JPH03237009A - High purity phosphoric acid and its production - Google Patents

High purity phosphoric acid and its production

Info

Publication number
JPH03237009A
JPH03237009A JP3071790A JP3071790A JPH03237009A JP H03237009 A JPH03237009 A JP H03237009A JP 3071790 A JP3071790 A JP 3071790A JP 3071790 A JP3071790 A JP 3071790A JP H03237009 A JPH03237009 A JP H03237009A
Authority
JP
Japan
Prior art keywords
phosphoric acid
particles
purified
crystals
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3071790A
Other languages
Japanese (ja)
Other versions
JP3103360B2 (en
Inventor
Yasuo Yamazaki
康夫 山崎
Genichi Sato
源一 佐藤
Nobuyuki Muramatsu
村松 信之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP02030717A priority Critical patent/JP3103360B2/en
Publication of JPH03237009A publication Critical patent/JPH03237009A/en
Application granted granted Critical
Publication of JP3103360B2 publication Critical patent/JP3103360B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To decrease amts. of various impurity metal elements by adding seed crystal to the raw phosphoric acid in an atmosphere purified by removing suspending fine particles so as to obtain phosphoric acid hemihydrate crystal, subjecting this hemihydrate to purification and then to micro filtration to remove suspending fine particles. CONSTITUTION:Air is purified with using a high-performance filter to remove suspending fine particles so that the purified atmosphere contains 0-10000 fine particles of >=0.3mum size per 1ft<3>. In this atmosphere, the source phosphoric acid of >=70wt.% concn. is kept at a temp. range lower than the saturation temp. by 0-10 deg.C, to which the seed crystal is added by 0.1-2% of the mass of the raw phosphoric acid, and then the temp. is lowered to obtain acicular phosphoric acid hemihydrate crystal having 0.5-10mm major axis. Then this hemihydrate crystal is washed with high-purity water, maintained at a temp. higher than the saturation temp. by 0-10 deg.C, purified by sweating, molten, and subjected to micro filtering so that the purified phosphoric acid contains suspending particles of >=0.5mum particle size by <=50 particles per 1ml. By this method, the obtd. high purity phosphoric acid contains impurities by <=20ppb Fe, <=ppb mun, and <=40ppb Na in terms of 85wt.% H3PO4 concn.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高純度リン酸及びその製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to high purity phosphoric acid and a method for producing the same.

更に言えば、電子工業用であって、半導体製造工程にお
いて窒化珪素膜を除去する際に使用し、微細素子の電気
特性を劣化させる不純物を実質的に含まない高純度リン
酸及びその製造方法に関するものである。この高純度リ
ン酸は不純物の含有量が少ないという特徴から、その他
に金属アルミニウムエツチング液、セラミックス用アル
ミナエツチング液、光フアイバーガラス用リン酸ガラス
原料としても好適な材料となるものである。
Furthermore, the present invention relates to high-purity phosphoric acid for use in the electronic industry, which is used when removing silicon nitride films in the semiconductor manufacturing process, and which does not substantially contain impurities that degrade the electrical characteristics of microelements, and a method for producing the same. It is something. Since this high-purity phosphoric acid has a low content of impurities, it is also suitable as a metal aluminum etching solution, an alumina etching solution for ceramics, and a phosphoric acid glass raw material for optical fiber glass.

[従来の技術] リン酸を晶析法で精製する技術は、従来より広く知られ
ていて、古くは特公昭44−14692号公報にみられ
る。これによれば、リン酸を所望純度に精製するために
晶析操作、母液からの分離操作及び融解操作からなる一
連の晶析精製操作を3回繰り返す方法が開示されている
[Prior Art] The technique of purifying phosphoric acid by crystallization has been widely known for some time, and can be found in Japanese Patent Publication No. 14692/1983. According to this document, a method is disclosed in which a series of crystallization and purification operations consisting of a crystallization operation, a separation operation from a mother liquor, and a melting operation is repeated three times in order to purify phosphoric acid to a desired purity.

追打ら:東洋曹達報告、10.2.21 (1966)
は、リン酸を晶析操作で精製する基礎物性データである
飽和溶解度、過飽和度と成長速度の相関、リン酸半水結
晶の吸湿性、リン酸中の結晶沈降速度について明らかに
したが、析出したリン酸半水結晶粒子の純度については
、定量的には論じていない。
Oita et al.: Toyo Soda Report, 10.2.21 (1966)
revealed basic physical property data for purifying phosphoric acid by crystallization, such as saturation solubility, correlation between supersaturation degree and growth rate, hygroscopicity of phosphoric acid hemihydrate crystals, and crystal sedimentation rate in phosphoric acid. The purity of the phosphoric acid hemihydrate crystal particles obtained was not quantitatively discussed.

また、例えば前出ら: Proceedings of
 aConference of Industria
l Crystallization+pp413〜4
20(1976)は、流動層型晶析装置での応用例を示
している。この流動層型晶析装置では、均一粗大粒子が
生成するため、母液からの分離操作が容易になる上に、
流動層部分に設けられた外部熱交換器により溶液を冷却
し、効率よく晶析熱を除去することにより生産速度を高
くすることができる特徴をもっている。
Also, for example, see et al.: Proceedings of
aConference of Industry
l Crystallization+pp413-4
20 (1976) shows an example of application in a fluidized bed crystallizer. This fluidized bed crystallizer produces uniform coarse particles, which not only facilitates separation from the mother liquor, but also
The solution is cooled by an external heat exchanger provided in the fluidized bed section, and the heat of crystallization is efficiently removed, thereby increasing the production rate.

このようにリン酸を晶析操作で精製することは従来より
公知であるが、これらの操作によって得られたリン酸の
純度については明確に記されていない。
Although it is conventionally known that phosphoric acid is purified by crystallization operations in this manner, the purity of phosphoric acid obtained by these operations is not clearly described.

[発明が解決しようとする課題] 更に、これらの方法には、精製操作中の不純物の混入を
防止する手段が明確でなく、また、不純物の混入の防止
を行ったときの効果も明示されていない。
[Problems to be Solved by the Invention] Furthermore, in these methods, the means for preventing the contamination of impurities during purification operations are not clear, and the effects of preventing the contamination of impurities are not clearly specified. do not have.

従って、本発明の目的は各種不純物金属元素が、その液
中の状態が溶解・不溶解に拘わらず実質的に検出しうる
限界よりも少ない高純度リン酸及びその製造方法を提供
することにある。
Therefore, an object of the present invention is to provide high-purity phosphoric acid and a method for producing the same in which the amount of various impurity metal elements is below the detectable limit regardless of whether the state in the liquid is dissolved or not. .

[課題を解決するための手段] 本発明は上述のような従来技術に鑑みて鋭意研究を行っ
た結果完成されたちのである。
[Means for Solving the Problems] The present invention was completed as a result of intensive research in view of the above-mentioned prior art.

即ち、本発明は)I、PO,の濃度を85重量%に換算
したときの不純物含有量として、 Feは20 ppb以下、 Mnは3 ppb以下、 Naは40ppb以下 であり、且つリン酸中に含まれる0、5μm以上の粒径
をもつ浮遊微粒子の個数が1mf当たり50個以下であ
ることを特徴とする高純度リン酸に係る。
That is, in the present invention, the impurity content is 20 ppb or less for Fe, 3 ppb or less for Mn, and 40 ppb or less for Na when the concentration of I, PO, is converted to 85% by weight, and The present invention relates to high-purity phosphoric acid characterized in that the number of suspended particles having a particle size of 0.5 μm or more is 50 or less per 1 mf.

更に、本発明は空気相より浮遊微粒子を取り除き、0.
3μm以上の微粒子個数を1 ft3当たり実質的に0
ないし10000の範囲に清浄化した雰囲気において、 (イ)濃度70重量%以上の原料リン酸を飽和温度より
0ないし10’C低い温度範囲で保持した状態で、種晶
を添加した後、降温してリン酸半水結晶を析出させる晶
析工程、 (ロ)(イ)で得られたリン酸半水結晶を洗浄及び/ま
た発汗操作してリン酸半水結晶を精製する工程、及び (ハ)次いで、精製したリン酸半水結晶を融解した後、
精密濾過してリン酸中に含まれる0、5μm以上の粒径
をもつ浮遊微粒子を除去する工程、からなることを特徴
とする高純度リン酸の製造方法に係る。
Additionally, the present invention removes airborne particulates from the air phase.
Reduce the number of particles larger than 3 μm to virtually 0 per ft3
In an atmosphere that has been purified to a temperature range of 10,000 to 10,000 °C, (a) Seed crystals are added while the raw material phosphoric acid with a concentration of 70% by weight or more is maintained at a temperature range of 0 to 10'C lower than the saturation temperature, and then the temperature is lowered. (b) a step of purifying the phosphoric acid hemihydrate crystals by washing and/or sweating the phosphoric acid hemihydrate crystals obtained in (b); ) Then, after melting the purified phosphoric acid hemihydrate crystals,
The present invention relates to a method for producing high-purity phosphoric acid, which comprises a step of removing suspended fine particles with a particle size of 0.5 μm or more contained in phosphoric acid by microfiltration.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明においてリン酸とは、下記の一般式で表される成
分とH2Oの任意の比率の混合液体であり、各種金属に
対する腐食性が強いため、金属等の表面のエツチング液
として好適な物質である。リン酸は他の鉱酸と比べて蒸
気分圧が低く蒸留法を適用して精製することは容易でな
く、また、工業的に精製することは実質的に非常に困難
な化合物であるけれども本発明に係る高純度リン酸は、
前記したようにFe、Mn及びNaの含有量が低いこと
に特徴がある。
In the present invention, phosphoric acid is a liquid mixture of components represented by the following general formula and H2O in any ratio, and is highly corrosive to various metals, so it is a suitable substance as an etching liquid for the surfaces of metals, etc. be. Phosphoric acid has a low vapor partial pressure compared to other mineral acids, making it difficult to purify by distillation, and although it is actually a very difficult compound to purify industrially, The high purity phosphoric acid according to the invention is
As mentioned above, it is characterized by low contents of Fe, Mn, and Na.

本発明に係る高純度リン酸は、前記したようにFe、M
n及びNaすなわち鉄、マンガン及びナトリウムの含有
量が少ないことを特徴とするリン酸である。
As mentioned above, the high purity phosphoric acid according to the present invention includes Fe, M
It is a phosphoric acid characterized by a low content of n and Na, that is, iron, manganese and sodium.

ここで、リン酸の濃度はJIS K−1449に示され
る水酸化ナトリウムによる滴定法で測定するものである
Here, the concentration of phosphoric acid is measured by a titration method using sodium hydroxide as shown in JIS K-1449.

なお、リン酸中のFe、Mn及びNaの含有量の測定は
、希釈率5倍(Naにおいては100倍)に希釈した試
料を炭素製加熱炉に■0μl注入し、800°Cに加熱
してリン酸を除去し、第1表に示す元素に応じた原子化
温度において原子状となった元素を元素によって定めた
測定波長の光の吸光度を希薄塩酸中の標準試料の吸光度
と比較する、いわゆるフレームレス原子吸光光度分析法
で評価する。ここで、リン酸の純度は、単位リン酸質置
市たりの元素の質量の比率として表す。
The content of Fe, Mn, and Na in phosphoric acid was measured by injecting 0 μl of a sample diluted to a 5-fold dilution rate (100-fold for Na) into a carbon heating furnace and heating it to 800°C. phosphoric acid is removed, and the absorbance of the element that has become atomic at the atomization temperature according to the element shown in Table 1 is compared with the absorbance of a standard sample in dilute hydrochloric acid. Evaluation is performed using so-called flameless atomic absorption spectrometry. Here, the purity of phosphoric acid is expressed as a ratio of the mass of an element per unit of phosphoric acid.

フレームレス原子吸光光度分析による元素の検出下限は
次式で算出する: 第1表に示す吸光度が0.005となる元素質量[l?
]を試料注入量10μeと試料密度[y/Cm3]で除
し、注入試料の希釈率[−]を乗することで検出下限を
算出した。ここで試料密度は19/C−とした。
The lower limit of detection of an element by flameless atomic absorption spectrophotometry is calculated using the following formula: Element mass [l?
] was divided by the sample injection amount of 10 μe and the sample density [y/Cm3], and the lower limit of detection was calculated by multiplying by the dilution rate [-] of the injected sample. Here, the sample density was 19/C-.

Fe−Mn及びNaの検出限界を前記の式で求め第↑表
に示す。
The detection limits for Fe-Mn and Na were determined using the above formula and are shown in Table ↑.

第1表:フレームレス原子吸光光度の条件と検出下限M
n   279.5   2400     0.00
4       2N a   598.0   20
00      0.001      10また、浮
遊微粒子の個数は、レーザー光束中に設置したサファイ
ア製セル中を被検液体を流し、微粒子による光遮断信号
を測定する方法によるのであって、被検流体中の浮遊微
粒子の個数とは、被検流体の光遮断信号に対して同一装
置に超純水中に標準粒子を分散させた流体を用いたとき
の光遮断信号と標準粒子の粒子密度関数の検量線より求
めた値である。このような測定方法を実現したものが市
販されていて、ここでは、Hiac/ Royc。
Table 1: Conditions and lower detection limit M for frameless atomic absorption spectrophotometry
n 279.5 2400 0.00
4 2N a 598.0 20
00 0.001 10 The number of suspended particles is determined by a method in which the test liquid is passed through a sapphire cell placed in the laser beam and the light blocking signal caused by the particles is measured. The number of particles is determined by calculating the light cutoff signal of the test fluid using a calibration curve of the particle density function of the standard particles and the light cutoff signal when using a fluid in which standard particles are dispersed in ultrapure water in the same device. This is the obtained value. Products that implement such a measurement method are commercially available, and here, Hiac/Royc.

社製のパーティクルカウンターMode14100/ 
4150を用いた。
company particle counter Model 14100/
4150 was used.

リン酸半水結晶とは、H3P0.・1/2H20の組成
からなる結晶性物質である。
Phosphoric acid hemihydrate crystals are H3P0. - It is a crystalline substance with a composition of 1/2H20.

晶析操作及び発汗操作における過冷却温度とは、リン酸
の温度からそのリン酸の濃度に対して次式で示す飽和温
度を差し引いた値である。
The supercooling temperature in the crystallization operation and sweating operation is the value obtained by subtracting the saturation temperature shown by the following formula from the temperature of phosphoric acid and the concentration of the phosphoric acid.

飽和温度−27,i (91,6−リン酸濃度)(なお
、飽和温度−リン酸濃度−63,7>ここで、飽和温度
の単位は[℃]、リン酸濃度は[重量%]で表し、65
〜89重量%の範囲の値である。
Saturation temperature -27,i (91,6-phosphoric acid concentration) (saturation temperature - phosphoric acid concentration -63,7>Here, the unit of saturation temperature is [℃], and the unit of phosphoric acid concentration is [wt%]) Representation, 65
Values range from 89% by weight.

従って、過冷却温度は晶析操作においては、過冷却温度
は負の値、発汗操作においては正の値である。
Therefore, the supercooling temperature has a negative value in the crystallization operation, and a positive value in the sweating operation.

本発明はこのような高純度リン酸の工業的な製造法をも
提供するものであり、以下に示す3つの工程を基本とし
ているものである すなわち、空気相より浮遊微粒子を取り除き、0.3μ
m以上の微粒子個数を1 ft3当たり実質的にOない
し10000の範囲に清浄化した雰囲気において、 (イ)1度70重量%以上の原料リン酸を飽和温度より
0ないし10℃低い温度範囲で保持した状態で、種晶を
添加した後、降温してリン酸半水結晶を析出させる晶析
工程、 (ロ)(イ)で得られたリン酸半水結晶を洗浄及び/ま
た発汗操作してリン酸半水結晶を精製する工程、及び (ハ)次いで、精製したリン酸半水結晶を融解した後、
精密濾過してリン酸中に含まれる0、5μm以上の粒径
をもつ浮遊微粒子を除去する工程。
The present invention also provides an industrial method for producing such high-purity phosphoric acid, which is based on the following three steps.
In an atmosphere where the number of fine particles of m or more is substantially in the range of 0 to 10,000 per ft3, (a) 70% by weight or more of raw phosphoric acid is maintained at a temperature range of 0 to 10 degrees Celsius below the saturation temperature. In this state, seed crystals are added, and then the temperature is lowered to precipitate phosphoric acid hemihydrate crystals. (b) The phosphoric acid hemihydrate crystals obtained in (a) are washed and/or sweated. a step of purifying phosphoric acid hemihydrate crystals, and (c) then, after melting the purified phosphoric acid hemihydrate crystals,
A step of removing suspended particles with a particle size of 0.5 μm or more contained in phosphoric acid by microfiltration.

本発明に係る高純度リン酸中の不純物は、リン酸結晶あ
るいはリン酸液と接触する空気中に含まれる微粒子の影
響をうけ、清浄雰囲気で取り扱う必要がある。このこと
は、晶析、分離、洗浄、発汗、精密P′41等の操作よ
りなる本発明に係る高純度リン酸の製造プロセスにおい
てリン酸結晶及びリン酸液と接触させる空気相の0.1
μm以上の浮遊微粒子を1 ft’当たり実質的にOな
いし10000個に保持することを意味する。このよう
な清浄環境は、製造環境に取り入れる空気を高性能フィ
ルターを通過させ、発塵量のできるだけ少ない製造装置
と製造方法を採用することによってitすることができ
る。
Impurities in the high-purity phosphoric acid according to the present invention are affected by fine particles contained in the air that comes into contact with the phosphoric acid crystals or phosphoric acid solution, and must be handled in a clean atmosphere. This means that in the production process of high purity phosphoric acid according to the present invention, which includes operations such as crystallization, separation, washing, sweating, precision P'41, etc.
This means that suspended particles of μm or larger are held at substantially 0 to 10,000 particles per 1 ft'. Such a clean environment can be achieved by passing the air taken into the manufacturing environment through a high-performance filter and by employing manufacturing equipment and manufacturing methods that generate as little dust as possible.

空気相における0、3μm以上の微粒子個数は、日本工
業規格、IIS 89921に定められた規格を満足す
る光散乱式粒子計数器を用い、空気中に浮遊している塵
埃に光をあて、その散乱光の量により大きさ別に個数を
計算する方法での濃度を測定し、これにより1 ft’
当たりの○、3μm以上の粒子の個数の総和を算出した
The number of fine particles of 0.3 μm or larger in the air phase can be determined by shining light on dust floating in the air using a light scattering particle counter that satisfies the standards set by the Japanese Industrial Standards, IIS 89921. The density is measured using a method that calculates the number of particles according to size depending on the amount of light, and this results in 1 ft'
The total number of particles with a diameter of 3 μm or more was calculated.

本発明者らの研究によれば、通常の空気中には空気相の
0.1μm以上の浮遊微粒子個数が1 ft3当たり1
00,000個以上含まれており、そのような環境では
本発明に係る高純度リン酸は得られないことが分かった
According to the research conducted by the present inventors, the number of suspended particles of 0.1 μm or larger in the air phase is 1 per 1 ft3 in normal air.
It was found that the high purity phosphoric acid according to the present invention cannot be obtained in such an environment.

本発明方法の原料に用いる原料リン酸は、いわゆる湿式
法、乾式法による製造履歴は問わず、工業用として供給
されているリン酸を使用することができる。原料リン酸
のH3P O<の濃度としては、70重量%以上が好適
である。リン酸濃度が70重量%未満では、飽和温度が
低く、晶析に際し適切な過飽和度を得るのに多大のエネ
ルギーを必要とし、工業的に好ましくない。また、上限
は飽和濃度(91,6重量%)までであり、それ以上は
リン酸半水結晶以外の結晶が析出する恐れがあり、更に
粘度が高くなって晶析、分離が困難となり好ましくない
As the raw material phosphoric acid used as a raw material in the method of the present invention, any phosphoric acid supplied for industrial use can be used, regardless of its production history by the so-called wet method or dry method. The concentration of H3P O< in the raw material phosphoric acid is preferably 70% by weight or more. If the phosphoric acid concentration is less than 70% by weight, the saturation temperature will be low and a large amount of energy will be required to obtain an appropriate degree of supersaturation during crystallization, which is industrially undesirable. In addition, the upper limit is up to the saturated concentration (91.6% by weight), and if it exceeds this, there is a risk that crystals other than phosphoric acid hemihydrate crystals will precipitate, and the viscosity will further increase, making crystallization and separation difficult, which is undesirable. .

本発明方法においては、原料リン酸の前処理として次の
ような処理を行うことが可能である。すなわち、原料リ
ン酸を晶析する前に、飽和温度より高い温度で1時間程
度の所定の時間保持し、リン酸中に含まれ、後の晶析操
作において悪影響を及ぼし易いリン酸のクラスターを分
解することができる。また、原料のリン酸を濾過して予
め微粒子を除去してもよい。しかしながら、このような
原料リン酸の前処理は本発明に係る高純度リン酸の製造
において好ましい操作であるが、本発明方法の必須の要
件てはない。
In the method of the present invention, the following treatment can be performed as a pretreatment of the raw material phosphoric acid. That is, before crystallizing the raw material phosphoric acid, it is held at a temperature higher than the saturation temperature for a predetermined period of about one hour to remove clusters of phosphoric acid that are contained in the phosphoric acid and tend to have an adverse effect on the subsequent crystallization operation. Can be disassembled. Alternatively, the raw material phosphoric acid may be filtered to remove fine particles in advance. However, although such pretreatment of the raw material phosphoric acid is a preferred operation in the production of high-purity phosphoric acid according to the present invention, it is not an essential requirement for the method of the present invention.

晶析は撹拌機等の混合装置及び温度制御機構を具備して
いる耐食性の容器を用い、所定の液温度を保ちつつ、リ
ン酸に種晶を添加することによって行われる。ここで用
いる種晶はリン酸半水結晶で、前回の晶析操作で得られ
た結晶の一部を使用1 することができ、また、特公昭6:’−30606号公
報、特公昭62−30607号公報及び特公昭62−3
0608号公報に見られる方法で作製したリン酸半水結
晶を用いることができる。例えば85重量%の高純度リ
ン酸200gをPTFE製ビーカビ−カー、300 r
pmで撹拌しながら0℃まで冷却し、0.1g程度のリ
ン酸半水結晶を投入すると100μm程度のリン酸半水
結晶を析出させることができる。
Crystallization is carried out by adding seed crystals to phosphoric acid while maintaining a predetermined liquid temperature using a corrosion-resistant container equipped with a mixing device such as a stirrer and a temperature control mechanism. The seed crystals used here are phosphoric acid hemihydrate crystals, and a part of the crystals obtained in the previous crystallization operation can be used. Publication No. 30607 and Special Publication No. 62-3
Phosphoric acid hemihydrate crystals prepared by the method disclosed in Japanese Patent No. 0608 can be used. For example, 200 g of 85% by weight high-purity phosphoric acid was placed in a PTFE beaker, 300 ml.
When the mixture is cooled to 0° C. while stirring at pm and about 0.1 g of phosphoric acid hemihydrate crystals are added, phosphoric acid hemihydrate crystals of about 100 μm can be precipitated.

このリン酸半水結晶は高純度リン酸中でスラリー状を呈
しているが、本発明方法に係る晶析工程での種晶として
使用できる。
This phosphoric acid hemihydrate crystal is in the form of a slurry in high-purity phosphoric acid, and can be used as a seed crystal in the crystallization process according to the method of the present invention.

種晶の添加量は晶析槽に仕込む原料リン酸の質量により
、原料リン酸の質量に対して0.1〜2%が好ましく、
0.1%未満では効果が少なく、また、2%を超える量
を添加しても、添加量に見合った効果の向上は認められ
ない。
The amount of seed crystals added is preferably 0.1 to 2% based on the mass of the raw material phosphoric acid, depending on the mass of the raw material phosphoric acid charged to the crystallization tank.
If it is less than 0.1%, the effect will be small, and even if it is added in an amount exceeding 2%, no improvement in the effect commensurate with the amount added will be observed.

晶析容器としては、晶析槽内の温度制御が可能な機構を
具備する必要があるが、通常の工業晶析操作で用いられ
ている装置を採用することができる。容器の材質は、容
器からの不純物の混入を防2 ぐ意味で、リン酸に対し耐食性を有するものが好ましく
、例えばポリエチレン、ポリプロピレン、フッ素樹脂等
の合成樹脂製のものを用いることができ、更によく洗浄
した硼珪酸ガラス製のものも用いることができる。
The crystallization vessel must be equipped with a mechanism capable of controlling the temperature inside the crystallization tank, but any device used in normal industrial crystallization operations can be employed. The material of the container is preferably one that has corrosion resistance against phosphoric acid in order to prevent contamination of impurities from the container, and for example, a material made of synthetic resin such as polyethylene, polypropylene, or fluororesin can be used. Those made of well-washed borosilicate glass can also be used.

晶析時の過飽和度の制御は一般に晶析操作と同様に考え
ることができ、適宜条件を選択することが可能であるが
、過飽和温度としてOないし10℃、好ましくは−2〜
−8℃の範囲に保つとよい。
Control of the degree of supersaturation during crystallization can generally be considered in the same way as the crystallization operation, and conditions can be selected as appropriate, but the supersaturation temperature is O to 10°C, preferably -2 to 10°C.
It is best to keep it within the range of -8°C.

過飽和温度を一10℃より低温にすると、結晶粒子が凝
集し易く、不純物の包含も多くなり好ましくなく、また
、冷却に要するエネルギーを考慮すれば経済的な条件と
は言えない。また、過飽和温度がO〜−2℃では、晶析
速度が比較的小さく、生産速度が低下し、更に所望の生
産量を得るために大量の原料リン酸を要するために最適
条件とは言えない。
If the supersaturation temperature is lower than -10° C., the crystal particles tend to aggregate and more impurities are included, which is undesirable, and it is not an economical condition considering the energy required for cooling. Furthermore, if the supersaturation temperature is O to -2°C, the crystallization rate is relatively low, the production rate is reduced, and a large amount of raw material phosphoric acid is required to obtain the desired production amount, so this is not an optimal condition. .

本発明方法に係る晶析操作は以上のような条件を満たす
ならば、回分操作、連続操作のいずれの方法も採用する
ことができる。
The crystallization operation according to the method of the present invention may be either a batch operation or a continuous operation as long as the above conditions are satisfied.

本発明方法により得られるリン酸半水結晶は、長径が0
.5〜10mmの針状結晶であり、このものは濾過、遠
心分離等通常の工業操作により母液から分離回収するこ
とができる。このようにして回収された結晶は、結晶中
に不純物を包含したり、母液を付着しているため、この
ままでは本発明にかかる高純度リン酸は得られない。従
って、次の2種類の操作により結晶を精製する必要があ
る。
The phosphoric acid hemihydrate crystal obtained by the method of the present invention has a major axis of 0.
.. They are needle-shaped crystals with a diameter of 5 to 10 mm, and can be separated and recovered from the mother liquor by ordinary industrial operations such as filtration and centrifugation. Since the crystals thus recovered contain impurities or have mother liquor attached to them, the high purity phosphoric acid according to the present invention cannot be obtained as is. Therefore, it is necessary to purify the crystals by the following two operations.

すなわち、 ■母液より分離した母液が付着した結晶を超純水または
本発明に係る高純度リン酸で洗浄して除去し、リン酸半
水結晶を精製する。
That is, (1) the crystals separated from the mother liquor and attached thereto are removed by washing with ultrapure water or the high purity phosphoric acid according to the present invention, and phosphoric acid hemihydrate crystals are purified.

■母液より分離したリン酸手水結晶を付着母液の飽和温
度より0〜10℃高い温度で保持し、発汗操作により不
純物を含む部分を選択的に融解させ、融解部分を除去し
てリン酸半水結晶を精製する。
■The phosphoric acid hand water crystals separated from the mother liquor are held at a temperature 0 to 10°C higher than the saturation temperature of the attached mother liquor, and the parts containing impurities are selectively melted by sweating, the melted parts are removed, and the phosphoric acid Purify water crystals.

この■及び■の操作は、それぞれ単独で行ってもよいし
、■と■を組み合わせて行ってもよい。
These operations (1) and (2) may be performed individually, or may be performed in combination.

■と■を紹み合わせて行う場合、その順序は本発明の必
須要件とはなり得す、どちらの操作を先に行ってもかま
わない。
When introducing (1) and (2) together, the order may be an essential requirement of the present invention, and it does not matter which operation is performed first.

精製した結晶は、次に融解し、超純水を添加して所定の
濃度のリン酸とする。
The purified crystals are then melted and ultrapure water is added to obtain phosphoric acid at a predetermined concentration.

このようにして得られるリン酸は、通常浮遊微粒子を大
量に含有し、半導体製造を中心とする高度の電子工業用
に用いるにはまだ不適当であり、更なる処理を必要とす
る。本発明方法では、このリン酸を精密濾過し、リン酸
中に含まれる0、5μm以上の粒径をもつ浮遊微粒子を
1+al当たり50個以下にする。
The phosphoric acid obtained in this way usually contains a large amount of suspended particles and is still unsuitable for use in advanced electronic industry, mainly semiconductor manufacturing, and requires further processing. In the method of the present invention, this phosphoric acid is microfiltered to reduce the number of suspended particles contained in the phosphoric acid with a particle size of 0.5 μm or more to 50 or less per 1+al.

精密濾過装置は、それ自体リン酸中に微粒子を放出した
り不純物を溶出したりするような構造、材質であっては
ならないことは勿論であるが、昨今の技術開発により所
望の装置が入手できるようになった。本発明方法では、
例えばケミボート[P(、−11000、クラボウ(株
)製]を使用することができる。
Of course, the precision filtration device itself must not have a structure or material that would release fine particles or elute impurities into the phosphoric acid, but recent technological developments have made it possible to obtain the desired device. It became so. In the method of the present invention,
For example, ChemiBoat [P (, -11000, manufactured by Kurabo Industries, Ltd.)] can be used.

本発明者らの研究によれば、高純度リン酸中の浮遊微粒
子個数が1+n1当たり50個以上、=15 5000個以下の範囲において、微粒子個数が多いとF
e、Mn及びNaの含有量が増加する傾向が見られたこ
とから、浮遊微粒子の個数と高純度リン酸中のFe、M
n及びNaの含有量には、定量的、機構的に明確でない
にせよ相関関係があり、浮遊微粒子の除去は純度の向上
にも寄与しているものと推察される。
According to research by the present inventors, when the number of suspended particles in high-purity phosphoric acid is in the range of 50 or more per 1+n1 to 155,000 or less, when the number of particles is large, F
Since there was a tendency for the contents of Fe, Mn, and Na to increase, the number of suspended particles and Fe, Mn in high-purity phosphoric acid
There is a correlation between the contents of n and Na, although it is not quantitatively or mechanistically clear, and it is presumed that the removal of suspended particles also contributes to the improvement of purity.

なお、上記の洗浄操作、発汗操作並びに精密濾過操作を
所望により複数回反復して所定の高純度リン酸を得るこ
ともできる。
Note that the above-mentioned washing operation, sweating operation, and microfiltration operation can be repeated multiple times as desired to obtain a predetermined high-purity phosphoric acid.

以上、詳細に説明したように本発明方法による製造方法
を採用することにより本発明に係る高純度リン酸を得る
ことができる6 [実 施 例] 以下、実施例によって本発明を具体的に説明する。
As described above in detail, by employing the production method according to the present invention, it is possible to obtain high purity phosphoric acid according to the present invention. do.

従来より公知のリン酸の製造法である乾式法によりリン
酸を製造した。すなわち、黄リンを過剰の空気中で燃焼
してP2O5とし、それを純水に溶解する製造方法であ
る。この方法で製造したリン6− 酸(H3PO4とじて89重量%)をポリテトラフルオ
ロエチレン(P T F E )でできた孔径0.8μ
mのメンブランフィルタ−[東洋濾紙(株)社製: T
O80^047^]で濾過することによって0.8μm
以上の粒子の個数を減少させ、とりわけ2μm以上の浮
遊微粒子を取り除いた。
Phosphoric acid was produced by a dry method, which is a conventionally known method for producing phosphoric acid. That is, this is a manufacturing method in which yellow phosphorus is burned in excess air to form P2O5, which is then dissolved in pure water. Phosphoric 6-acid (89% by weight including H3PO4) produced by this method was added to polytetrafluoroethylene (PTFE) with a pore size of 0.8μ.
M membrane filter - [manufactured by Toyo Roshi Co., Ltd.: T
0.8μm by filtering with O80^047^]
The number of these particles was reduced, and in particular, suspended particles with a size of 2 μm or more were removed.

このリン酸中の金属元素の量をフレームレス原子吸光光
度分析によって測定したところFeは180ppb、M
nは10ppb、Naは250 ppbであった。
When the amount of metal elements in this phosphoric acid was measured by flameless atomic absorption spectrophotometry, Fe was 180 ppb, M
n was 10 ppb, and Na was 250 ppb.

このリン酸を以下の実施例において原料リン酸として使
用した。
This phosphoric acid was used as a raw material phosphoric acid in the following examples.

実施例1 (イ)前記の原料リン酸800gを0.3μm以上の微
粒子個数を1 ft″当たり10ないし100個の範囲
に清浄化した雰囲気において、晶析容器としてのPTF
E製セパラブルフラスコに注ぎ、PTFE製の撹拌翼を
挿入し、これを100 rpmで回転させて撹拌した。
Example 1 (a) 800 g of the raw material phosphoric acid was prepared using PTF as a crystallization container in a purified atmosphere with a particle size of 0.3 μm or more in the range of 10 to 100 particles per 1 ft.
The mixture was poured into a separable flask made by E and a PTFE stirring blade was inserted therein, and the mixture was stirred by rotating it at 100 rpm.

このリン酸を入れた晶析容器を恒温槽中に浸漬し、リン
酸を冷却した。すン酸の温度を25℃より20’Cまで
冷却し、種晶として粒径0.5〜]、、5mmのリン酸
半水結晶を1g投入した。リン酸の温度を徐々に下げ種
晶を投入してから3時間後に14℃になるように降温し
てリン酸半水結晶を晶析させた。
The crystallization container containing this phosphoric acid was immersed in a constant temperature bath to cool the phosphoric acid. The temperature of the phosphoric acid was cooled from 25° C. to 20° C., and 1 g of phosphoric acid hemihydrate crystals with a particle size of 0.5 to 5 mm were added as seed crystals. The temperature of phosphoric acid was gradually lowered and 3 hours after seed crystals were added, the temperature was lowered to 14° C. to crystallize phosphoric acid hemihydrate crystals.

(ロ)この結晶懸濁液をPTFE製ブフナーロートの多
孔板上に移し、母液を分離した。このときの結晶の質量
は約280gであった。
(b) This crystal suspension was transferred onto a perforated plate of a PTFE Buchner funnel, and the mother liquor was separated. The mass of the crystal at this time was about 280 g.

(ハ〉次いで前記ブフナーロート上の結晶の上方から超
純水を噴霧し、結晶表面・結晶粒子即に保持された原料
リン酸を洗浄して除去した。
(c) Next, ultrapure water was sprayed from above the crystals on the Buchner funnel to wash and remove the raw material phosphoric acid retained on the crystal surfaces and crystal particles.

(ニ)(ハ)によって得られたリン酸を孔径0.1μm
、 濾過面積0.1.7m2のフィルターを備えた薬液
循環濾過装W[ケミボートpc−ttooo、クラボウ
(株)製]を用いてリン酸を0 、16/分で送液し3
0回繰り返し浮遊微粒子をが過した。
(d) The phosphoric acid obtained in (c) has a pore size of 0.1 μm.
Phosphoric acid was pumped at a rate of 0.16/min using a chemical circulation filtration device W [ChemiBoat PC-TTOO, manufactured by Kurabo Industries, Ltd.] equipped with a filter with a filtration area of 0.1.7 m2.
Repeatedly 0 times to remove suspended particles.

この(口〉、(ハ)の一連の操作で得られたリン酸結晶
を融解したリン酸及び(ニ)で得られたリン酸中のFe
、Mn及びNaの含有量を原子吸光光度法て分析した。
Fe in the phosphoric acid obtained by melting the phosphoric acid crystals obtained by this series of operations (1) and (3) and the phosphoric acid obtained in (d)
, Mn and Na contents were analyzed by atomic absorption spectrophotometry.

その結果を第2表に示す。The results are shown in Table 2.

第2表二晶析・洗浄・精密濾過による精製効果(ppb
) 痩狂ユ之七  江0 0q  仁d Fe   180    60   20   20M
n   10     3   不検出 不検出Na 
 250    80   40   30また、(ニ
)で得られた高純度リン酸中に懸濁した浮遊微粒子の個
数を測定したところ、0.5μm以上の浮遊微粒子はl
 cm3当たり45個であった。
Table 2 Purification effects by crystallization, washing, and precision filtration (ppb
) Slimming Mad Yunoshichi E0 0q Jind Fe 180 60 20 20M
n 10 3 Not detected Not detected Na
250 80 40 30 Furthermore, when the number of suspended particles suspended in the high purity phosphoric acid obtained in (d) was measured, it was found that the number of suspended particles of 0.5 μm or more was
There were 45 pieces per cm3.

実施例2 (イ)実施例1で用いた原料のリン酸を実施例]−て用
いた晶析容器に入れ、実施例1に示した晶析操作条件で
晶析し、リン酸半水結晶を得た。
Example 2 (a) The raw material phosphoric acid used in Example 1 was placed in the crystallization container used in Example 1 and crystallized under the crystallization operating conditions shown in Example 1 to obtain phosphoric acid hemihydrate crystals. I got it.

(ロ)晶析用フラスコ内に生成したリン酸半水結晶が懸
濁したスラリー状液体をPTFE製ブフナーロートの多
孔板上に移し、母液を分離した。
(b) The slurry liquid in which phosphoric acid hemihydrate crystals were suspended in the crystallization flask was transferred onto a perforated plate of a PTFE Buchner funnel, and the mother liquor was separated.

(ハ)前記多孔板上の結晶をブフナーロートごと恒温雰
囲気に保持し、発汗操作を行った。リン酸半水結晶を融
解し、滴下液量が約1009となる19 0 まで発汗操作を加え、結晶表面・結晶粒子間に保持され
た原料リン酸を滴下して除去した。
(c) The crystals on the perforated plate were held together with the Buchner funnel in a constant temperature atmosphere, and a sweating operation was performed. The phosphoric acid hemihydrate crystal was melted and a sweating operation was performed until the amount of the dropped liquid was approximately 190, and the raw material phosphoric acid held on the crystal surface and between the crystal particles was dropped and removed.

(ニ)(ハ)によって得たリン酸を孔径0.1μm、i
濾過面積0.17m2のフィルターを備えた薬液循環が
過装置を用いてリン酸を011/分で送液し30回繰り
返し浮遊微粒子を濾過した。
(d) The phosphoric acid obtained in (c) was
Phosphoric acid was fed at a rate of 0.11/min using a chemical circulation device equipped with a filter with a filtration area of 0.17 m2, and suspended particles were filtered 30 times.

この(ロ)、(ハ)の一連の操作で得られたリン酸結晶
を融解したリン酸及び(ニ)で得られたリン酸中のFe
、Mn及びNaの含有量を原子吸光光度法で分析した。
Fe in the phosphoric acid obtained by melting the phosphoric acid crystals obtained by this series of operations (b) and (c) and the phosphoric acid obtained in (d)
, Mn and Na contents were analyzed by atomic absorption spectrophotometry.

その結果を第3表に示す。The results are shown in Table 3.

第3表二晶析・発汗・精密濾過による精製効果(ppb
) 匙扛並之基  作碍  仁り  作列 F e   180    60   18   18
Mn   10    3   不検出 不検出Na 
  250    80   35   30また、(
ニ)で得られた高純度リン酸中に懸濁した浮遊微粒子の
個数を測定したところ、0.5μm以トの浮遊微粒子数
はl Cm3当たり40個であった。
Table 3 Purification effects by crystallization, perspiration, and precision filtration (ppb
) Sabanami no Ki Sakuen Niri Sakuretsu F e 180 60 18 18
Mn 10 3 Not detected Not detected Na
250 80 35 30 Also, (
When the number of suspended fine particles suspended in the high purity phosphoric acid obtained in step d) was measured, the number of suspended fine particles of 0.5 μm or less was 40 per 1 Cm3.

実施例3 (イ〉実施例1で用いた原料のリン酸を実施例1で用い
た晶析容器に入れ、実施例1に示した晶析操作条件で晶
析し、リン酸半水結晶を得た。
Example 3 (A) The raw material phosphoric acid used in Example 1 was placed in the crystallization container used in Example 1, and crystallized under the crystallization operating conditions shown in Example 1 to obtain phosphoric acid hemihydrate crystals. Obtained.

(ロ)晶析用フラスコ内に生成したリン酸半水結晶が懸
濁したスラリー状液体をPTFE製ブフナーロートの多
孔板上に移し、母液を分離した。
(b) The slurry liquid in which phosphoric acid hemihydrate crystals were suspended in the crystallization flask was transferred onto a perforated plate of a PTFE Buchner funnel, and the mother liquor was separated.

〈ハ)前記多孔板上の結晶をブフナーロートごと恒温雰
囲気に保持し、発汗操作を行った。リン酸半水結晶を融
解し、滴下液量が約Loot?どなるまで発汗操作を加
え、結晶表面・結晶粒子間に保持された原料リン酸を滴
下して除去した。
(c) The crystals on the perforated plate were held together with the Buchner funnel in a constant temperature atmosphere, and a sweating operation was performed. Melt the phosphoric acid hemihydrate crystals, and the amount of liquid dropped is approximately Loot? The material was sweated until it became violent, and the raw material phosphoric acid retained on the crystal surface and between the crystal particles was removed dropwise.

(二〉次いで、多孔板上の結晶の上方から超純水を噴霧
し、結晶表面・結晶粒子間に残留したリン酸を洗浄し、
洗浄液を滴下除去した。
(2) Next, ultrapure water is sprayed from above the crystals on the perforated plate to wash away the phosphoric acid remaining on the crystal surface and between the crystal particles.
The cleaning solution was removed dropwise.

(ホ)(ニ)によって得たリン酸を孔径0.1μm、濾
過面積0.17m2のフィルターを備えた薬液循環r過
装置を用いてリン酸を0 、11/分で送液し30回繰
り返し浮遊微粒子を涙過した。
(e) The phosphoric acid obtained in (d) was fed at a rate of 0.11/min using a chemical liquid circulation r-filtration device equipped with a filter with a pore size of 0.1 μm and a filtration area of 0.17 m2, and the process was repeated 30 times. The airborne particles were filtered out.

この(ロ)、(ハ)及び(二〉の一連の操作で得られた
リン酸結晶を融解したリン酸及び(ボ)で得られたリン
酸中のFe、Mn及びNaの含有量を原子吸光光度法で
分析した。その結果を第4表に示す。
The contents of Fe, Mn, and Na in the phosphoric acid obtained by melting the phosphoric acid crystals obtained in the series of operations (b), (c), and (ii) and in the phosphoric acid obtained in (b) are calculated by atomic It was analyzed by spectrophotometry and the results are shown in Table 4.

第4表二晶析・発汗・精密濾過による精製効果(ppb
) 0工)−fff、   仁d  包l F e   60   20   不検出 不検出Mn
   1.0   3   不検出 不検出N a  
 80   35   30   30また、(二〉で
得られた高純度リン酸中に懸濁した浮遊微粒子の個数を
測定したところ、0.5μm以上の浮遊微粒子数は1 
cm’当たり40個であった。
Table 4 Purification effects by crystallization, perspiration, and precision filtration (ppb
) 0 engineering) -fff, Ren d Pack l Fe 60 20 Not detected Not detected Mn
1.0 3 Not detected Not detected N a
80 35 30 30 Also, when the number of suspended particles suspended in the high purity phosphoric acid obtained in (2) was measured, the number of suspended particles of 0.5 μm or more was 1.
There were 40 pieces per cm'.

比較例 本発明の要件であるところの、空気相より浮遊微粒子を
取り除き、0.3μm以上の微粒子個数をlft、’当
たり中に実質的に0ないし1ooooの範囲に清浄化し
た雰囲気が必須の条件であることを立証するために、清
浄化した雰囲気であることを除いて同一の実験を行い、
その結果得られたリン酸のFe、Mn及びNaの含有量
について比較した。
Comparative Example The essential condition of the present invention is an atmosphere in which suspended particles are removed from the air phase and the number of particles of 0.3 μm or more is reduced to a range of substantially 0 to 100 per lft. In order to prove that
The Fe, Mn, and Na contents of the resulting phosphoric acids were compared.

連続的に外気を直接導入する構造の実験室において、実
施例1と同一の原料リン酸を実施例1に用いて晶析容器
に入れ、実施例1と同一の晶析操作条件において精製分
離する実験を行った。
In a laboratory configured to continuously introduce outside air directly, the same raw material phosphoric acid as in Example 1 was placed in a crystallization container, and purified and separated under the same crystallization operating conditions as in Example 1. We conducted an experiment.

この実験室の空気相に浮遊する微粒子の個数を測定した
ところ、0.3μm以上の微粒子の個数は1 ft’当
たり1.00000テあツタ。
When we measured the number of particles floating in the air phase in this laboratory, the number of particles larger than 0.3 μm was 1.00,000 particles per 1 ft'.

(イ)前記の原料リン酸8001gを前記雰囲気におい
て、晶析容器としてのPTFE製セパラブルフラスコに
注ぎ、PTFE製撹拌翼を挿入し、これを10 Q r
pmで回転させ撹拌した。このリン酸を入れた晶析容器
を恒温槽中に浸漬し、リン酸を冷却した。リン酸の温度
を25℃より20℃まで冷却し、種晶として粒径0,5
〜1.5mmのリン酸半水結晶1gを投入した。リン酸
の温度を徐々に下げ種晶を投入してから3時間後に14
°Cになるように降温してリン酸半水結晶を晶析した。
(a) Pour 8001 g of the raw material phosphoric acid into a PTFE separable flask as a crystallization container in the above atmosphere, insert a PTFE stirring blade, and stir the phosphoric acid into a 10 Q r
Rotate and stir at pm. The crystallization container containing this phosphoric acid was immersed in a constant temperature bath to cool the phosphoric acid. The temperature of phosphoric acid was cooled from 25°C to 20°C, and seed crystals with a particle size of 0.5
1 g of ~1.5 mm phosphoric acid hemihydrate crystals was charged. 14 3 hours after gradually lowering the temperature of phosphoric acid and adding seed crystals.
The temperature was lowered to °C to crystallize phosphoric acid hemihydrate crystals.

3 4 (ロ)この結晶懸濁液をPTFE製ブフナーロートの多
孔板上に移し、母液を分離した。
3 4 (b) This crystal suspension was transferred onto a perforated plate of a PTFE Buchner funnel, and the mother liquor was separated.

氷結晶を融解し、滴下液量が約1001?となるまて発
汗操作を加え、結晶表面・結晶粒子間に保持された原料
リン酸を滴下して除去した。
Melt the ice crystals and the amount of liquid dropped is about 1001? A sweating operation was applied, and the raw material phosphoric acid retained on the crystal surface and between the crystal particles was dropped and removed.

(ニ)次いで、多孔板上の結晶の上方から超純水を噴霧
し、結晶表面・結晶粒子間に保持された原料リン酸を洗
浄して除去した。
(iv) Next, ultrapure water was sprayed from above the crystals on the porous plate to wash and remove the raw material phosphoric acid held on the crystal surface and between the crystal particles.

(ホ)(二〉によって得たリン酸を孔径0.1μm、沢
過面積0.17m2のフィルターを備えた薬液循環濾過
装置を用いてリン酸をO,]、N/分で送液し30回繰
り返して浮遊微粒子を濾過した。
(e) The phosphoric acid obtained in (2) was pumped at a rate of O, ], N/min using a chemical liquid circulation filtration device equipped with a filter with a pore size of 0.1 μm and a flow area of 0.17 m2. Suspended particles were filtered out repeatedly.

この(ロ)、(ハ)、(ニ)の一連の操作で得られたリ
ン酸結晶を融解したリン酸及び(ホ)で得られたリン酸
中のFe、Mn及びNaの含有量を原子吸光光度法で分
析した。その結果を第5表に示す。
The content of Fe, Mn, and Na in the phosphoric acid obtained by melting the phosphoric acid crystals obtained by the series of operations (b), (c), and (d) and the phosphoric acid obtained in (e) is calculated by atomic amount. Analyzed by spectrophotometry. The results are shown in Table 5.

第5表:通常雰囲気で行った晶析実験の結果(ppb) 住す   仁Ω   磐4   伽す Fe   80    60    50    50
Mn   6    4    4    4Na  
1.20   100    60    60また、
(二〉で得られた高純度リン酸中に懸濁した浮遊微粒子
の個数を測定したところ、0.5μm以上の浮遊微粒子
数は]、cm3当たり4000個であった。
Table 5: Results of crystallization experiments conducted in normal atmosphere (ppb)
Mn 6 4 4 4Na
1.20 100 60 60 Also,
(When the number of suspended fine particles suspended in the high purity phosphoric acid obtained in 2) was measured, the number of suspended fine particles of 0.5 μm or more was 4000 per cm3.

[発明の効果] 以上説明したように、本発明の高純度リン酸はFe、M
n及びNa元素の混入が少ないために半導体製造工程に
おいて窒化珪素膜を除去するために使用した際に、微細
粒子の電気特性を劣化させる不純物を実質的に含まない
好適な電子材料となる。
[Effect of the invention] As explained above, the high purity phosphoric acid of the present invention contains Fe, M
Due to the small amount of n and Na elements mixed in, when used to remove a silicon nitride film in a semiconductor manufacturing process, it becomes a suitable electronic material that does not substantially contain impurities that degrade the electrical characteristics of fine particles.

また、更に言えば、この高純度リン酸は不純物の含有量
が少ないという特徴から金属アルミニウムエッチング液
、セラミックス用アルミナエツチング液、光フアイバー
ガラス用リン酸ガラス原料としても好適な材料となるも
のである。
Additionally, this high-purity phosphoric acid is characterized by a low content of impurities, making it suitable as a metal aluminum etching solution, an alumina etching solution for ceramics, and a phosphate glass raw material for optical fiber glass. .

また、本発明による上記高純度リン酸の製造法によれば
、各種金属元素が混入していない高純度リン酸を容易に
精製し製造できる利点を挙げることができる。
Further, according to the method for producing high-purity phosphoric acid according to the present invention, there is an advantage that high-purity phosphoric acid that is not mixed with various metal elements can be easily purified and produced.

Claims (1)

【特許請求の範囲】 1、H_3PO_4の濃度を85重量%に換算したとき
の不純物含有量として、 Feは20ppb以下、 Mnは3ppb以下、 Naは40ppb以下 であり、且つリン酸中に含まれる0.5μm以上の粒径
をもつ浮遊微粒子の個数が1ml当たり50個以下であ
ることを特徴とする高純度リン酸。 2、空気相より浮遊微粒子を取り除き、0.3μm以上
の微粒子個数を1ft^3当たり実質的に0ないし10
000の範囲に清浄化した雰囲気において、(イ)濃度
70重量%以上の原料リン酸を飽和温度より0ないし1
0℃低い温度範囲で保持した状態で、種晶を添加した後
、降温してリン酸半水結晶を析出させる晶析工程、 (ロ)(イ)で得られたリン酸半水結晶を洗浄及び/ま
た発汗操作してリン酸半水結晶を精製する工程、及び (ハ)次いで、精製したリン酸半水結晶を融解した後、
精密ろ過してリン酸中に含まれる0.5μm以上の粒径
をもつ浮遊微粒子を除去する工程、からなることを特徴
とする高純度リン酸の製造方法。
[Claims] 1. When the concentration of H_3PO_4 is converted to 85% by weight, the impurity content is 20 ppb or less for Fe, 3 ppb or less for Mn, and 40 ppb or less for Na, and 0 contained in phosphoric acid. A high-purity phosphoric acid characterized in that the number of suspended particles having a particle size of .5 μm or more is 50 or less per ml. 2. Remove suspended particles from the air phase and reduce the number of particles of 0.3 μm or larger to substantially 0 to 10 per ft^3.
(a) In an atmosphere that has been purified to a temperature within the range of 0.000 to 0.000,
A crystallization step in which seed crystals are added while the temperature is maintained at a temperature lower than 0°C, and then the temperature is lowered to precipitate phosphoric acid hemihydrate crystals.(B) Washing the phosphoric acid hemihydrate crystals obtained in (B) and/or a step of purifying the phosphoric acid hemihydrate crystals by a sweating operation, and (c) then, after melting the purified phosphoric acid hemihydrate crystals,
A method for producing high-purity phosphoric acid, comprising the step of removing suspended fine particles with a particle size of 0.5 μm or more contained in phosphoric acid by microfiltration.
JP02030717A 1990-02-09 1990-02-09 High purity phosphoric acid and method for producing the same Expired - Lifetime JP3103360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02030717A JP3103360B2 (en) 1990-02-09 1990-02-09 High purity phosphoric acid and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02030717A JP3103360B2 (en) 1990-02-09 1990-02-09 High purity phosphoric acid and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03237009A true JPH03237009A (en) 1991-10-22
JP3103360B2 JP3103360B2 (en) 2000-10-30

Family

ID=12311398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02030717A Expired - Lifetime JP3103360B2 (en) 1990-02-09 1990-02-09 High purity phosphoric acid and method for producing the same

Country Status (1)

Country Link
JP (1) JP3103360B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006321677A (en) * 2005-05-18 2006-11-30 Nippon Chem Ind Co Ltd High purity phosphoric acid and its production method
JP2007001834A (en) * 2005-06-27 2007-01-11 Shimonoseki Mitsui Chemicals Inc Method of producing high purity purified phosphoric acid
JP2008133189A (en) * 2008-02-19 2008-06-12 Ohara Inc Method of manufacturing optical glass
CN100447916C (en) * 2006-12-22 2008-12-31 东莞市东阳光电容器有限公司 Recovery and utilization process for waste liquor of chemical synthesis workshop
EP1970349A3 (en) * 2007-03-14 2009-09-02 NIRO Process Technology B.V. Purification of phosphoric acid rich streams
JP2012036091A (en) * 2011-11-10 2012-02-23 Ohara Inc Method for producing optical glass
JP2012058602A (en) * 2010-09-10 2012-03-22 Nagase Chemtex Corp Method of time stabilization of particle number in aqueous phosphoric acid and/or phosphate solution and resist residue-releasing agent composition
CN103771374A (en) * 2013-12-30 2014-05-07 广西明利化工有限公司 Electronic grade phosphoric acid clapboard crystallizing device
CN104495770A (en) * 2014-12-24 2015-04-08 金正大诺泰尔化学有限公司 Method for purifying wet process phosphoric acid by crystallization in extraction process
CN116354321A (en) * 2023-03-27 2023-06-30 湖北兴福电子材料股份有限公司 Industrial method and device for purifying electronic grade phosphoric acid through crystallization

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006321677A (en) * 2005-05-18 2006-11-30 Nippon Chem Ind Co Ltd High purity phosphoric acid and its production method
JP2007001834A (en) * 2005-06-27 2007-01-11 Shimonoseki Mitsui Chemicals Inc Method of producing high purity purified phosphoric acid
CN100447916C (en) * 2006-12-22 2008-12-31 东莞市东阳光电容器有限公司 Recovery and utilization process for waste liquor of chemical synthesis workshop
EP1970349A3 (en) * 2007-03-14 2009-09-02 NIRO Process Technology B.V. Purification of phosphoric acid rich streams
JP2008133189A (en) * 2008-02-19 2008-06-12 Ohara Inc Method of manufacturing optical glass
JP2012058602A (en) * 2010-09-10 2012-03-22 Nagase Chemtex Corp Method of time stabilization of particle number in aqueous phosphoric acid and/or phosphate solution and resist residue-releasing agent composition
JP2012036091A (en) * 2011-11-10 2012-02-23 Ohara Inc Method for producing optical glass
CN103771374A (en) * 2013-12-30 2014-05-07 广西明利化工有限公司 Electronic grade phosphoric acid clapboard crystallizing device
CN103771374B (en) * 2013-12-30 2016-04-20 广西明利化工有限公司 A kind of electron-level phosphoric acid baffle crystallization device
CN104495770A (en) * 2014-12-24 2015-04-08 金正大诺泰尔化学有限公司 Method for purifying wet process phosphoric acid by crystallization in extraction process
CN104495770B (en) * 2014-12-24 2017-12-29 金正大诺泰尔化学有限公司 A kind of method of purging by crystallization phosphoric acid by wet process in extraction process
CN116354321A (en) * 2023-03-27 2023-06-30 湖北兴福电子材料股份有限公司 Industrial method and device for purifying electronic grade phosphoric acid through crystallization

Also Published As

Publication number Publication date
JP3103360B2 (en) 2000-10-30

Similar Documents

Publication Publication Date Title
JPH03237009A (en) High purity phosphoric acid and its production
JP2009046390A (en) Production method of high purity lithium carbonate
CN103058235B (en) Method of removing calcium with magnesium sulfate and high-purity magnesium sulfate
EP1606219B1 (en) Sodium cyanide process
JP3131433B2 (en) Method for producing high-purity phosphoric acid
KR101516601B1 (en) Purification of Phosphoric Acid Rich Streams
Kim Purification of phosphoric acid from waste acid etchant using layer melt crystallization
JP3382561B2 (en) High purity phosphoric acid
KR101267638B1 (en) Method for producing high purity caustic potash
JPS6316329B2 (en)
US20130287666A1 (en) Process for the purification of phosphoric acid
US9676632B2 (en) Method for purifying silicon
KR100454101B1 (en) Purification method and equipment for phosphoric acid
US3819810A (en) Phosphoric acid purification
JP7345728B2 (en) How to purify lithium carbonate
JP4635310B2 (en) Neutral sodium sulfate composition and method for producing the same
JP4457575B2 (en) Zeolite-modified soil production method, zeolite-modified soil production system, and zeolitic-modified soil
KR100684983B1 (en) Purification method of phosphoric acid through layer crystallization including washing operation
JPS62100409A (en) Production of caustic potash having high purity
JP4635314B2 (en) Method for producing sodium sulfate
JP5856714B2 (en) How to purify silicon
EP2864528A1 (en) Lining for surfaces of a refractory crucible for purification of silicon melt and method of purification of the silicon melt using that crucible
RU2002102070A (en) METHOD FOR PROCESSING ADIPINIC ACID CRYSTALS
Lüdecke et al. Scaleup in suspension crystallization of two multi compound fatty acid mixtures
SU833282A1 (en) Method of filtering suspensions

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 10