JPH03237002A - Reactor for fuel cell - Google Patents

Reactor for fuel cell

Info

Publication number
JPH03237002A
JPH03237002A JP9034890A JP3489090A JPH03237002A JP H03237002 A JPH03237002 A JP H03237002A JP 9034890 A JP9034890 A JP 9034890A JP 3489090 A JP3489090 A JP 3489090A JP H03237002 A JPH03237002 A JP H03237002A
Authority
JP
Japan
Prior art keywords
gas
reactor
carbon monoxide
catalyst
reformed gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9034890A
Other languages
Japanese (ja)
Inventor
Shunzo Kawabata
川畑 俊造
Takeyoshi Kamiyama
剛由 上山
Yasuo Tanaka
康夫 田中
Hideki Sugimura
杉村 秀樹
Mamoru Aoki
守 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP9034890A priority Critical patent/JPH03237002A/en
Publication of JPH03237002A publication Critical patent/JPH03237002A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To efficiently operate the reactor when the reactor is started and the load of a fuel cell is reduced and to make the reactor compact by using a coaxial multiple-tube structure and surrounding the inner desulfurizer with the outer carbon monoxide converter. CONSTITUTION:Natural gas (raw gas) is supplied from the raw gas inlet nozzle 15 at the lower end of the inner cylinder 2, and allowed to ascend in the inner cylinder 2 and then descend in an annular passage 11. The sulfur in the raw gas is hydrogenated to hydrogen sulfide by a hydrogenation desulfurization catalyst 6 in the passage 11, and the hydrogen sulfide is adsorbed on the desulfurization adsorbent 7. The desulfurized raw gas is discharged from a desulfurized gas outlet nozzle 19 and sent to a reformer. The reformed gas consisting essentially of hydrogen is adjusted to a specified temp. by a heat exchanger and supplied to a reactor 1 from a reformed gas inlet nozzle 20. The reformed gas is allowed to descend in an annular passage 13 and then ascend in an annular passage 12, the concn. of carbon monoxide in the reformed gas is reduced by a shift reaction catalyst 8, and then the reformed gas is discharged from a reformed gas outlet nozzle 21 and used as the fuel gas for a fuel cell.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、天然ガスを燃料電池用の燃料に改質する前・
後に処理して天然ガスを燃料電池用として最適な形態に
する為の反応装置に関し、詳細には改質前における天然
ガスの脱硫と改質後における一酸化炭素変成の両機能を
具備し、且つ起動時および燃料電池の負荷低減時のいず
れにおいても効率良く運転することができ、しかも装置
のコンパクト化を図ることのできる燃料電池用反応装置
に関するものである。
[Detailed Description of the Invention] [Industrial Fields of Application] The present invention is directed to a method for reforming natural gas into fuel for fuel cells.
Regarding a reaction device for post-processing natural gas into an optimal form for use in fuel cells, in detail, it has the functions of both desulfurization of natural gas before reforming and carbon monoxide conversion after reforming, and The present invention relates to a fuel cell reaction device that can be operated efficiently both during startup and when the load on the fuel cell is reduced, and which can be made more compact.

[従来の技術] 燃料電池は、アノード(燃料電極)側に供給された水素
と、カソード(空気電極)側に供給された酸素との電気
化学的反応によって電気エネルギーを発生ずる装置であ
る。上記水素としては専ら天然ガスに水蒸気を混合し、
これを触媒層に通して生成する水素リッチの改質ガス(
水素を主成分とし、一酸化炭素、二酸化炭素、メタン等
を含有する可燃性ガス)が用いられており、一方上記酸
素については空気を導入することによって行なわれてい
る。天然ガスを改質する為の装置としては、例えば特開
昭53−78992号、同53−79766号、同5B
−!10862号、同58−63783号、特公昭57
−7538号等が知られている。
[Prior Art] A fuel cell is a device that generates electrical energy through an electrochemical reaction between hydrogen supplied to the anode (fuel electrode) side and oxygen supplied to the cathode (air electrode) side. The above hydrogen is produced by mixing natural gas with water vapor,
This is passed through a catalyst layer to produce hydrogen-rich reformed gas (
A combustible gas containing hydrogen as a main component and carbon monoxide, carbon dioxide, methane, etc. is used, while the oxygen is produced by introducing air. Examples of devices for reforming natural gas include JP-A-53-78992, JP-A-53-79766, and JP-A-5B.
-! No. 10862, No. 58-63783, Special Publication No. 1983
-7538 etc. are known.

ところで改質ガス中に一酸化炭素がうく含まれていると
、その濃度に応じて発生電圧の低下が起こるので、改質
ガス中の一酸化炭素を変成する為の一酸化炭素変成器を
燃料電池の上流側に配置する必要かある。この様な装置
としては、例えは特開昭63−229138号や特開平
1−188407号等が提案されている。
By the way, if the reformed gas contains a large amount of carbon monoxide, the generated voltage will decrease depending on the concentration, so it is necessary to use a carbon monoxide transformer to convert the carbon monoxide in the reformed gas as fuel. Is it necessary to place it upstream of the battery? Such devices have been proposed, for example, in Japanese Patent Laid-Open Nos. 63-229138 and 1-188407.

一方前述の改質装置には触媒としてニッケルを含有する
触媒を使用することが多く、この触媒はイオウ成分を被
毒物質とすることから、特に天然ガスを原料カスとして
使用する際には、天然ガス中に含まれるイオウ成分を改
質前に脱硫器によって除去する必要かある。
On the other hand, the above-mentioned reformer often uses a catalyst containing nickel as a catalyst, and this catalyst has a sulfur component as a poisonous substance. Is it necessary to remove the sulfur component contained in the gas using a desulfurizer before reforming?

[発明が解決しようとする課題] 燃料電池に関連する装置における共通の課題としては、
■コンパクト化、■起動時の昇温時間短縮化、■制御の
簡略化、■熱ロスの低減、等が挙げられる。しかしなが
ら、これまて提案されている一酸化炭素変成器ては、起
動時の昇温に長時間を要するのか一般であり、また反応
温度を触媒活性化温度(180℃以上)と触媒劣化防止
温度(260℃以下)の間に適切に制御することについ
てはあまり考慮されていないのが実情である。
[Problems to be solved by the invention] Common problems in devices related to fuel cells include:
■Compactness, ■Shorter temperature rise time at startup, ■Simplification of control, ■Reduction of heat loss, etc. However, the carbon monoxide shift converters that have been proposed so far generally require a long time to raise the temperature at startup, and the reaction temperature is set between the catalyst activation temperature (180℃ or higher) and the catalyst deterioration prevention temperature. The reality is that little consideration has been given to appropriate control during the temperature range (below 260°C).

しかもこれまでは脱硫器と一酸化炭素変成器は別個に配
置されるのが一般的であり、上記のおよび■の点でも不
十分であった。
Moreover, until now, the desulfurizer and the carbon monoxide shift converter were generally arranged separately, which was insufficient in terms of (1) and (2) above.

本発明はこうした技術的課題を解決する為になされたも
のてあって、その目的は、脱硫器と一酸化炭素変成器の
両機能を合せ有し、且つ起動時および燃料電池の負荷低
減時のいずれにおいても効率良く運転することができ、
しかも装置のコンパクト化を図ることのできる燃料電池
用反応装置を提供することにある。
The present invention was made to solve these technical problems, and its purpose is to have both the functions of a desulfurizer and a carbon monoxide transformer, and to provide a In either case, it can be operated efficiently,
Moreover, it is an object of the present invention to provide a fuel cell reaction device that can be made compact.

[課題を解決する為の手段] 上記目的な遠戚することのできた本発明の燃料電池用反
応装置とは、燃料電池用の燃料として改質する前の天然
ガスを脱硫する脱硫器と、改質後に改質ガス中の一酸化
炭素を変成する一酸化炭素変成器を一体化した構成から
なり、同軸多重管構造であって、内側の脱硫器を外側の
一酸化炭素変成器で囲む様に構成したものである点に要
旨を有するものである。
[Means for Solving the Problems] The fuel cell reactor of the present invention, which is distantly related to the above object, includes a desulfurizer that desulfurizes natural gas before reforming it as a fuel for fuel cells, and a It has a structure that integrates a carbon monoxide transformer that transforms carbon monoxide in the reformed gas after reforming, and has a coaxial multi-tube structure, so that the inner desulfurizer is surrounded by the outer carbon monoxide transformer. The main point lies in the fact that it is structured as follows.

[作用および実施例] 以下実施例図面に基づき、本発明の構成および作用効果
を更に詳細に説明するが、下記実施例は本発明を限定す
るものではなく、前・後記の趣旨に徴して設計変更する
ことはいずれも本発明の技術的範囲に含まれるものであ
る。
[Operations and Examples] The configuration and operation effects of the present invention will be explained in more detail below based on the drawings of the examples, but the following examples are not intended to limit the present invention, and are designed with the spirit of the above and below in mind. Any modifications are included within the technical scope of the present invention.

第1図は本発明の反応装置の一実施例を示す断面説明図
で、1は反応装置、2は内筒、3は中筒、4は外筒、5
は反応装置本体を構成する保温材、6は水添脱硫触媒、
7は脱硫吸着剤、8はシフト反応触媒、9は電気ヒータ
の夫々を示す。
FIG. 1 is a cross-sectional explanatory diagram showing one embodiment of the reaction apparatus of the present invention, in which 1 is the reaction apparatus, 2 is the inner cylinder, 3 is the middle cylinder, 4 is the outer cylinder, and 5 is the reaction apparatus.
6 is a heat insulating material that constitutes the reactor body, 6 is a hydrodesulfurization catalyst,
7 is a desulfurization adsorbent, 8 is a shift reaction catalyst, and 9 is an electric heater.

反応装置1は、内筒2、中筒3、外筒4、保温材5を相
互に間隙を設けて配設した同軸多重管構造からなり、内
筒2と中筒3の間に形成される環状通路11内に前記水
添脱硫触媒6および脱硫吸着剤7が充填されると共に、
外筒4と保温材5の間に形成される環状通路12内に前
記シフト反応触媒8か充填される。前記内筒2、中筒3
、水添脱硫触媒6および脱硫吸着剤7によって脱硫器が
構成されると共に、前記中筒3、外筒4、保温材5およ
びシフト反応触媒8によって一酸化炭素変成器が構成さ
れ、反応装置1は内側の脱硫器を外側の一酸化炭素変成
器で囲む様にして構成される。尚中筒3と外筒4によっ
て形成される環状通路13と前記環状通路11とは中筒
3によって相互に隔絶されているが、相互に伝熱可能に
構成されている。
The reactor 1 has a coaxial multiple tube structure in which an inner tube 2, a middle tube 3, an outer tube 4, and a heat insulating material 5 are arranged with a gap between them, and is formed between the inner tube 2 and the middle tube 3. The annular passage 11 is filled with the hydrodesulfurization catalyst 6 and the desulfurization adsorbent 7, and
The shift reaction catalyst 8 is filled in the annular passage 12 formed between the outer cylinder 4 and the heat insulating material 5. Said inner cylinder 2, middle cylinder 3
A desulfurizer is configured by the hydrodesulfurization catalyst 6 and the desulfurization adsorbent 7, and a carbon monoxide shift converter is configured by the inner cylinder 3, outer cylinder 4, heat insulating material 5, and shift reaction catalyst 8, and the reaction device 1 is constructed in such a way that an inner desulfurizer is surrounded by an outer carbon monoxide transformer. The annular passage 13 formed by the inner cylinder 3 and the outer cylinder 4 and the annular passage 11 are separated from each other by the inner cylinder 3, but are configured to be able to transfer heat to each other.

天然ガス(原料ガス)は、内筒2の下端部の原料ガス人
口2ズル15から供給され、内筒2内を上昇した後環状
通路11を降下する。原料ガス中のイオウ分は環状通路
11内で、水添脱硫触媒6によって水素化されて硫化水
素とされると共に、脱硫吸着剤7によって上記硫化水素
が吸着される。尚図中17は多孔板状の触媒押えであり
、18a、18bは多孔板状の触媒受けである。
Natural gas (raw material gas) is supplied from a material gas port 15 at the lower end of the inner cylinder 2, rises inside the inner cylinder 2, and then descends through the annular passage 11. Sulfur in the raw material gas is hydrogenated to hydrogen sulfide by the hydrodesulfurization catalyst 6 in the annular passage 11, and the hydrogen sulfide is adsorbed by the desulfurization adsorbent 7. In the figure, 17 is a perforated plate-shaped catalyst holder, and 18a and 18b are perforated plate-shaped catalyst receivers.

また脱硫吸着剤7としては酸化亜鉛が例示される。Further, as the desulfurization adsorbent 7, zinc oxide is exemplified.

脱硫された原料ガスは、脱硫ガス出口ノズル19から取
り出され、改質器A(後記第5図参照)に送られる。
The desulfurized raw material gas is taken out from the desulfurization gas outlet nozzle 19 and sent to the reformer A (see FIG. 5 below).

一方水素ガスを主成分とする改質ガスは、熱交換器D(
後記第5図参照)で温度調整された後、改質カス人口ノ
ズル20から反応器1内に供給される。該改質カスは前
記環状通路13内を降下した後、環状通路12内を上昇
し、ここでシフト反応触媒8によって改質ガス中の一酸
化炭素の濃度が低減され、その後改質ガス出ロノズル2
1から取り出され、燃料電池の燃料として使用される。
On the other hand, the reformed gas whose main component is hydrogen gas is transferred to the heat exchanger D (
After the temperature is adjusted by the process (see FIG. 5 below), the reformed scum is supplied into the reactor 1 from the population nozzle 20. The reformed scum descends in the annular passage 13 and then rises in the annular passage 12, where the concentration of carbon monoxide in the reformed gas is reduced by the shift reaction catalyst 8, and then the reformed gas exits from the reformed gas outlet nozzle. 2
1 and used as fuel for fuel cells.

電気ヒータ9は起動時にシフト反応触媒8を加熱するも
のであるが、起動時には前記ノズル15.20から高温
の不活性ガス(例えば窒素)またはスチームか導入され
、反応器1全体の加熱か行なわれる。
The electric heater 9 heats the shift reaction catalyst 8 at startup, and at startup, high-temperature inert gas (for example, nitrogen) or steam is introduced from the nozzle 15, 20 to heat the entire reactor 1. .

本発明の反応装置1では脱硫器と一酸化炭素変成器を一
体化したものであるのて、外表面積を小さくすることが
てき、外部放熱を押えることができ、保温施工コスト的
にも有利である。
Since the reactor 1 of the present invention integrates a desulfurizer and a carbon monoxide shift converter, the outer surface area can be reduced, external heat radiation can be suppressed, and it is advantageous in terms of heat insulation construction cost. be.

起動時には上述の通り高温の不活性ガス等がノズル15
.20から導入されて昇温か行なわれるが、本発明装置
によればその際の熱は装置全体に行き亘り、局部が異常
に高くなることが回避でき、相当高温のガスが流せる様
になり、昇温時間の短縮化が図れる。また触媒充填層の
厚みを層状に薄くすることができ、ヒータ加熱によって
も充填層全体に伝熱し易く、この点からも昇温時間の短
縮化が図れる。
At startup, high-temperature inert gas, etc. flows through the nozzle 15 as mentioned above.
.. However, according to the device of the present invention, the heat at that time spreads throughout the device, preventing local areas from becoming abnormally high, allowing considerably high temperature gas to flow, and increasing the temperature. The heating time can be shortened. Further, the thickness of the catalyst packed bed can be made thin in a layered manner, and heat can be easily transferred to the entire packed bed even when heated by a heater, and from this point of view as well, the temperature rising time can be shortened.

一方通常運転時には、ノズル15.20等から導入され
るカス温度に多少の変動が生じても、或は変成触媒層下
流部で反応熱が発生しても、全体的にガスおよび装置構
成材料を通じて伝熱され、温度の平準化が達成され易く
、ガス人口温度の許容範囲を拡げることができ制御の単
純化が図れる。
On the other hand, during normal operation, even if there are slight fluctuations in the temperature of the waste introduced from nozzles 15, 20, etc., or even if reaction heat is generated downstream of the shift conversion catalyst layer, the overall gas and equipment components are Heat is transferred, temperature leveling is easily achieved, the allowable range of gas population temperature can be expanded, and control can be simplified.

本発明に係る反応装置1の構成は第1図に限定されず、
改質ガスの流路が逆方向のものであってもよいのは勿論
のこと、例えば第2図に示す様に内筒2a内に水添脱硫
触媒6および脱硫吸着剤7を充填し、原料ガスの流れを
環状通路11を上昇した後内管2a内を降下する様な構
成としてもよい。また原料ガスや改質ガスの導入流路内
の適所にヒータを配置し、起動時における水添脱硫触媒
6や一酸化炭素変成触媒7の昇温を加速する様にしても
よい。
The configuration of the reaction apparatus 1 according to the present invention is not limited to that shown in FIG.
Of course, the reformed gas flow path may be in the opposite direction. For example, as shown in FIG. 2, the inner cylinder 2a is filled with a hydrodesulfurization catalyst 6 and a desulfurization adsorbent 7, The gas flow may be configured such that it ascends through the annular passage 11 and then descends within the inner tube 2a. Alternatively, a heater may be placed at a suitable location within the feed gas or reformed gas introduction flow path to accelerate the temperature rise of the hydrodesulfurization catalyst 6 and the carbon monoxide shift catalyst 7 at the time of startup.

第3図は本発明の更に他の実施例を示す断面説明図であ
り、基本的な構成は第1図に示した構成と類似するので
、対応する部分には同一の参照符号を付すことにより重
複説明を回避する。燃料電池は発電設備であるので、で
きる限り電気エネルギーを消費せずに操業できることが
好ましく、発電設備を起動するに際して大容量の電力が
必要というのでは発電設備として問題が多い。
FIG. 3 is a cross-sectional explanatory diagram showing still another embodiment of the present invention, and since the basic configuration is similar to that shown in FIG. 1, corresponding parts are designated by the same reference numerals. Avoid duplicate explanations. Since a fuel cell is a power generation facility, it is preferable that it can be operated without consuming as much electrical energy as possible, and there are many problems as a power generation facility if a large amount of electric power is required to start the power generation facility.

また脱硫反応は発熱反応であるが、天然ガス中に含まれ
るイオウ分は微量であるため温度上昇はなく、冷却は特
に必要としないのに対し、一酸化炭素変成時における発
熱反応は30〜60℃程度の温度上昇があり、冷却を必
要とする。そこで第3図に示す実施例では、原料ガスや
改質ガスの温度の変動に十分対応できる様にするため、
電気ヒータを用いず飽和熱水によって一酸化炭素変成触
媒の温度を適当な温度範囲に設定できる様な構成とした
。即ち第3図に示す様に、前記環状通路12内のシフト
反応触媒8を貫通する様に螺旋状の蛇管25を設け、熱
水入口ノズル26から170〜200℃程度の飽和熱水
を該蛇管25内に導入し、該熱水によって前記触媒8を
冷却し、触媒8の温度を一酸化炭素反応の一般的な反応
温度である180〜260℃の範囲に保持すると共に、
熱水は出口ノズル27から取出す。一方脱硫器は一酸化
炭素変成器よりも少し高めの温度で操作するが、該脱硫
器は一酸化炭素変成器で囲まれているので、温度が大幅
に変動することがなく安定した運転か実行される。
Desulfurization is an exothermic reaction, but since the sulfur content in natural gas is small, there is no temperature rise and no cooling is required. There is a temperature rise of about ℃, and cooling is required. Therefore, in the embodiment shown in FIG. 3, in order to be able to sufficiently cope with fluctuations in the temperature of the raw material gas and reformed gas,
The structure is such that the temperature of the carbon monoxide shift catalyst can be set within an appropriate temperature range using saturated hot water without using an electric heater. That is, as shown in FIG. 3, a spiral flexible pipe 25 is provided so as to pass through the shift reaction catalyst 8 in the annular passage 12, and saturated hot water of about 170 to 200° C. is supplied from a hot water inlet nozzle 26 to the flexible pipe. 25, the catalyst 8 is cooled by the hot water, and the temperature of the catalyst 8 is maintained in the range of 180 to 260 °C, which is the general reaction temperature of carbon monoxide reaction,
The hot water is taken out through the outlet nozzle 27. On the other hand, the desulfurizer operates at a slightly higher temperature than the carbon monoxide shift converter, but since the desulfurizer is surrounded by the carbon monoxide shift converter, the temperature does not fluctuate significantly, allowing stable operation. be done.

尚第3図に示す実施例では、その要部(円形部IV)を
第4図に示す様に、内筒2の外側に窒素供給管30を設
け、この供給管30に穿設された窒素吹出口31から高
温の窒素を吹出す様な構成を示している。これは起動時
に脱硫触媒6を180〜300℃に昇温する為のもので
あり、供給ノズル32から300℃程度の高温窒素を供
給し、窒素吹出口31から脱硫触媒に吹き付けることに
よって昇温を行なう。−カー酸化炭素変成器の起動時に
おいては、前記熱水出口ノズル27から飽和熱水を導入
し、その凝縮潜熱によって触媒7を昇温し、凝縮ドレン
は熱水入口ノズル26から排出する。
In the embodiment shown in FIG. 3, a nitrogen supply pipe 30 is provided outside the inner cylinder 2, and the nitrogen supply pipe 30 is provided on the outside of the inner cylinder 2, as the main part (circular part IV) is shown in FIG. A configuration is shown in which high temperature nitrogen is blown out from an outlet 31. This is to raise the temperature of the desulfurization catalyst 6 to 180 to 300 degrees Celsius during startup, and the temperature rise is achieved by supplying high-temperature nitrogen of about 300 degrees Celsius from the supply nozzle 32 and blowing it onto the desulfurization catalyst from the nitrogen outlet 31. Let's do it. - When starting up the Kerr carbon oxide shift converter, saturated hot water is introduced from the hot water outlet nozzle 27, and the catalyst 7 is heated by its latent heat of condensation, and condensed water is discharged from the hot water inlet nozzle 26.

この様な構成を採用することによって、電気ヒータを使
用することなく短時間で起動が行なえ、且つ温度制御も
更に高精度に達成される。
By adopting such a configuration, startup can be performed in a short time without using an electric heater, and temperature control can also be achieved with higher precision.

第3図に示した実施例では蛇管25に熱水を通ず様な構
成を示したけれども、熱水を供給する為の手段は図示し
たものに限定されず、例えば保温材5の内側に熱水ジャ
ケットを設けたり、保温材の内壁面をプレートコイルで
製作する様な構成も採用できる。
Although the embodiment shown in FIG. 3 shows a configuration in which hot water is passed through the flexible pipe 25, the means for supplying hot water is not limited to that shown in the figure. It is also possible to adopt a configuration in which a water jacket is provided or the inner wall surface of the heat insulating material is made of plate coils.

本発明の反応装置は、例えば第5図に示す様なシステム
に組込まれる。第5図は本発明装置を使用する為の水冷
式燃料設備システムを示す概念図で、Aは改質器、Bは
燃料電池本体、Cは気水分離器、D、Eは熱交換器、F
は冷却水循環ポンプ、Gは窒素循環ポンプ。Hは起動用
ボイラーを夫々示し、代表的な構成要部以外は省略しで
ある。尚第5図は、第3図に示した反応装置1を用いる
場合を憇定したものである。
The reaction apparatus of the present invention is incorporated into a system as shown in FIG. 5, for example. FIG. 5 is a conceptual diagram showing a water-cooled fuel equipment system for using the device of the present invention, where A is a reformer, B is a fuel cell main body, C is a steam/water separator, D and E are heat exchangers, F
is a cooling water circulation pump, and G is a nitrogen circulation pump. H indicates a starting boiler, and other than typical constituent parts are omitted. Note that FIG. 5 is based on the case where the reaction apparatus 1 shown in FIG. 3 is used.

以下システムの概略を説明する。The outline of the system will be explained below.

起動時において、改質器Aでは天然ガスを燃焼させる。At startup, reformer A burns natural gas.

また改質器Aの改質側には、窒素循環ブロアGによって
窒素を循環させる。改質器Aから出る燃焼排ガスの温度
が上昇し始めると、熱交換器Eで窒素が加熱され、該窒
素は反応器1の水添脱硫触媒6の中に吹き込まれるので
、水添脱硫触媒6の湯度が上昇してくる。反応器1を出
た窒素は、改質器Aの改質側に入るが、ここでバーナで
加熱されるので、再び昇温されることになる。そしてこ
の窒素によって、熱交換器り1反応器2のシフト反応触
媒8を昇温しつつ、燃料電池本体Bの燃料極の手前で窒
素循環ブロアGの方へ循環する。
Further, nitrogen is circulated to the reforming side of the reformer A by a nitrogen circulation blower G. When the temperature of the flue gas coming out of the reformer A begins to rise, nitrogen is heated in the heat exchanger E and is blown into the hydrodesulfurization catalyst 6 of the reactor 1. The temperature of the water will rise. Nitrogen leaving the reactor 1 enters the reforming side of the reformer A, where it is heated by a burner, so its temperature is raised again. The nitrogen circulates toward the nitrogen circulation blower G in front of the fuel electrode of the fuel cell main body B while raising the temperature of the shift reaction catalyst 8 of the heat exchanger 1 reactor 2.

1 改質器Aの起動に対応して起動用ボイラHも起動するが
、このボイラからは数分でスチームが発生する。このス
チームは気水分離器Cに導入された後、反応器1の蛇管
25に導入され、シフト反応触媒8を外部から加熱する
。循環窒素とスチームによる加熱によって、シフト反応
触媒8の温度が循環窒素の最高温度に達した時点て、改
質ラインにもスチームを導入する。即ち、起動用ボイラ
Hて発生したスチームを、気水分離器Cを通した後、熱
交換器りて加熱し、改質器Aの手前で循環窒素と合流し
てから改質器Aの改質側に入れる。
1. In response to the startup of reformer A, startup boiler H is also started, and steam is generated from this boiler in a few minutes. This steam is introduced into the steam separator C, and then into the flexible pipe 25 of the reactor 1, and heats the shift reaction catalyst 8 from the outside. When the temperature of the shift reaction catalyst 8 reaches the maximum temperature of the circulating nitrogen due to heating by circulating nitrogen and steam, steam is also introduced into the reforming line. That is, the steam generated in the startup boiler H passes through a steam separator C, is heated in a heat exchanger, and is combined with circulating nitrogen before the reformer A. Put it on the quality side.

窒素・スチーム混合気体は改質器Aのバーナて加熱され
た後、改質器A以降の配管、熱交換器り。
After the nitrogen/steam mixture gas is heated by the burner of reformer A, it is sent to the piping and heat exchanger after reformer A.

該熱交換器り以降の配管9反応器1および該反応器1以
降の配管を加熱していく。このとき昇温か最も遅くなる
と懸念される前記シフト反応触媒8は、蛇管25によっ
て予め加熱されているので、改質系全体の昇温時間が大
幅に短縮てきるばかりか、前記シフト反応触媒8が凝縮
水で漏れてしまう様なこともない。
The piping 9 after the heat exchanger, the reactor 1, and the piping after the reactor 1 are heated. At this time, the shift reaction catalyst 8, which is concerned about being the slowest in temperature rise, has been preheated by the flexible pipe 25, so not only can the temperature rise time of the entire reforming system be significantly shortened, but also the shift reaction catalyst 8 There is no chance of condensed water leaking.

2 方通常運転時においては、天然ガスは熱交換器りの方に
たけ流す。即ち、天然ガスは、熱交換器りの手前て水添
脱硫の為に水素を主成分とする少量の改質カスが添加さ
れた後、熱交換器りで脱硫反応に適する温度にまで加熱
され、反応器】の水添反応触媒6内に導出される。反応
器1内で脱硫された天然ガスは、気水分離器Cからくる
スチームと混合された後、改質器Aの改質側に導入され
る。尚通常運転時は、窒素循環ボイラGおよび起動用ボ
イラHは運転を停止している。このときスチームは燃料
電池本体Bで発生する熱によって生成する。天然ガスは
改質器Aにおいて、水素を主成分とする改質ガスに改質
される。このときの反応に必要な熱は燃料電池排燃料を
バーナで燃焼させることによって補なえる。改質器Aを
出た改質ガス中には、熱交換器りで一酸化炭素変成反応
に通した湯度まで冷却してから、反応器1の一酸化炭素
変成触媒(前記シフト反応触媒8)内に導入される。こ
こでの反応は発熱反応であるが、気水分離器Cからくる
飽和熱水によって冷却される。該飽和熱水は蛇管25内
で蒸発し、自然循環して気水分離器Cに戻る(サーモサ
イホン式熱交換器)。この様にして燃料電池の燃料とし
て適した改質カスが得られる。尚通常運転時には、負荷
変動によって反応器1の人口ガス温度が変動するが、特
に第3図に示した反応器1では脱硫器を酸化炭素変成器
で囲んだ構成に加え、サーモサイホン式で触媒を冷却す
る構成を採用していることから、複雑な温度コントロー
ルを必要とせずに最適な運転が継続される。
During normal operation, natural gas flows toward the heat exchanger. That is, natural gas is heated to a temperature suitable for the desulfurization reaction in the heat exchanger after a small amount of reforming residue mainly composed of hydrogen is added for hydrodesulfurization before the heat exchanger. , reactor] into the hydrogenation reaction catalyst 6. The natural gas desulfurized in the reactor 1 is mixed with steam coming from the steam separator C and then introduced into the reforming side of the reformer A. Note that during normal operation, the nitrogen circulation boiler G and the startup boiler H are stopped. At this time, steam is generated by the heat generated in the fuel cell body B. Natural gas is reformed in reformer A into reformed gas containing hydrogen as a main component. The heat required for this reaction can be supplemented by burning the fuel cell waste fuel in a burner. The reformed gas that exits the reformer A is cooled to the temperature required for the carbon monoxide shift reaction in a heat exchanger, and then heated to the carbon monoxide shift catalyst in the reactor 1 (the shift reaction catalyst 8). ) is introduced within. Although the reaction here is exothermic, it is cooled by saturated hot water coming from the steam separator C. The saturated hot water evaporates in the corrugated pipe 25 and returns to the steam separator C through natural circulation (thermosyphon type heat exchanger). In this way, reformed sludge suitable as fuel for fuel cells can be obtained. During normal operation, the temperature of the artificial gas in reactor 1 fluctuates due to load fluctuations. In particular, in reactor 1 shown in Figure 3, in addition to the desulfurizer being surrounded by a carbon oxide shift converter, the catalyst is Since the system uses a cooling configuration, optimal operation can be maintained without the need for complex temperature control.

[発明の効果] 以上述へた如く本発明によれは、脱硫器と一酸化炭素変
威器の両機能を合せ有し、且つ起動時および燃料電池の
負荷低減時のいずれにおいても効率良く運転することが
でき、しかも装置のコンパクト化を図ることのできる燃
料電池用反応装置が実現できた。
[Effects of the Invention] As described above, the present invention has both the functions of a desulfurizer and a carbon monoxide transformer, and can operate efficiently both at startup and when reducing the load on the fuel cell. A reactor for fuel cells was realized that can be made more compact and can be made more compact.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の反応装置の一実施例を示す断面説明図
、第2図は反応装置1の他の実施例を示ず断面説明図、
第3図は本発明の更に他の実施例を示す断面説明図、第
4図は第3図の要部■を示す拡大図、第5図は本発明の
構成によって採用することが可能となった燃焼電池設備
システムの説明図である。 1・・・反応装置 3・・・中筒 6・・・水添脱硫触媒 A・・・改質器 C・・・気水分離器 2・・・内筒 4・・・外筒 8・・・シフト反応触媒 B・・・燃料電池本体 り、E・・・熱交換器
FIG. 1 is a cross-sectional explanatory diagram showing one embodiment of the reaction apparatus of the present invention, FIG. 2 is a cross-sectional explanatory diagram showing another embodiment of the reaction apparatus 1,
FIG. 3 is an explanatory cross-sectional view showing still another embodiment of the present invention, FIG. 4 is an enlarged view showing the main part (■) of FIG. 3, and FIG. FIG. 2 is an explanatory diagram of a combustion battery equipment system. 1... Reactor 3... Middle tube 6... Hydrodesulfurization catalyst A... Reformer C... Steam-water separator 2... Inner tube 4... Outer tube 8...・Shift reaction catalyst B... fuel cell body, E... heat exchanger

Claims (2)

【特許請求の範囲】[Claims] (1)燃料電池用の燃料として改質する前の天然ガスを
脱硫する脱硫器と、改質後に改質ガス中の一酸化炭素を
変成する一酸化炭素変成器を一体化した構成からなり、
同軸多重管構造であって、内側の脱硫器を外側の一酸化
炭素変成器で囲む様に構成したものであることを特徴と
する燃料電池用反応装置。
(1) Consisting of an integrated configuration of a desulfurizer that desulfurizes natural gas before it is reformed as fuel for fuel cells, and a carbon monoxide shift converter that converts carbon monoxide in the reformed gas after reforming.
1. A reactor for a fuel cell, characterized in that it has a coaxial multi-tube structure, and is configured such that an inner desulfurizer is surrounded by an outer carbon monoxide transformer.
(2)脱硫器に充填される脱硫用触媒と、一酸化炭素変
成器に充填される一酸化炭素変成用触媒とを加熱できる
様に構成したことを特徴とする請求項(1)に記載の燃
料電池用反応装置。
(2) The method according to claim (1), characterized in that the desulfurization catalyst filled in the desulfurizer and the carbon monoxide shift catalyst filled in the carbon monoxide shift converter are configured to be heated. Reactor for fuel cells.
JP9034890A 1990-02-14 1990-02-14 Reactor for fuel cell Pending JPH03237002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9034890A JPH03237002A (en) 1990-02-14 1990-02-14 Reactor for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9034890A JPH03237002A (en) 1990-02-14 1990-02-14 Reactor for fuel cell

Publications (1)

Publication Number Publication Date
JPH03237002A true JPH03237002A (en) 1991-10-22

Family

ID=12426755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9034890A Pending JPH03237002A (en) 1990-02-14 1990-02-14 Reactor for fuel cell

Country Status (1)

Country Link
JP (1) JPH03237002A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004525484A (en) * 2000-12-05 2004-08-19 テキサコ ディベラップメント コーポレイション Apparatus and method for heating a catalyst for starting a compact fuel processor
WO2005077823A1 (en) * 2004-02-17 2005-08-25 Matsushita Electric Industrial Co., Ltd. Hydrogen producing device and fuel cell system with the same
JP2009078954A (en) * 2007-09-27 2009-04-16 Fuji Electric Holdings Co Ltd Reforming apparatus
WO2011040208A1 (en) * 2009-09-30 2011-04-07 株式会社ケーヒン Ptc heater unit and pressure reducing valve for lpg fuel
JP2011207701A (en) * 2010-03-30 2011-10-20 Jx Nippon Oil & Energy Corp Hydrogen production apparatus and fuel cell system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004525484A (en) * 2000-12-05 2004-08-19 テキサコ ディベラップメント コーポレイション Apparatus and method for heating a catalyst for starting a compact fuel processor
WO2005077823A1 (en) * 2004-02-17 2005-08-25 Matsushita Electric Industrial Co., Ltd. Hydrogen producing device and fuel cell system with the same
JP2009078954A (en) * 2007-09-27 2009-04-16 Fuji Electric Holdings Co Ltd Reforming apparatus
WO2011040208A1 (en) * 2009-09-30 2011-04-07 株式会社ケーヒン Ptc heater unit and pressure reducing valve for lpg fuel
EP2484888A1 (en) * 2009-09-30 2012-08-08 Keihin Corporation Ptc heater unit and pressure reducing valve for lpg fuel
EP2484888A4 (en) * 2009-09-30 2013-12-25 Keihin Corp Ptc heater unit and pressure reducing valve for lpg fuel
JP2011207701A (en) * 2010-03-30 2011-10-20 Jx Nippon Oil & Energy Corp Hydrogen production apparatus and fuel cell system

Similar Documents

Publication Publication Date Title
EP2244327B1 (en) Solid oxide fuel cell system
JP2003327405A (en) Fuel reforming apparatus and method of starting same
JPH10330101A (en) Hydrogen-manufacturing apparatus and method therefor
CN100459263C (en) Fuel cell system
JP2003282114A (en) Stopping method of fuel cell power generating device
JP2007055868A (en) Fuel reforming device
JP3743119B2 (en) Fuel cell power generation system
KR100751029B1 (en) Fuel cell power generation system
JPH03237002A (en) Reactor for fuel cell
JPH02188405A (en) Water cooled carbon monoxide conversion reactor of fuel cell
JP2001093550A (en) Solid polymer fuel cell generator and method for operating
JP2002104806A (en) Fuel reformer and fuel cell generator using it
JP2003086210A (en) Solid high-polymer type fuel cell power generator and its operation method
JP2003187849A (en) Solid polymer fuel cell power generator
JP2000281311A (en) Reforming device for fuel cell
JP4968984B2 (en) Fuel cell reformer
JP2001313053A (en) Fuel cell system
US7887606B2 (en) Fuel reforming apparatus and method for starting said fuel reforming apparatus
JP2004075435A (en) Fuel reforming device
JPH11149931A (en) Starting method of reforming equipment for fuel cell
JP3941159B2 (en) Fuel cell power generation system
JP2001143731A (en) Fuel cell system
JP3789706B2 (en) CO conversion unit and polymer electrolyte fuel cell power generation system
JPH10324501A (en) Carbon monoxide remover and method for starting carbon monoxide remover
JP4872760B2 (en) Operation control method and apparatus for fuel processor