indicated by T3), and the engine outlet temperature of the jacket cooling water is adjusted to the desired temperature (indicated by TI).
Keep it. This method is carried out in the following steps (a) and (b).

(a)、空気冷却器19の空気の温度に応じて空気冷却
器19の冷却水量をコントロールする。
(a) The amount of cooling water in the air cooler 19 is controlled according to the temperature of the air in the air cooler 19.

1bl−、ジャケット冷却水エンジン出口温度(Tl)
を検出して、空気冷却器19とジャケット冷却水クーラ
13への冷却水量配分をコントロールする◎ に含まれ
る。
1bl-, jacket cooling water engine outlet temperature (Tl)
Included in ◎, which detects and controls the distribution of cooling water to the air cooler 19 and jacket cooling water cooler 13.

そして、安定運転のため、エンジンの各負荷(例えば、
3/4.2/4)に対応できるように、排熱回収熱量と
冷熱需要量、および、そのときの各温調弁の開度を設定
しておく。
For stable operation, each engine load (e.g.
3/4.2/4), the exhaust heat recovery heat amount, the cold heat demand, and the opening degree of each temperature control valve at that time are set.

本システムを運転する場合において電力需要に対する発
電機1の発電容量は、発電機lの容量に比べて充分大き
くとり、または、前記需要に比べて余裕を持たせた一定
出力に設定しておけば、これにより、冷熱需要変動への
対応は容易となる。
When operating this system, the generation capacity of generator 1 to meet the power demand should be sufficiently larger than the capacity of generator l, or it should be set to a constant output with a margin compared to the demand. , This makes it easier to respond to fluctuations in demand for cooling and heating.

上記2に述べられたコントロール方法について制御優先
順位をつけると、系の時間的応答の早さから、 ■−■ −■−■ −■−■ の順序となる。
When assigning control priorities to the control method described in 2 above, the order is as follows, based on the quickness of the system's time response.

上述のように制御を行うことにより、冷熱需要が減少し
たときの冷水の供給過多による廃棄処分等の無駄が減少
し、システム全体の高効率化が実現できる。
By performing the control as described above, waste such as disposal due to excessive supply of cold water when the demand for cold water decreases is reduced, and high efficiency of the entire system can be realized.

〔発明の効果〕〔Effect of the invention〕

この発明は上述したように構成されているので、下記に
示す有用な効果を奏する。
Since the present invention is configured as described above, it produces the following useful effects.

l 空気冷却器にジャケット冷却水を通すことにより温
水式冷凍機の高温の熱源水の温度が上昇し冷水を効率良
く得ることができ、温水冷凍機による排熱回収効率が良
化する。
l By passing jacket cooling water through the air cooler, the temperature of the high-temperature heat source water of the hot water refrigerator increases, making it possible to efficiently obtain cold water and improving the efficiency of exhaust heat recovery by the hot water refrigerator.

2ii!水冷凍機よりも排熱回収効率の良好な蒸気式冷
凍機によって、冷熱需要を補充することにより、冷熱需
要全体の排熱回収効率が良化する。ちなみに、7にの蒸
気式冷凍機においては、「COP # 1.3 Jに対
して、温水85℃の潅水冷凍機においては、rcopξ
0.7」であり、夏期における冷熱需要に対して安定且
つ効率良く対応できる
2ii! By supplementing cold demand with a steam chiller, which has better exhaust heat recovery efficiency than a water chiller, the exhaust heat recovery efficiency for the entire cold heat demand is improved. By the way, in the steam type refrigerator mentioned in 7, "COP # 1.3 J, whereas in the irrigation refrigerator with hot water of 85℃, rcopξ
0.7", and can respond stably and efficiently to the demand for heating and cooling in the summer.

【図面の簡単な説明】[Brief explanation of drawings]

運転した場合の冷温熱の需給状況を示すグラフである。 図面において、 111発電機、 2−エンジン、 5.6.7.11.12.14.17.21.30.3
1.32.33−導管、 4−1排熱回収ボイラ、 81.−蒸気式冷凍機、 9.10−、−蒸気流量制御弁、 13−ジャケット冷却水クーラ、 15.26.42−温調弁、 161.−潤滑油クーラ、 19−空気冷却器、 20−冷却システム、 22−温熱需要、 23−一、冷熱需要、 24−0.熱源温水循環ポンプ、 25− ポンプ・ 27−温水冷凍機、 28−熱交換器、 34− コントローラ、 35−信号線、 36−5−熱量計、 371.−温度計、 38−排ガス管、 39−戻りタンク、 4〇−給水ポンプ、 41−導管。 手 続 補 正 書 (自 発) 事件の表示 特願平2 2778 号 発明の名称 コージェネレーションシステムの高効率排熱回収システ
ム補正をする者 事件との関係  特許出願人 住所  千代田区丸の内1丁目1番2号(名称)  (
412)  日本鋼管株式会社代表者  山域彬成
It is a graph showing the supply and demand status of cold and hot heat when the vehicle is operated. In the drawing: 111 Generator, 2 - Engine, 5.6.7.11.12.14.17.21.30.3
1.32.33-Conduit, 4-1 Exhaust heat recovery boiler, 81. -Steam type refrigerator, 9.10-, -Steam flow rate control valve, 13-Jacket cooling water cooler, 15.26.42-Temperature control valve, 161. - Lubricating oil cooler, 19- Air cooler, 20- Cooling system, 22- Heating demand, 23-1, Cold demand, 24-0. Heat source hot water circulation pump, 25- pump, 27- hot water refrigerator, 28- heat exchanger, 34- controller, 35- signal line, 36-5- calorimeter, 371. - Thermometer, 38 - Exhaust gas pipe, 39 - Return tank, 40 - Water supply pump, 41 - Conduit. Procedural amendment (spontaneous) Indication of the case Patent application No. 2778 Name of the invention Person making amendments to high-efficiency waste heat recovery system for cogeneration system Relationship to the case Patent applicant address 1-1-2 Marunouchi, Chiyoda-ku ( name) (
412) Representative of Nippon Kokan Co., Ltd. Akinari Yamaguchi

Claims (1)

【特許請求の範囲】 1 原動機の排熱回収を排ガス回収ボイラから得る蒸気
を媒体として温熱需要に供するとともに、前記原動機の
冷却水を温水冷凍機に送り、前記温水冷凍機から得る冷
水を媒体として冷熱需要に供するコージェネレーション
システムにおいて、前記冷却水を前記原動機の空気冷却
器を経由させて昇温して前記温水冷凍機に送り、前記空
気冷却器によって昇温した前記冷却水によって前記温水
冷凍機の排熱回収効率を向上することを特徴とするコー
ジェネレーションシステムの高効率排熱回収システム。 2 原動機に排熱回収ボイラを接続し、前記排熱回収ボ
イラによって排ガスから得る蒸気を媒体として温熱需要
に供し、一方、前記原動機に前記原動機の冷却水を利用
した温水冷凍機を接続し、前記温水冷凍機によって得る
冷水を媒体として冷熱需要に供するとともに、前記排熱
回収ボイラに蒸気式冷凍機を接続し、前記蒸気式冷凍機
から得る冷水を媒体として補助的に冷熱需要に供し、さ
らに、前記冷却水を前記原動機の空気冷却器を経由させ
て昇温して前記温水冷凍機に送ることにより前記温水冷
凍機の熱交換効率を向上せしめることを特徴とするコー
ジェネレーションシステムの高効率排熱回収システム。
[Scope of Claims] 1. Exhaust heat recovery from a prime mover is performed using steam obtained from an exhaust gas recovery boiler as a medium to meet thermal demand, and cooling water of the prime mover is sent to a hot water refrigerator, and cold water obtained from the hot water refrigerator is used as a medium. In a cogeneration system that serves cold demand, the cooling water is heated through an air cooler of the prime mover and sent to the hot water refrigerator, and the cooling water heated by the air cooler cools the hot water refrigerator. A high-efficiency waste heat recovery system for a cogeneration system, which is characterized by improving the waste heat recovery efficiency of a cogeneration system. 2. An exhaust heat recovery boiler is connected to the prime mover, and the steam obtained from the exhaust gas by the exhaust heat recovery boiler is used as a medium to meet the heat demand. On the other hand, a hot water refrigerator using the cooling water of the prime mover is connected to the prime mover, and the The cold water obtained by the hot water refrigerator is used as a medium to meet the cold demand, and a steam chiller is connected to the exhaust heat recovery boiler, and the cold water obtained from the steam chiller is used as a medium to supplementally serve the cold demand, and further, High efficiency waste heat of a cogeneration system, characterized in that the heat exchange efficiency of the hot water refrigerator is improved by raising the temperature of the cooling water through an air cooler of the prime mover and sending it to the hot water refrigerator. collection system.
JP2032778A 1990-02-14 1990-02-14 Highly efficient exhaust heat recovery system for cogeneration system Pending JPH03237256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2032778A JPH03237256A (en) 1990-02-14 1990-02-14 Highly efficient exhaust heat recovery system for cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2032778A JPH03237256A (en) 1990-02-14 1990-02-14 Highly efficient exhaust heat recovery system for cogeneration system

Publications (1)

Publication Number Publication Date
JPH03237256A true JPH03237256A (en) 1991-10-23

Family

ID=12368305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2032778A Pending JPH03237256A (en) 1990-02-14 1990-02-14 Highly efficient exhaust heat recovery system for cogeneration system

Country Status (1)

Country Link
JP (1) JPH03237256A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06146811A (en) * 1992-11-13 1994-05-27 Kubota Corp Output change-over controller for cogeneration
WO2009119185A1 (en) * 2008-03-27 2009-10-01 いすゞ自動車株式会社 Waste heat recovering device
CN102494349A (en) * 2011-12-16 2012-06-13 亿恒节能科技江苏有限公司 Blowing, dehumidifying and heating steam boiler system
JP2015068333A (en) * 2013-10-01 2015-04-13 ヤンマー株式会社 Cogeneration device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59176452A (en) * 1983-03-24 1984-10-05 Komatsu Ltd Operation of absorption type refrigerating machine utilizing waste heat of internal-combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59176452A (en) * 1983-03-24 1984-10-05 Komatsu Ltd Operation of absorption type refrigerating machine utilizing waste heat of internal-combustion engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06146811A (en) * 1992-11-13 1994-05-27 Kubota Corp Output change-over controller for cogeneration
WO2009119185A1 (en) * 2008-03-27 2009-10-01 いすゞ自動車株式会社 Waste heat recovering device
JP2009236014A (en) * 2008-03-27 2009-10-15 Isuzu Motors Ltd Waste heat recovery system
CN101978140A (en) * 2008-03-27 2011-02-16 五十铃自动车株式会社 Waste heat recovering device
US8567193B2 (en) 2008-03-27 2013-10-29 Isuzu Motors Limited Waste heat recovering device
CN102494349A (en) * 2011-12-16 2012-06-13 亿恒节能科技江苏有限公司 Blowing, dehumidifying and heating steam boiler system
JP2015068333A (en) * 2013-10-01 2015-04-13 ヤンマー株式会社 Cogeneration device

Similar Documents

Publication Publication Date Title
KR100711788B1 (en) High efficiency of Power Supply and Power Generation System
JP3839044B2 (en) Method for use in a self-sufficient plant, preferably a wind / diesel plant, and the plant
CN110966588B (en) Boiler-steam turbine load adjusting system and method based on heat storage
KR20200053996A (en) Heat pump system
SU1309918A3 (en) Installation for recovering low-potential heat from compressor station out of compression cycle
KR101736913B1 (en) Thermal power upgrade facility
US10551096B2 (en) Combined heat and power system with energy control module
JPH03237256A (en) Highly efficient exhaust heat recovery system for cogeneration system
JP2001050045A (en) Cogeneration system for molding machine
KR20130019123A (en) Air conditioning system having cooling function using the solar heat
CN115405983A (en) Heat pump system, heat pump control system and control method and heat supply network system
JP3784616B2 (en) Thermoelectric ratio control method for small capacity gas turbine cogeneration system
JP2004257601A (en) Waste heat collecting system
JP3784617B2 (en) Thermoelectric ratio control method for small capacity gas turbine cogeneration system
JPH026424B2 (en)
CN115324853B (en) Device and method for adjusting flow of heat conducting medium of groove type photo-thermal power station
CN220366454U (en) Thermoelectric decoupling device
KR100911777B1 (en) Air condition system using waste heat in steam supply and power generation
KR20100010769A (en) Microturbine chp heating and cooling system including microturbine inlet air cooling equipment
JP3788354B2 (en) Engine exhaust heat recovery device
JP3936123B2 (en) Operation control method for small capacity gas turbine cogeneration system
JPS6018734Y2 (en) Solar heating and cooling equipment
KR100446991B1 (en) The Back-Pressure Control Equipment of Steam Turbine in the Combined Heat Power Plant of District heating
RU2170885C1 (en) Heat and power supply system
JPH0474531B2 (en)